Scientific Computing WS 2017/2018

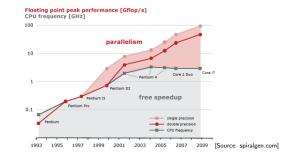
Lecture 27

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Why parallelization ?

Computers became faster and faster without that...



- But: clock rate of processors limited due to physical limits
- ➤ ⇒ parallelization is the main road to increase the amount of data processed
- Parallel systems nowadays ubiquitous: even laptops and smartphones have multicore processors
- ► Amount of accessible memory per processor is limited ⇒ systems with large memory can be created based on parallel processors

Parallel paradigms

prev instruct prev instruct prev instruct load A(2) load A(1) load A(n) load B(1) load B(2) load B(n) C(2)=A(2)*B(2) C(n)=A(n)*B(n C(1)=A(1)*B(1) store C(1) store C(2) store C(n) next instruct next instruct next instruct P1 P2 Pn

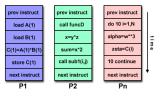
SIMD

Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

- "classical" vector systems: Cray, Convex ...
- Graphics processing units (GPU)

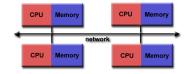
MIMD Multiple Instruction Multiple Data



[Source: computing.llnl.gov/tutorials]

- Shared memory systems
 - IBM Power, Intel Xeon, AMD Opteron . . .
 - Smartphones . . .
 - Xeon Phi R.I.P.
- Distributed memory systems
 - interconnected CPUs

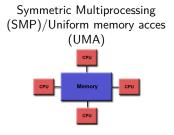
MIMD Hardware: Distributed memory



- "Linux Cluster"
- "Commodity Hardware"
- Memory scales with number of CPUs interconneted
- High latency for communication
- Mostly programmed using MPI (Message passing interface)
- Explicit programming of communications: gather data, pack, send, receive, unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

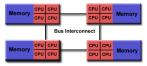
MIMD Hardware: Shared Memory



[Source: computing.llnl.gov/tutorials]

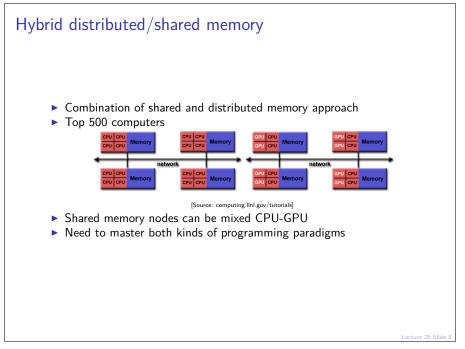
- Similar processors
- Similar memory access times

Nonuniform Memory Access (NUMA)



[Source: computing.llnl.gov/tutorials]

- Possibly varying memory access latencies
- Combination of SMP systems
- ccNUMA: Cache coherent NUMA
- Shared memory: one (virtual) address space for all processors involved
- Communication hidden behind memory acces
- Not easy to scale large numbers of CPUS
- MPI works on these systems as well



MPI Programming

- ► Typically, one writes *one program* which is started in multiple incarnations on different hosts in a network.
- MPI library calls are used to determine the identity of a running program
- Communication + barriers have to be programmed explicitly.

MPI Hello world

```
// Initialize MPI.
MPI_Init ( &argc, &argv );
// Get the number of processes.
MPI_Comm_size ( MPI_COMM_WORLD, &nproc );
// Determine the rank (number, identity) of this process.
MPI_Comm_rank ( MPI_COMM_WORLD, &iproc );
if ( iproc == 0 )
cout << "Number of available processes: " << nproc << "\n";
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ( );
```

- Compile with mpic++ mpi-hello.cpp -o mpi-hello
- All MPI programs begin with MPI_Init() and end with MPI_Finalize()
- the communicator MPI_COMM_WORLD designates all processes in the current process group, there may be other process groups etc.
- ▶ The whole program is started N times as system process, not as thread: mpirun -np N mpi-hello

MPI hostfile

host1 slots=n1 host2 slots=n2

- . . .
 - Distribute code execution over several hosts
 - MPI gets informed how many independent processes can be run on which node and distributes the required processes accordingly
 - MPI would run more processes than slots available. Avoid this situation !
 - Need ssh public key access and common file system access for proper execution
 - Telling mpi to use host file:

```
mpirun --hostfile hostfile -np N mpi-hello
```

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

- Send data to other process(es)
- The message buffer is described by (start, count, datatype):
 - start: Start address
 - count: number of items
 - datatype: data type of one item
- The target process is specified by dest, which is the rank of the target process in the communicator specified by comm
- When this function returns, the data has been delivered to the system and the buffer can be reused. The message may not have been received by the target process.
- The tag codes some type of message

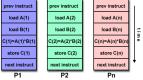
MPI_Recv(start, count, datatype, source, tag, comm, status)

- ► Waits until a matching (on source and tag) message is received from the system, and the buffer can be used.
- source is rank in communicator specified by comm, or MPI_ANY_SOURCE
- status contains further information
- Receiving fewer than count occurrences of datatype is OK, but receiving more is an error.

