Scientific Computing WS 2017/2018
Lecture 25

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Why parallelization 7

» Computers became faster and faster without that. ..

Floating point peak performance [Gflop/s]
CPU frequency [GHz]
100

parallelism

! Care i7
Pantium 4 EIEED

Pentium 111

Pentium T free speedup

Pentium Pro
0.1
single pracisien
—@— double precision
—— CPU fraquency

1893 1995 1987 1999 2001 2003 2005 2007 2009 [Source: spiralgen.com]

v

But: clock rate of processors limited due to physical limits

= parallelization is the main road to increase the amount of data
processed

Parallel systems nowadays ubiquitous: even laptops and smartphones
have multicore processors

Amount of accessible memory per processor is limited = systems
with large memory can be created based on parallel processors

v

v

v

TOP 500 2016 rank 1-6

Based on linpack benchmark: solution of dense linear system. Typical

desktop computer: Rpax ~ 100...1000GFlop/s

Rank Site

1 National Supercomputing Center in
Wuxi
China

2 National Super Computer Center in
Guangzhou
China

3 DOE/SC/0ak Ridge National
Laboratory
United States

4 DOE/NNSA/LLNL
United States

5 RIKEN Advance
Computational Sci
Japan

Institute for

nce (AICS)

6 DOE/SC/Argonne National Laboratory
United States

System

Sunway TaihuLight - Sunway MPP,
Sunway SW26010 260C 1.45GHz,
Sunway

NRCPC

Tianhe-2 (MilkyWay-2) - TH-IVB-
FEP Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2, Intel Xeon
Phi31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C

2.200GHz, Cray Gemini interconnect,

NVIDIA K20x
Cray Inc

Sequoia - BlueGene/Q, Power BOC
16C 1.60 GHz, Custom

1BM

K computer, SPARC64 VIlIfx 2.06Hz,
Tofu interconnect

Fujitsu

Mira - BlueGene/Q, Power BQC 16C
1.60GHz, Custom

1BM

[Source:www.top500.0rg]

Cores

10,649,600

3,120,000

560,640

1,572,864

705,024

786,432

Rmax
(TFlop/s)

93,014.6

33,862.7

17,590.0

17,173.2

10,510.0

8,586.6

Rpeak
(TFlop/s)

125,435.9

54,902.4

27,1125

20,132.7

11,280.4

10,066.3

Power
(kw)

15,371

17,808

8,209

7.890

12,660

3,945

TOP 500 2016 rank 7-13

Rank Site

7

DOE/NNSA/LANL/SNL
United States

Swiss National Supercomputing
Centre [CSCS)
Switzerland

HLRS -
Hdchstleistungsrechenzentrum
Stuttgart
Germany

King Abdullah University of Science
and Technology
Saudi Arabia

Total Exploration Production
France

Texas Advanced Computing
Center/Univ. of Texas
United States

Forschungszentrum Juelich (FZJ)
Germany

System

Cores

Trinity - Cray XC40, Xeon E5-2698v3 301,056

16C 2.3GHz, Aries interconnect
Cray Inc.

Piz Daint - Cray XC30, Xeon E5-2670

8C 2.6006Hz, Aries interconnect,
NVIDIA K20x
Cray Inc

Hazel Hen - Cray XC40, Xeon E5-
2680v3 12C 2.56Hz, Aries
interconnect

Cray Inc.

Shaheen Il - Cray XC40, Xeon E5-
2698v3 16C 2.3GHz, Aries
interconnect

Cray Inc.

Pangea - SGI ICE X, Xeon Xeon E5-
2670/ E5-2680v3 12C 2.5GHz,
Infiniband FDR

HPE/SGI

Stampede - PowerEdge €8220, Xeon

E5-2680 8C 2.700GHz, Infiniband
FDR, Intel Xeon Phi SE10P
Dell

JUQUEEN - BlueGene/Q, Power BAC
16C 1.600GHz, Custom Interconnect

1BM

[Source:www.top500.org]

115,984

185,088

196,608

220,800

462,462

458,752

Rmax

Rpeak

Power

(TFlop/s) (TFlop/s) (kW)

