
Lecture 26 Slide 1

Scientific Computing WS 2017/2018

Lecture 26

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 25 Slide 2

Why parallelization ?
I Computers became faster and faster without that. . .

[Source: spiralgen.com]

I But: clock rate of processors limited due to physical limits
I ⇒ parallelization is the main road to increase the amount of data

processed
I Parallel systems nowadays ubiquitous: even laptops and smartphones

have multicore processors
I Amount of accessible memory per processor is limited ⇒ systems

with large memory can be created based on parallel processors

Lecture 26 Slide 2

Lecture 25 Slide 5

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs

Lecture 26 Slide 3

Lecture 25 Slide 6

MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of

CPUs interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

Lecture 26 Slide 4

Lecture 25 Slide 7

MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory acces
(UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent

NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well

Lecture 26 Slide 5

Lecture 25 Slide 8

Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms

Lecture 26 Slide 6

Lecture 25 Slide 9

Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It’s me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{ pthread_t threads[NUM_THREADS];

int rc; long t;
for(t=0; t<NUM_THREADS; t++){

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}
}
pthread_exit(NULL);

}
}

Source: computing.llnl.gov/tutorials

I compile and link with
gcc -pthread -o pthreads pthreads.c

Lecture 26 Slide 7

Lecture 25 Slide 10

Shared memory programming: C++11 threads
I Threads introduced into C++ standard with C++11
I Quite late. . . many codes already use other approaches
I But interesting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}
Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

I compile and link with
g++ -std=c++11 -pthread cpp11threads.cxx -o cpp11threads

Lecture 26 Slide 8

Lecture 25 Slide 11

Thread programming: mutexes and locking
I If threads work with common data (write to the same memory

address, use the same output channel) access must be synchronized
I Mutexes allow to define regions in a program which are accessed by

all threads in a sequential manner.
#include <mutex>
std::mutex mtx;
void call_from_thread(int tid) {

mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

}
int main() {

std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[i].join();
return 0;

}
I Barrier: all threads use the same mutex for the same region
I Deadlock: two threads block each other by locking two different locks

and waiting for each other to finish

Lecture 26 Slide 9

Lecture 25 Slide 12

Shared memory programming: OpenMP
I Mostly based on pthreads
I Available in C++,C,Fortran for all common compilers
I Compiler directives (pragmas) describe parallel regions

... sequential code ...
#pragma omp parallel
{

... parallel code ...
}
(implicit barrier)
... sequential code ...

[Source: computing.llnl.gov/tutorials]

Lecture 26 Slide 10

Lecture 25 Slide 13

Shared memory programming: OpenMP II
#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main (int argc, char *argv[])
{

int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{

call_from_thread(i);
}
return 0;

}

I compile and link with
g++ -fopenmp -o cppomp cppomp.cxx

Lecture 26 Slide 11

Lecture 25 Slide 14

Example: u = au + v und s = u · v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*v[i];

//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I Code can be parallelized by introducing compiler directives
I Compiler directives are ignored if not in parallel mode
I Write conflict with + s: several threads may access the same variable

Lecture 26 Slide 12

Lecture 25 Slide 15

Preventing conflicts in OpenMP

I Critical sections are performed only by one thread at a time
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
#pragma omp critical
{

s+=u[i]*v[i];
}

I Expensive, parallel program flow is interrupted

Lecture 26 Slide 13

Lecture 25 Slide 16

Do it yourself reduction

I Remedy: accumulate partial results per thread, combine them after
main loop

I “Reduction”
#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)

s+=s0[ithread];

Lecture 26 Slide 14

Lecture 25 Slide 17

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

Lecture 26 Slide 15

Lecture 25 Slide 18

OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)
u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

I Distribution of indices with thread is implicit and can be influenced by
scheduling directives

I Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads()

I First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on

Lecture 26 Slide 16

Lecture 25 Slide 19

Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication

Lecture 26 Slide 17

Lecture 25 Slide 20

Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU

Lecture 26 Slide 18

Lecture 25 Slide 21

Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑

K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn

Lecture 26 Slide 19

Lecture 25 Slide 22

Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions

Lecture 26 Slide 20

Lecture 25 Slide 23

Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly

Lecture 26 Slide 21

Lecture 25 Slide 24

Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners

Lecture 26 Slide 22

Lecture 26 Slide 23

MPI - Message passing interface

I library, can be used from C,C++, Fortran, python
I de facto standard for programming on distributed memory systems

(since ≈ 1995)
I highly portable
I support by hardware vendors: optimized communication speed
I based on sending/receiving messages over network

I instead, shared memory can be used as well
I very elementary programming model, need to hand-craft

communications

Lecture 26 Slide 24

How to install

I OpenMP/C++11 threads come along with compiler
I MPI needs to be installed in addition
I Can run on multiple systems
I openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

I https://www.open-mpi.org/faq/?category=mpi-apps
I Compiler wrapper mpic++ - wrapper around (configurable) system

compiler - proper flags + libraries to be linked
I Process launcher mpirun

I launcher starts a number of processes which execute statements
independently, ocassionally waiting for each other

Lecture 26 Slide 25

Threads vs processes
I MPI is based on processes, C++11 threads and OpenMP are based

on threads.
I Threads are easier to create than processes since they don’t require a

separate address space.
I Multithreading requires careful programming since threads share data

structures that should only be modified by one thread at a time.
Unlike threads, processes don’t share the same address space.

I Threads are considered lightweight because they use far less resources
than processes.

I Processes are independent of each other and and each has its own
address space. Threads, since they share the same address space are
interdependent, so caution must be taken so that different threads
don’t step on each other.
This is really another way of stating #2 above.

I A process can consist of multiple threads.

Lecture 26 Slide 26

MPI Programming

I Typically, one writes one program which is started in multiple
incarnations on different hosts in a network.

I MPI library calls are used to determine the identiy of a running
program

I Communication + barriers have to be programmed explicitely.

Lecture 26 Slide 27

MPI Hello world
// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identtiy) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)
cout << "Number of available processes: " << nproc << "\n";
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ();

I Compile with mpic++ mpi-hello.cpp -o mpi-hello

I All MPI programs begin with MPI_Init() and end with
MPI_Finalize()

I the communicator MPI_COMM_WORLD designates all processes in the
current process group, there may be other process groups etc.

I The whole program is started N times as system process, not as
thread: mpirun -np N mpi-hello

Lecture 26 Slide 28

MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello

Lecture 26 Slide 29

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message

Lecture 26 Slide 30

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

Lecture 26 Slide 31

MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm)

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.

Lecture 26 Slide 32

Differences with OpenMP

I Programmer has to care about all aspects of communication and data
distribution, even in simple situations

I In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available

I For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution

I We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space

