
Lecture 27 Slide 1

Scientific Computing WS 2017/2018

Lecture 27

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 25 Slide 2

Why parallelization ?
I Computers became faster and faster without that. . .

[Source: spiralgen.com]

I But: clock rate of processors limited due to physical limits
I ⇒ parallelization is the main road to increase the amount of data

processed
I Parallel systems nowadays ubiquitous: even laptops and smartphones

have multicore processors
I Amount of accessible memory per processor is limited ⇒ systems

with large memory can be created based on parallel processors

Lecture 27 Slide 2

Lecture 25 Slide 5

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs

Lecture 27 Slide 3

Lecture 25 Slide 6

MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of

CPUs interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

Lecture 27 Slide 4

Lecture 25 Slide 7

MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory acces
(UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent

NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well

Lecture 27 Slide 5

Lecture 25 Slide 8

Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms

Lecture 27 Slide 6

Lecture 26 Slide 26

MPI Programming

I Typically, one writes one program which is started in multiple
incarnations on different hosts in a network.

I MPI library calls are used to determine the identiy of a running
program

I Communication + barriers have to be programmed explicitely.

Lecture 27 Slide 7

Lecture 26 Slide 27

MPI Hello world
// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identtiy) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)
cout << "Number of available processes: " << nproc << "\n";
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ();

I Compile with mpic++ mpi-hello.cpp -o mpi-hello

I All MPI programs begin with MPI_Init() and end with
MPI_Finalize()

I the communicator MPI_COMM_WORLD designates all processes in the
current process group, there may be other process groups etc.

I The whole program is started N times as system process, not as
thread: mpirun -np N mpi-hello

Lecture 27 Slide 8

Lecture 26 Slide 28

MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello

Lecture 27 Slide 9

Lecture 26 Slide 29

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message

Lecture 27 Slide 10

Lecture 26 Slide 30

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

Lecture 27 Slide 11

Lecture 26 Slide 31

MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm)

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.

Lecture 27 Slide 12

Lecture 27 Slide 13

SIMD Hardware: Graphics Processing Units (GPU)

[Source: computing.llnl.gov/tutorials]

I Principle useful for highly structured data
I Example: textures, triangles for 3D graphis rendering
I During the 90’s, Graphics Processing Units (GPUs) started to contain

special purpose SIMD hardware for graphics rendering
I 3D Graphic APIs (DirectX, OpenGL) became transparent to

programmers: rendering could be influences by “shaders” which
essentially are programs which are compiled on the host and run on
the GPU

[Source:HardwareZone.com.ph]

Lecture 27 Slide 14

General Purpose Graphics Processing Units (GPGPU)
I Graphics companies like NVIDIA saw an opportunity to market GPUs

for computational purposes
I Emerging APIs which allow to describe general purpose computing

tasks for GPUs: CUDA (Nvidia specific), OpenCL (ATI/AMD
designed, general purpose), OpenACC(future ?)

I GPGPUs are accelerator cards added to a computer with own memory
and many vector processing pipelines
(NVidia Tesla K40: 12GB + 2880 units)

I CPU-GPU connection generally via mainbord bus

[Source: amd-dev.wpengine.netdna-cdn.com]

Lecture 27 Slide 15

GPU Programming paradigm

I CPU:
I sets up data
I triggers compilation of “kernels”: the heavy duty loops to be executed

on GPU
I sends compiled kernels (“shaders”) to GPU
I sends data to GPU, initializes computation
I receives data back from GPU

I GPU:
I receive data from host CPU
I just run the heavy duty loops im local memory
I send data back to host CPU

I CUDA and OpenCL allow explicit management of these steps
I High effiency only with good match between data structure and

layout of GPU memory (2D rectangular grid)

Lecture 27 Slide 16

NVIDIA Cuda

I Established by NVIDIA GPU vendor
I Works only on NVIDIA cards
I Claimed to provide optimal performance

Lecture 27 Slide 17

CUDA Kernel code
I The kernel code is the code to be executed on the GPU aka “Device”
I It needs to be compiled using special CUDA compiler