8,100.9

6,271.0

5,640.2

5,537.0

5,283.1

5,168.1

5,008.9

11,078.9 4,233

7,788.9

7.403.5

7,235.2

6,712.3

8,520.1

5,872.0

1,754

3,615

2,834

4,150

4,510

2,301

Lecture 25 Slide 4

Parallel paradigms

SIMD
Single Instruction Multiple Data
prev instruct prev instruct prev instruct.
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n) -
CA=AMB()| |c@=A@B@)| [cn)=Am)Bin) .
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

» "classical” vector systems: Cray,
Convex ...
» Graphics processing units (GPU)

MIMD
Multiple Instruction Multiple Data
prev instruct prev instruct prev instruct
load A(1) call funcD do10i=1,N
load B(1) x=y*z alpha=w**3 o
(C(1)y=A(1)*B(1) sum=x"2 zeta=C(j) 3
store C(1) call sub(i,jy 10 continue
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

> Shared memory systems
» IBM Power, Intel Xeon, AMD
Opteron ...
> Smartphones ...
» Xeon Phi R.I.P.
» Distributed memory systems
> interconnected CPUs

MIMD Hardware: Distributed memory

— r‘k—

[Source: computing.linl.gov/tutorials]

vy

“Linux Cluster”

“Commodity Hardware”
Memory scales with number of
CPUs interconneted

High latency for communication
Mostly programmed using MPI
(Message passing interface)
Explicit programming of
communications:

gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm, stat)

MIMD Hardware: Shared Memory

Symmetric Multiprocessing)
(SMP),/Uniform memory acces Nonuniform Memory Access (NUMA)

(UMA) W

[Source: computing.linl.gov/tutorials]

- » Possibly varying memory access
latencies
[Source: computing.linl.gov/tutorials] > Comblnatlon Of SMP Systems
» Similar processors
o P . » ccNUMA: Cache coherent
» Similar memory access times NUMA

v

Shared memory: one (virtual) address space for all processors involved

v

Communication hidden behind memory acces

» Not easy to scale large numbers of CPUS

v

MPI works on these systems as well

Hybrid distributed /shared memory

v

Combination of shared and distributed memory approach
Top 500 computers

v

[Source: computing.linl.gov/tutorials]
Shared memory nodes can be mixed CPU-GPU
Need to master both kinds of programming paradigms

vy

Shared memory programming: pthreads

>

>
>
>

Thread: lightweight process which can run parallel to others
pthreads (POSIX threads): widely distributed
cumbersome tuning + syncronization
basic structure for higher level interfaces
#include <pthread.h>
void *PrintHello(void *threadid)
{ 1long tid = (long)threadid;
printf("Hello World! It’s me, thread #J1d!\n", tid);
pthread_exit (NULL) ;
}
int main (int argc, char xargv[])
{ pthread_t threads[NUM_THREADS] ;
int rc; long t;
for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %1d\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

}
pthread_exit (NULL) ;
}

}

Source: computing.linl.gov/tutorials

» compile and link with

gcc -pthread -o pthreads pthreads.c

if (rc) {printf("ERROR; return code from pthread_create() is ’%d\n"

, I

Shared memory programming: C+-+11 threads
» Threads introduced into C++ standard with C++11

» Quite late. ..

» But interesting for new applications
#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {

}

std: :thread t[num_threads];

for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);

}

std::cout << "Launched from main\n";

//Join the threads with the main thread

for (int i = 0; i < num_threads; ++i) {
t[i].join();

}

return O;

Source: https://solarianprogrammer.com /2011/12/16 /cpp-11-thread-tutorial /
» compile and link with

o++ —-std=c++11 -pthread cppllithreads.cxx -o

many codes already use other approaches

cpplithreads

Thread programming: mutexes and locking

» If threads work with common data (write to the same memory
address, use the same output channel) access must be synchronized
» Mutexes allow to define regions in a program which are accessed by

all threads in a sequential manner.
#include <mutex>
std: :mutex mtx;
void call_from_thread(int tid) {
mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()
i
int main() {
std: :thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[i].join();
return O;
}
» Barrier. all threads use the same mutex for the same region
» Deadlock: two threads block each other by locking two different locks

and waiting for each other to finish

Shared memory programming: OpenMP

» Mostly based on pthreads

» Available in C++,C,Fortran for all common compilers

» Compiler directives (pragmas) describe parallel regions

. sequential code ...
#pragma omp parallel

. parallel code ...
}
(implicit barrier)
. sequential code ...

