Scientific Computing WS 2017/2018
Lecture 27

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Why parallelization ?

» Computers became faster and faster without that. ..

Floating point peak performance [Gflop/s]
CPU frequency [GHz]
100

parallelism

core iz
Care 2 D
Pantium 4 ore 2 fue

Pantium 11
Pantium 1T free speedup
Fentium Pro

singhe pracision
—8— double pracision
—8— CPU frequency

1993 1995 1997 1999 2001 2003 2005 2007 2009 [Source: spiralgen.com]

But: clock rate of processors limited due to physical limits

= parallelization is the main road to increase the amount of data
processed

Parallel systems nowadays ubiquitous: even laptops and smartphones
have multicore processors

Amount of accessible memory per processor is limited = systems
with large memory can be created based on parallel processors

vy

v

v

Parallel paradigms

SIMD
Single Instruction Multiple Data

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n) o
C=A(yB()| [C(=A(2'B@)| [Cln}=A(n)*B(n) :
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

» "classical” vector systems: Cray,
Convex ...
» Graphics processing units (GPU)

MIMD
Multiple Instruction Multiple Data

prev instruct prev instruct prev instruct
load A(1) call funcD do 10i=1N
load B(1) x=y'z alpha=w*3 | |~
C(1)=A(1)*B(1) sum=x'2 zeta=C(i) H
store C(1) call sub(ij) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]
» Shared memory systems
» |IBM Power, Intel Xeon, AMD
Opteron ...
» Smartphones . ..
» Xeon Phi R.I.P.
» Distributed memory systems
> interconnected CPUs

MIMD Hardware: Distributed memory

» “Linux Cluster”
“Commodity Hardware”
Memory scales with number of

- _ CPUs interconneted
+ > » High latency for communication
network .
» Mostly programmed using MPI
(Message passing interface)

» Explicit programming of
communications:

gather data, pack, send, receive,
unpack, scatter

vy

[Source: computing.linl.gov/tutorials]

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

MIMD Hardware: Shared Memory

« Multi .
Symmetric Multiprocessing Nonuniform Memory Access (NUMA)

(SMP)/Uniform memory acces
iy .

[Source: computing.linl.gov/tutorials]

- > Possibly varying memory access
latencies
R Slmllsle::e;;rgz;sgs”c;:s/ uteriald » Combination of SMP systems
o . » ccNUMA: Cache coherent
> Similar memory access times NUMA

» Shared memory: one (virtual) address space for all processors involved
» Communication hidden behind memory acces

» Not easy to scale large numbers of CPUS

v

MPI works on these systems as well

Hybrid distributed /shared memory

v

Combination of shared and distributed memory approach
Top 500 computers

v

[Source: computing.linl.gov/tutorials]

Shared memory nodes can be mixed CPU-GPU
Need to master both kinds of programming paradigms

vy

MPI Programming

» Typically, one writes one program which is started in multiple
incarnations on different hosts in a network.

» MPI library calls are used to determine the identiy of a running
program

» Communication + barriers have to be programmed explicitely.

MPI Hello world

// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identtiy) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)

cout << "Number of available processes: " << nproc << "\n";
cout << "Hello from proc " << iproc << endl;

MPI_Finalize ();

» Compile with mpic++ mpi-hello.cpp -o mpi-hello

» All MPI programs begin with MPI_Init() and end with
MPI_Finalize()

» the communicator MPI_COMM_WORLD designates all processes in the
current process group, there may be other process groups etc.

» The whole program is started N times as system process, not as
thread: mpirun -np N mpi-hello

MPI hostfile

hostl slots=nl
host2 slots=n2

» Distribute code execution over several hosts

» MPI gets informed how many independent processes can be run on
which node and distributes the required processes accordingly

» MPI would run more processes than slots available. Avoid this
situation !

» Need ssh public key access and common file system access for proper
execution

» Telling mpi to use host file:
mpirun --hostfile hostfile -np N mpi-hello

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

vy

Send data to other process(es)
The message buffer is described by (start, count, datatype):

> start: Start address

» count: number of items

> datatype: data type of one item
The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm
When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.
The tag codes some type of message

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

» Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

» source is rank in communicator specified by comm, or
MPI_ANY SOURCE

> status contains further information

> Receiving fewer than count occurrences of datatype is OK, but
receiving more is an error.

MPI| Broadcast

MPI_Bcast(start, count, datatype, root, comm)

> Broadcasts a message from the process with rank “root” to all other
processes of the communicator
» Root sends, all others receive.