#include <cuda_runtime.h>

/*
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C.
* The 3 vectors have the same
* number of elements numElements.
*/

__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)
{

C[i] = A[i] + B[i];
}

}

Lecture 27 Slide 18

CUDA Host code I
int main(void)
{

int numElements = 50000;
size_t size = numElements * sizeof(float);

// Allocate host vectors
float *h_A = (float *)malloc(size);
float *h_B = (float *)malloc(size);
float *h_C = (float *)malloc(size);

// Initialize the host input vectors
for (int i = 0; i < numElements; ++i)
{

h_A[i] = rand()/(float)RAND_MAX;
h_B[i] = rand()/(float)RAND_MAX;

}

// Allocate device vectors
float *d_A = NULL;
float *d_B = NULL;
float *d_C = NULL;

assert(cudaMalloc((void **)&d_A, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_B, size)==cudaSuccess);
assert(cudaMalloc((void **)&d_C, size)==cudaSuccess);
...

Lecture 27 Slide 19

CUDA Host code II
...

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Launch the Vector Add CUDA Kernel
int threadsPerBlock = 256;
int blocksPerGrid =(numElements + threadsPerBlock - 1)

/ threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

assert(cudaGetLastError()==cudaSuccess);
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

free(h_A);
free(h_B);
free(h_C);
cudaDeviceReset();

}

Lecture 27 Slide 20

OpenCL

I “Open Computing Language”
I Vendor independent
I More cumbersome to code

Lecture 27 Slide 21

Example: OpenCL: computational kernel

__kernel void square(
 __global float* input, __global float* output)
{
 size_t i = get_global_id(0);
 output[i] = input[i] * input[i];
}

Declare functions with __kernel attribute
Defines an entry point or exported method in a program object

Use address space and usage qualifiers for memory
Address spaces and data usage must be specified for all memory objects

Built-in methods provide access to index within compute domain
Use get_global_id for unique work-item id, get_group_id for work-group, etc

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 27 Slide 22

OpenCL: Resource build up, kernel creation

// Fill our data set with random float values
int count = 1024 * 1024;
for(i = 0; i < count; i++)
 data[i] = rand() / (float)RAND_MAX;

// Connect to a compute device, create a context and a command queue
cl_device_id device;
clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &device, NULL);
cl_context context = clCreateContext(0, 1, & device, NULL, NULL, NULL);
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);
!
// Create and build a program from our OpenCL-C source code
cl_program program = clCreateProgramWithSource(context, 1, (const char **) &src,
 NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Create a kernel from our program
cl_kernel kernel = clCreateKernel(program, "square", NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 27 Slide 23

OpenCL: Data copy to GPU

// Allocate input and output buffers, and fill the input with data
cl_mem input = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count,
 NULL, NULL);

// Create an output memory buffer for our results
cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count,
 NULL, NULL);

// Copy our host buffer of random values to the input device buffer
clEnqueueWriteBuffer(queue, input, CL_TRUE, 0, sizeof(float) * count, data, 0,
 NULL, NULL);

// Get the maximum number of work items supported for this kernel on this device
size_t global = count; size_t local = 0;
clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int),
 &local, NULL);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 27 Slide 24

OpenCL: Kernel execution, result retrieval from GPU

// Set the arguments to our kernel, and enqueue it for execution
clSetKernelArg(kernel, 0, sizeof(cl_mem), &input);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &output);
clSetKernelArg(kernel, 2, sizeof(unsigned int), &count);
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, NULL);

// Force the command queue to get processed, wait until all commands are complete
clFinish(queue);

// Read back the results
clEnqueueReadBuffer(queue, output, CL_TRUE, 0, sizeof(float) * count, results, 0,
 NULL, NULL);

// Validate our results
int correct = 0;
for(i = 0; i < count; i++)
 correct += (results[i] == data[i] * data[i]) ? 1 : 0;

// Print a brief summary detailing the results
printf("Computed '%d/%d' correct values!\n", correct, count);

[Source: http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-overview.pdf]

Lecture 27 Slide 25

OpenCL Summary

I Need good programming experience and system management skills in
order to set up tool chains with properly matching versions, vendor
libraries etc.

