Scientific Computing WS 2017/2018

Lecture 29

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- Assume $\rho<\rho_{0}<1$ independent of h resp. N, A sparse and solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$.

Iterative solver complexity II

- Assume $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta}$
- $k=O\left(h^{-\delta}\right)$
- d: space dimension, then $h \approx N^{-\frac{1}{d}} \Rightarrow k=O\left(N^{\frac{\delta}{d}}\right)$
- Assume $O(N)$ complexity of one iteration step
\Rightarrow Overall complexity $O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$, something better with at least $\delta=1$?

dim	$\rho=1-O\left(h^{2}\right)$	$\rho=1-O(h)$	LU fact.	LU solve
1	$O\left(N^{3}\right)$	$O\left(N^{2}\right)$	$O(N)$	$O(N)$
2	$O\left(N^{2}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O(N \log N)$
3	$O\left(N^{\frac{5}{3}}\right)$	$O\left(N^{\frac{4}{3}}\right)$	$O\left(N^{2}\right)$	$O\left(N^{\frac{4}{3}}\right)$

- In 1D, iteration makes not much sense
- In 2D, we can hope for parity
- In 3D, beat sparse matrix solvers with $\rho=1-O(h)$?

Multigrid: Iterative solver with $\mathrm{O}(\mathrm{N})$ complexity

Idea: combine classical preconditioners with coarse grid correction

- Assume embedded finite element spaces $V_{0} \ldots V_{1}$ such tha $V_{0} \subset V_{1} \subset \ldots V_{1}$
- V_{k} is produced from V_{k-1} by subdividing each triangle into four. Alternative: finite difference refinement
- \Rightarrow interpolation operator $I_{k-1}^{k}: V_{k-1} \rightarrow V_{k}$
- \Rightarrow restriction operator $R_{k-1}^{k}=\left(I_{k-1}^{k}\right)^{T}: V_{k} \rightarrow V_{k-1}$
- Discretization matrix A_{k} on each level $k=0 \ldots$.
- "Smoother" (Jacobi, ILU, ...) M_{k} on each level $k=1 \ldots$.
- Number of smoothig steps n_{s}
- Coarse grid solver
- Number of coarse grid correction steps γ

Multigrid Algorithm

Procedure Multigrid($/, u_{l}, f_{l}$)
if $I=0$ then
$u_{0}=A_{0}^{-1} f_{0} \quad / /$ coarse grid solution
else
for $i=1, n_{s}$ do
$u_{l}=u_{l}-M_{l}^{-1} A_{l}\left(u_{l}-f_{l}\right)$
end
$f_{l-1}=R_{l-1}^{\prime}\left(A_{l} u_{l}-f_{l}\right) \quad / /$ restriction
$u_{I-1}=0$
for $i=1, \gamma$ do
| Multigrid($\left./-1, u_{l-1}, f_{l-1}\right) \quad / /$ coarse grid corr.
end
$u_{I}=u_{I}-l_{l-1}^{l} u_{l-1} \quad / /$ interpolation
for $i=1, n_{s}$ do
| $u_{l}=u_{l}-M_{l}^{-1} A_{l}\left(u_{l}-f_{l}\right) \quad / /$ post-smoothing
end
end

Multigrid remarks

- Use as a preconditioner in CG methods
- First development in early 60ies by Bakhvalov, Fedorenko
- Works well for hierarchically embedded grid systems and smooth problem coefficients: $O(N)$ solution complexity
- Other variant can use embedding of FEM spaces of growing polynomial degree
- "Algebraic multigrid": define coarse grid, interpolations in an algebraic way by choosing coarse grid points and an interpolation from matrix entries
- Hybrid variant: structured grid, matrix dependent transfer operators for problems with strongly varying coefficients (my PhD. thesis)

Final remarks

Rear view

- I Architectures and Languages
- C++, a bit of Python
- II Linear Algebra
- Sparse matrices, iterative methods, some theory behind
- III Finite elements+ Finite volumes on triangular grids
- Heat/Diffusion equation (stationary + time dependent)
- Stationary convection diffusion
- Nonlinear diffusion
- Triangulations
- Finite elements + convergence rate estimates
- Finite volumes
- Structural properties discretized systems
- IV Parallelization
- Shared/Distributed memory, GPU
- Threads, OpenMP, MPI
- Four separate A4 printable pdfs now on course page

Where to go from here: problem classes

- Systems of PDEs
- Elasticity: deformation of bodies under external forces
- Stokes/Navier Stokes equations of fluid mechanics
- Maxwell equations of electrodynamics
- Charge transport in self-consistent electric field
- Reaction-Diffusion systems (we have seen one)
- Coupling between them
- Models and discretizations consistent to basic thermodynamic principles
- Energy conservation
- Entropy production (second law of thermodynamics)
- Optimization
- Uncertainty quantification
- Reduced order methods

Where to go from here: discretization methods

- Finite differences (not covered intentionally...)
- Discontinuous Galerkin methods
- Finite volume methods on general grids
- Precise and oscillation free discretizations for convection-diffusion
- Linear implicit time discretization for nonlinear problems
- Spectral methods
- Isogeometric finite elements (NURBS based)
- Boundary elements
- Criteria
- Convergence
- Matrix structures
- Structural consistency (to basic physical/thermodynamical principles)

Where to go from here: meshing

- 3D meshing with anisotropic resolution of boundary layers

Where to go from here: efficient linear solution methods

- Domain decomposition methods

Where to go from here: languages + code

- Legacy: Fortran + C
- Future (?): JIT based
- Julia
- Python/Numba
- Visualization
- MathGL
- vtk/paraview
- Parallel programming environments
- PetsC
- Trilinos
- Open Source FEM environments
- Deal II
- DUNE
- FENics
- Commercial
- COMSOL

Where to go from here: something completely different
... but Scientific computing as well

- Molecular dynamics, density functional theory
- Machine learning, neuronal networks (?)

Exams

- Room: MA379
- Consultations: This Thursday 10:00-12:00 MA269
- Focus questions on course page
- Please do not forget your Prüfungsanmeldung
- Beisitzer:
- Rene Kehl
- Olivier Seté
- Prof. Nabben

Examination dates

2018-02-26	10:00	Ntokas Konstantin
	$10: 30$	Raabe Dominik
	$11: 00$	Blaschke Lana
2018-03-05	$10: 00$	Bender Wilhelm
	$10: 30$	Masuku Amanda
	$11: 00$	Rominger Marvin
	$11: 30$	Zhu Ruidong
$2018-03-12$	$10: 00$	Beddig Rebekka
	$10: 30$	Beersing-Vasavez Kiran
	$11: 00$	Cejudo José Eduardo
	$11: 30$	Samad Azlaan Mustafa
	$12: 00$	Sheriff Waseem
	$12: 30$	Sun Peng
$2018-03-14$	$10: 00$	Anker Felix
	$10: 30$	Abdel Dilara
	$11: 00$	Deinert Hendrik
	$11: 30$	Eleftheriadou loanna Iro
	$12: 00$	Ozge Sahin
	$13: 30$	Palacios Joaquin
	$14: 00$	Scharton Anton
	$14: 30$	Siedler Frederik
	$15: 00$	Vasalakis Matthas
	$15: 30$	Weltsch André
$2018-03-26$	$10: 00$	Bartels Tinko
	$10: 30$	Baumann Felix
	$11: 00$	Bolz Marie
	$11: 30$	Gabrysch Sven
	$12: 00$	Meyer Sybille
	$12: 30$	Riegger Franziska
	$13: 00$	Runge Daniel