SIMD Hardware: Graphics Processing Units (GPU)

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) Ioad B(2) load B(n) s
(1)=A(1)*B(1)| C(2)=A(2)'B(2) C(n)=A(n)*B(n) :
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

» Principle useful for highly structured data

Example: textures, triangles for 3D graphis rendering

» During the 90's, Graphics Processing Units (GPUs) started to contain
special purpose SIMD hardware for graphics rendering

» 3D Graphic APIs (DirectX, OpenGL) became transparent to
programmers: rendering could be influences by “shaders” which
essentially are programs which are compiled on the host and run on
the GPU

v

General Purpose Graphics Processing Units (GPGPU)

» Graphics companies like NVIDIA saw an opportunity to market GPUs
for computational purposes

» Emerging APIs which allow to describe general purpose computing
tasks for GPUs: CUDA (Nvidia specific), OpenCL (ATI/AMD
designed, general purpose), OpenACC(future ?)

» GPGPUs are accelerator cards added to a computer with own memory

and many vector processing pipelines
(NVidia Tesla K40: 12GB + 2880 units)

» CPU-GPU connection generally via mainbord bus

Local Memory Local Memory

Global/Constant Memory

‘Compute Device

Compute Device

Processing
Element

Compute Unit
Host

[Source: amd-dev.wpengine.netdna-cdn.com]

GPU Programming paradigm

» CPU:

> sets up data

> triggers compilation of “kernels”: the heavy duty loops to be executed
on GPU

» sends compiled kernels (“shaders”) to GPU

> sends data to GPU, initializes computation

> receives data back from GPU

» GPU:

> receive data from host CPU
> just run the heavy duty loops im local memory
» send data back to host CPU

v

CUDA and OpenCL allow explicit management of these steps

v

High effiency only with good match between data structure and
layout of GPU memory (2D rectangular grid)

NVIDIA Cuda

» Established by NVIDIA GPU vendor
» Works only on NVIDIA cards

» Claimed to provide optimal performance

CUDA Kernel code

1

» The kernel code is the code to be executed on the GPU aka “Device’
> It needs to be compiled using special CUDA compiler

#include <cuda_runtime.h>

/*
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C.
* The 3 vectors have the same
* number of elements numElements.
*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{
int i = blockDim.x * blockIdx.x + threadldx.x;

if (i < numElements)
{

C[i] = A[i] + B[il;
}

CUDA Host code |

int main(void)
{
int numElements = 50000;
size_t size = numElements * sizeof (float);

// Allocate host vectors

float *h_A = (float *)malloc(size);
float *h_B (float *)malloc(size);
float *h_C = (float *)malloc(size);

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{
h_A[i]
h_B[i]

rand()/(float)RAND_MAX;
rand () /(float)RAND_MAX;

}

// Allocate device vectors
float *d_A = NULL;
float *d_B NULL;
float *d_C = NULL;

assert(cudaMalloc((void **)&d_A, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_B, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_C, size)==cudaSuccess);

CUDA Host code Il

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice) ;

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid =(numElements + threadsPerBlock - 1)
/ threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

assert (cudaGetLastError () ==cudaSuccess) ;
cudaMemcpy (h_C, d_C, size, cudaMemcpyDeviceToHost) ;

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

free(h_A);
free(h_B);
free(h_C);
cudaDeviceReset () ;

OpenCL

» “Open Computing Language”
» Vendor independent

» More cumbersome to code

Example: OpenCL: computational kernel

__kernel void square(
__global floatx input, _ global floatx output)
{

size_t i = get_global_id(0);
output[i] = input[i] * inputl[il;

__kernel
Defines an entry point or exported method in a program object

Address spaces and data usage must be specified for all memory objects

Use get_global_id for unique work-item id, get_group_id for work-group, etc

[Source: http://sal0.idav.ucdavis.edu/docs/sal0-dg-opencl-overview.pdf]

OpenCL: Resource build up, kernel creation

// Fill our data set with random float values
int count = 1024 x 1024;
for(i = 0; i < count; i++)

data[il = rand() / (float)RAND_MAX;

// Connect to a compute device, create a context and a command queue
cl_device_id device;

clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &device, NULL);

cl_context context = clCreateContext(@, 1, & device, NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context, device, @, NULL);

// Create and build a program from our OpenCL-C source code

cl_program program = clCreateProgramWithSource(context, 1, (const char *x) &src,
NULL, NULL);

clBuildProgram(program, @, NULL, NULL, NULL, NULL);

// Create a kernel from our program
cl_kernel kernel = clCreateKernel(program, "square", NULL);

[Source: http://sal0.idav.ucdavis.edu/docs/sal0-dg-opencl-overview.pdf]

OpenCL: Data copy to GPU

// Allocate input and output buffers, and fill the input with data
cl_mem input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count,
NULL, NULL);

// Create an output memory buffer for our results
cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count,
NULL, NULL);

// Copy our host buffer of random values to the input device buffer
clEnqueueWriteBuffer(queue, input, CL_TRUE, @, sizeof(float) * count, data, 0,
NULL, NULL);