MPI_Bcast(start, count, datatype, root, comm)

- Broadcasts a message from the process with rank "root" to all other processes of the communicator
- ▶ Root sends, all others receive.

SIMD Hardware: Graphics Processing Units (GPU)

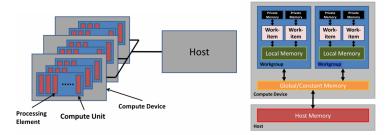


[Source: computing.llnl.gov/tutorials]

- Principle useful for highly structured data
- ► Example: textures, triangles for 3D graphis rendering
- During the 90's, Graphics Processing Units (GPUs) started to contain special purpose SIMD hardware for graphics rendering
- 3D Graphic APIs (DirectX, OpenGL) became transparent to programmers: rendering could be influences by "shaders" which essentially are programs which are compiled on the host and run on the GPU

General Purpose Graphics Processing Units (GPGPU)

- Graphics companies like NVIDIA saw an opportunity to market GPUs for computational purposes
- Emerging APIs which allow to describe general purpose computing tasks for GPUs: CUDA (Nvidia specific), OpenCL (ATI/AMD designed, general purpose), OpenACC(future ?)
- GPGPUs are accelerator cards added to a computer with own memory and many vector processing pipelines (NVidia Tesla K40: 12GB + 2880 units)
- CPU-GPU connection generally via mainbord bus



GPU Programming paradigm

- ► CPU:
 - sets up data
 - triggers compilation of "kernels": the heavy duty loops to be executed on GPU
 - sends compiled kernels ("shaders") to GPU
 - sends data to GPU, initializes computation
 - receives data back from GPU
- GPU:
 - receive data from host CPU
 - just run the heavy duty loops im local memory
 - send data back to host CPU
- CUDA and OpenCL allow explicit management of these steps
- High effiency only with good match between data structure and layout of GPU memory (2D rectangular grid)

NVIDIA Cuda

- Established by NVIDIA GPU vendor
- Works only on NVIDIA cards
- Claimed to provide optimal performance

CUDA Kernel code

- The kernel code is the code to be executed on the GPU aka "Device"
- It needs to be compiled using special CUDA compiler

```
#include <cuda runtime.h>
/*
* CUDA Kernel Device code
* Computes the vector addition of A and B into C.
* The 3 vectors have the same
* number of elements numElements.
*/
global void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x:
    if (i < numElements)
    Ł
       C[i] = A[i] + B[i];
    }
}
```

CUDA Host code I

. . .

```
int main(void)
{
    int numElements = 50000:
    size t size = numElements * sizeof(float);
    // Allocate host vectors
    float *h A = (float *)malloc(size);
    float *h B = (float *)malloc(size):
    float *h C = (float *)malloc(size);
    // Initialize the host input vectors
    for (int i = 0; i < numElements; ++i)</pre>
    ſ
        h A[i] = rand()/(float)RAND MAX:
        h B[i] = rand()/(float)RAND MAX;
    }
    // Allocate device vectors
    float *d_A = NULL;
    float *d B = NULL;
    float *d C = NULL:
    assert(cudaMalloc((void **)&d A, size)==cudaSuccess);
    assert(cudaMalloc((void **)&d_B, size)==cudaSuccess);
    assert(cudaMalloc((void **)&d C, size)==cudaSuccess);
```

CUDA Host code II

}

```
. . .
cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256:
int blocksPerGrid =(numElements + threadsPerBlock - 1)
                   / threadsPerBlock:
vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, numElements);
assert(cudaGetLastError()==cudaSuccess);
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d A);
cudaFree(d B);
cudaFree(d C);
free(h A):
free(h B);
free(h_C);
cudaDeviceReset():
```

OpenCL

- "Open Computing Language"
- Vendor independent
- More cumbersome to code

Example: OpenCL: computational kernel

```
_kernel void square(
    __global float* input, __global float* output)
{
    size_t i = get_global_id(0);
    output[i] = input[i] * input[i];
}
```

Declare functions with __kernel attribute Defines an entry point or exported method in a program object

Use address space and usage qualifiers for memory Address spaces and data usage must be specified for all memory objects

Built-in methods provide access to index within compute domain Use get_global_id for unique work-item id, get_group_id for work-group, etc

OpenCL: Resource build up, kernel creation

```
// Fill our data set with random float values
int count = 1024 \times 1024:
for(i = 0; i < count; i++)</pre>
    data[i] = rand() / (float)RAND MAX:
// Connect to a compute device, create a context and a command queue
cl device id device;
clGetDeviceIDs(CL DEVICE TYPE GPU, 1, &device, NULL):
cl context context = clCreateContext(0, 1, & device, NULL, NULL, NULL);
cl command gueue gueue = clCreateCommandQueue(context, device, 0, NULL);
// Create and build a program from our OpenCL-C source code
cl program program = clCreateProgramWithSource(context, 1, (const char **) &src,
                                                NULL, NULL);
clBuildProgram(program. 0. NULL, NULL, NULL, NULL);
// Create a kernel from our program
cl kernel kernel = clCreateKernel(program, "square", NULL);
```