I (I was not able to get this running on my laptop in finite time. . .)

I Very cumbersome programming, at least as explicit as MPI
I Data structure restrictions limit class of tasks which can run

efficiently on GPUs.

Lecture 27 Slide 26

OpenACC (Open Accelerators)

I Idea similar to OpenMP: use compiler directives
I Future merge with OpenMP intended
I Intended for different accelerator types (Nvidia GPU . . .)
I GCC, Clang implementations on the way (but not yet in the usual

repositories)

Lecture 27 Slide 27

OpenACC Sample program
#define N 2000000000
#define vl 1024
int main(void) {

double pi = 0.0f;
long long i;

#pragma acc parallel vector_length(vl)
#pragma acc loop reduction(+:pi)
for (i=0; i<N; i++) {

double t= (double)((i+0.5)/N);
pi +=4.0/(1.0+t*t);

}

printf("pi=%11.10f\n",pi/N);

return 0;

}

I compile with
gcc-5 openacc.c -fopenacc -foffload=nvptx-none -foffload="-O3" -O3 -o openacc-gpu—

I but to do this one has to compile gcc with a special
configuration. . .

Lecture 27 Slide 28

Other ways to program GPU

I Directly use graphics library
I OpenGL with shaders
I WebGL: OpenGL in the browser. Uses html and javascript.

Lecture 27 Slide 29

WebGL Example
I Gray-Scott model for Reaction-Diffusion: two species.

I U is created with rate f and decays with rate f
I U reacts wit V to more V
I V deacays with rate f + k.
I U, V move by diffusion

1 f→ U

U + 2V 1→ 3V

V f +k→ 0

F f→ 0

I Stable states:
I No V
I “ Much of V , then it feeds on U and re-creates itself

I Reaction-Diffusion equation from mass action law:
∂tu − Du∆u + uv2 − f (1− u) = 0
∂tv − Dv ∆v − uv2 + (f + k)v = 0

Lecture 27 Slide 30

Discretization

I . . . GPUs are fast so we choose the explicit Euler method:

1
τ

(un+1 − un)− Du∆un + unv2
n − f (1− un) = 0

1
τ

(vn+1 − uv)− Dv ∆vn − unv2
n + (f + k)vn = 0

I Finite difference/finite volume discretization on grid of size h

−∆u ≈ 1
h2 (4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1)

Lecture 27 Slide 31

The shader
<script type="x-webgl/x-fragment-shader" id="timestep-shader">
precision mediump float;
uniform sampler2D u_image;
uniform vec2 u_size;
const float F = 0.05, K = 0.062, D_a = 0.2, D_b = 0.1;
const float TIMESTEP = 1.0;
void main() {
vec2 p = gl_FragCoord.xy,

n = p + vec2(0.0, 1.0),
e = p + vec2(1.0, 0.0),
s = p + vec2(0.0, -1.0),
w = p + vec2(-1.0, 0.0);

vec2 val = texture2D(u_image, p / u_size).xy,
laplacian = texture2D(u_image, n / u_size).xy

+ texture2D(u_image, e / u_size).xy
+ texture2D(u_image, s / u_size).xy
+ texture2D(u_image, w / u_size).xy
- 4.0 * val;

vec2 delta = vec2(D_a * laplacian.x - val.x*val.y*val.y + F * (1.0-val.x),
D_b * laplacian.y + val.x*val.y*val.y - (K+F) * val.y);

gl_FragColor = vec4(val + delta * TIMESTEP, 0, 0);
}
</script>

I Embedded as script into html page

Lecture 27 Slide 32

Why does this work so well here ?

I Data structure fits very well to topology of GPU
I rectangular grid
I 2 unknowns to be stored in x,y components of vec2

I GPU speed allows to “break” time step limitation of explicit Euler
I Data stay within the graphics card: once we loaded the initial value,

all computations, and rendering use data which are in the memory of
the graphics card.

I Depending on the application, choose the best way to proceed
I e.g. deep learning (especially training speed)