// Get the maximum number of work items supported for this kernel on this device

size_t global = count; size_t local = 0;

clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int),
&local, NULL);

[Source: http://sal0.idav.ucdavis.edu/docs/sal0-dg-opencl-overview.pdf]

OpenCL: Kernel execution, result retrieval from GPU

// Set the arguments to our kernel, and enqueue it for execution
clSetKernelArg(kernel, @, sizeof(cl_mem), &input);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);

clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, @, NULL, NULL);

// Force the command queue to get processed, wait until all commands are complete
clFinish(queue);

// Read back the results
clEnqueueReadBuffer(queue, output, CL_TRUE, @, sizeof(float) * count, results, 0,
NULL, NULL);

// Validate our results
int correct = 0;
for(i = 0; i < count; i++)
correct += (results[il == datalil * datalil) ? 1 : 0;

// Print a brief summary detailing the results
printf("Computed '%d/%d' correct values!\n", correct, count);

[Source: http://sal0.idav.ucdavis.edu/docs/sal0-dg-opencl-overview.pdf]

OpenCL Summary

» Need good programming experience and system management skills in
order to set up tool chains with properly matching versions, vendor
libraries etc.

> (I was not able to get this running on my laptop in finite time...)
» Very cumbersome programming, at least as explicit as MPI

» Data structure restrictions limit class of tasks which can run
efficiently on GPUs.

OpenACC (Open Accelerators)

Idea similar to OpenMP: use compiler directives

Future merge with OpenMP intended

Intended for different accelerator types (Nvidia GPU ...)

GCC, Clang implementations on the way (but not yet in the usual
repositories)

vvyvyy

OpenACC Sample program

#define N 2000000000
#define vl 1024
int main(void) {

double pi = 0.0f;
long long ij;

#pragma acc parallel vector_length(vl)
#pragma acc loop reduction(+:pi)
for (i=0; i<N; i++) {
double t= (double) ((i+0.5)/N);
pi +=4.0/(1.0+t*t);
}

printf("pi=%11.10f\n",pi/N);

return O;

» compile with

gcc-5 openacc.c -fopenacc -foffload=nvptx-none -foffload="-0
...... but to do this one has to compile gcc with a special

configuration. ..

Other ways to program GPU

> Directly use graphics library
» OpenGL with shaders
» WebGL: OpenGL in the browser. Uses html and javascript.

WebGL Example

» Gray-Scott model for Reaction-Diffusion: two species.

U is created with rate f and decays with rate f
U reacts wit V to more V

V deacays with rate f + k.

U, V move by diffusion

>
»
»
»
15 u

U+2v L3y

f+k

V =0

f
F—0
» Stable states:

» No V
> “ Much of V, then it feeds on U and re-creates itself

» Reaction-Diffusion equation from mass action law:
Oy — DyAu+uv? —f(1—u)=0
v — DAV — v + (F + k)v =0

Discretization

» ... GPUs are fast so we choose the explicit Euler method:
1 2
“(upy1 — un) — DuAuy+ upvy; — (1 —w,) =0
-
1
=(Vpt1 — uy) — DyAv, — u,,v,% +(F+kv,=0
-

» Finite difference/finite volume discretization on grid of size h

—Au g (b = Uim1 g~ Ui~ U1~ Uig)

The shader

<script type="x-webgl/x-fragment-shader" id="timestep-shader">
precision mediump float;

uniform sampler2D u_image;

uniform vec2 u_size;

const float F = 0.05, K = 0.062, D_a = 0.2, D_.b = 0.1;

const float TIMESTEP = 1.0;

void main() {

vec2 p = gl_FragCoord.xy,

n =p + vec2(0.0, 1.0),
e = p + vec2(1.0, 0.0),
s = p + vec2(0.0, -1.0),
w =p + vec2(-1.0, 0.0);

vec2 val = texture2D(u_image, p / u_size).xy,
laplacian = texture2D(u_image, n / u_size).xy
texture2D(u_image, e / u_size).xy
texture2D(u_image, s / u_size).xy
texture2D(u_image, w / u_size).xy

4.0 * val;

+ + +

vec2 delta = vec2(D_a * laplacian.x - val.xxval.y*val.y + F * (1.0-val.x),
D_b * laplacian.y + val.x*val.y*val.y - (K+F) * val.y);

gl_FragColor = vec4(val + delta * TIMESTEP, 0, 0);
+

</script>

Why does this work so well here ?

» Data structure fits very well to topology of GPU

> rectangular grid
> 2 unknowns to be stored in x,y components of vec2

» GPU speed allows to “break” time step limitation of explicit Euler

» Data stay within the graphics card: once we loaded the initial value,
all computations, and rendering use data which are in the memory of
the graphics card.

» Depending on the application, choose the best way to proceed

> e.g. deep learning (especially training speed)