master thread TR P
S . .
threads y threads
parallel region parallel region

[Source: computing.linl.gov/tutorials]

threads

parallel region

Shared memory programming: OpenMP Il

#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;
}

int main (int argc, char *argv[])
{
int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{
call_from_thread(i);
}
return O;

}

» compile and link with
g++ —-fopenmp -o cppomp cppomp.CxX

Example: u=au+vunds=u-v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<mn ; i++)
ulil+=axv[i];
//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
s+=ulil]*v[i];
» Code can be parallelized by introducing compiler directives
» Compiler directives are ignored if not in parallel mode

» Write conflict with + s: several threads may access the same variable

Preventing conflicts in OpenMP

» Critical sections are performed only by one thread at a time

double s=0.0;

#pragma omp parallel for
for(int i=0; i<m ; i++)
#pragma omp critical

s+=ulil*v[i];

}

» Expensive, parallel program flow is interrupted

Do it yourself reduction

» Remedy: accumulate partial results per thread, combine them after
main loop

» “Reduction”
#include <omp.h>
int maxthreads=omp_get_max_threads();
double sO[maxthreads];
double ul[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)
sO[ithread]=0.0;

#pragma omp parallel for

for(int i=0; i<n ; i++)

{
int ithread=omp_get_thread_num();
sO[ithread]+=uli]l*v[i];

i

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)
s+=s0[ithread] ;

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<m ; i++)

s+=ulil*v[i];

» |n standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for

for(int i=0; i<n ; i++)
ulil+=a*ulil;

[Quelle: computing.linl.gov/tutorials]

Bus Interconnect

» Distribution of indices with thread is implicit and can be influenced by
scheduling directives

» Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads ()

» First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on

Parallelization of PDE solution

Au=finQ, ulpa =0

:>U=/Qf(}/)G(X7Y)dy'

» Solution in x € Q is influenced by values of f in all points in Q

» = global coupling: any solution algorithm needs global
communication

Structured and unstructured grids

Structured grid Unstructured grid

» Easy next neighbor access via
index calculation
» Efficient implementation on

SIMD/GPU access to next neighbors
» Strong limitations on geometry » Hardly feasible fo SIMD/GPU

[Quelle: tetgen.org]
» General geometries
» lrregular, index vector based

Stiffness matrix assembly for Laplace operator for P1 FEM

ajj = 3(¢i,¢j) = /qus,v% dx
:/ > Véilk Vi dx

KeTh
Assembly loop:
Set a; = 0.

For each K € Tp:
For each m,n=20...d:

Smn :/ VAnVA, dx
K

3o (K,m) o (K1) = Qjgor (K,m) juor (K,n) T Smn

Mesh partitioning

Partition set of cells in T;, and color the graph of the partitions.

Result: C: set of colors, P.: set of partitions of given color. Then:
77’ = UCEC UpEPc P
» Sample algorithm:

> Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) — Partitions of color 1

> Create separators along boundaries — Partitions of color 2

> “triple points” — Partitions of color 3

Lecture 25 Slide 22

Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set a; = 0.

For each color c € C
#£pragma omp parallel for
For each p € P,:
For each K € p:
For each m,n=20...d:
Smn = Jic VAV A, dx
ajdof(K7m)yjdof(Kan)+ = Smn

» Prevent write conflicts by loop organization

» No need for critical sections

» Similar structure for Voronoi finite volumes, nonlinear operator
evaluation, Jacobi matrix assembly

Linear system solution

» Sparse matrices

» Direct solvers are hard to parallelize though many efforts are
undertaken, e.g. Pardiso

> lterative methods easier to parallelize

> partitioning of vectors + coloring inherited from cell partitioning
> keep loop structure (first touch principle)
> parallelize

> vector algebra

> scalar products

> matrix vector products

> preconditioners