OpenCL: Data copy to GPU

OpenCL: Kernel execution, result retrieval from GPU

```
// Set the arguments to our kernel, and engueue it for execution
clSetKernelArg(kernel, 0, sizeof(cl mem), &input);
clSetKernelArg(kernel, 1, sizeof(cl mem), &output);
clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
clEngueueNDRangeKernel(gueue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);
// Force the command queue to get processed, wait until all commands are complete
clFinish(queue);
// Read back the results
clEnqueueReadBuffer( queue, output, CL_TRUE, 0, sizeof(float) * count, results, 0,
                     NULL, NULL );
// Validate our results
int correct = 0:
for(i = 0; i < count; i++)</pre>
    correct += (results[i] == data[i] * data[i]) ? 1 : 0:
// Print a brief summary detailing the results
printf("Computed '%d/%d' correct values!\n", correct, count);
```

OpenCL Summary

- Need good programming experience and system management skills in order to set up tool chains with properly matching versions, vendor libraries etc.
 - (I was not able to get this running on my laptop in finite time...)
- Very cumbersome programming, at least as explicit as MPI
- Data structure restrictions limit class of tasks which can run efficiently on GPUs.

OpenACC (Open Accelerators)

- Idea similar to OpenMP: use compiler directives
- Future merge with OpenMP intended
- ▶ Intended for different accelerator types (Nvidia GPU ...)
- GCC, Clang implementations on the way (but not yet in the usual repositories)

OpenACC Sample program

```
#define N 200000000
#define vl 1024
int main(void) {
  double pi = 0.0f;
 long long i;
  #pragma acc parallel vector_length(vl)
  #pragma acc loop reduction(+:pi)
  for (i=0; i<N; i++) {</pre>
    double t= (double)((i+0.5)/N);
   pi +=4.0/(1.0+t*t);
  7
 printf("pi=%11.10f\n",pi/N);
 return 0:
}
```

 compile with gcc-5 openacc.c -fopenacc -foffload=nvptx-none -foffload="-0
 but to do this one has to compile gcc with a special configuration...

Other ways to program GPU

- Directly use graphics library
- OpenGL with shaders
- ▶ WebGL: OpenGL in the browser. Uses html and javascript.

WebGL Example

► Gray-Scott model for Reaction-Diffusion: two species.

- U is created with rate f and decays with rate f
- U reacts wit V to more V
- V deacays with rate f + k.
- ► U, V move by diffusion

$$\begin{array}{c} 1 \xrightarrow{f} U \\ U + 2V \xrightarrow{1} 3V \\ V \xrightarrow{f+k} 0 \\ F \xrightarrow{f} 0 \end{array}$$

- Stable states:
 - ▶ No V

" Much of V, then it feeds on U and re-creates itself

▶ Reaction-Diffusion equation from mass action law:

$$\partial_t u - D_u \Delta u + uv^2 - f(1 - u) = 0$$

$$\partial_t v - D_v \Delta v - uv^2 + (f + k)v = 0$$

Discretization

• ... GPUs are fast so we choose the explicit Euler method:

$$\frac{1}{\tau}(u_{n+1} - u_n) - D_u \Delta u_n + u_n v_n^2 - f(1 - u_n) = 0$$

$$\frac{1}{\tau}(v_{n+1} - u_v) - D_v \Delta v_n - u_n v_n^2 + (f + k)v_n = 0$$

▶ Finite difference/finite volume discretization on grid of size *h*

$$-\Delta u \approx \frac{1}{h^2} (4u_{ij} - u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1})$$

The shader

```
<script type="x-webgl/x-fragment-shader" id="timestep-shader">
precision mediump float;
uniform sampler2D u_image;
uniform vec2 u size;
const float F = 0.05, K = 0.062, D_a = 0.2, D_b = 0.1;
const float TIMESTEP = 1.0:
void main() {
vec2 p = gl_FragCoord.xy,
    n = p + vec2(0.0, 1.0),
     e = p + vec2(1.0, 0.0),
     s = p + vec2(0.0, -1.0),
     w = p + vec2(-1.0, 0.0);
vec2 val = texture2D(u_image, p / u_size).xy,
     laplacian = texture2D(u_image, n / u_size).xy
    + texture2D(u_image, e / u_size).xy
    + texture2D(u_image, s / u_size).xy
    + texture2D(u_image, w / u_size).xy
    - 4.0 * val:
vec2 delta = vec2(D_a * laplacian.x - val.x*val.y*val.y + F * (1.0-val.x),
   D_b * laplacian.y + val.x*val.y*val.y - (K+F) * val.y);
gl_FragColor = vec4(val + delta * TIMESTEP, 0, 0);
}
</script>
```

Why does this work so well here ?

Data structure fits very well to topology of GPU

- rectangular grid
- 2 unknowns to be stored in x,y components of vec2
- GPU speed allows to "break" time step limitation of explicit Euler
- Data stay within the graphics card: once we loaded the initial value, all computations, and rendering use data which are in the memory of the graphics card.
- Depending on the application, choose the best way to proceed
- e.g. deep learning (especially training speed)