Scientific Computing WS 2017/2018

Lecture 21

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Species balance over an REV

- Let $u(\mathbf{x}, t): \Omega \times[0, T] \rightarrow \mathbb{R}$ be the local amount of some species.
- Assume representative elementary volume $\omega \subset \Omega$
- Subinterval in time $\left(t_{0}, t 1\right) \subset(0, T)$
- $-\delta \nabla u \cdot \mathbf{n}$ describes the flux of these species trough $\partial \omega$, where δ is some transfer coefficient
- Let $f(\mathbf{x}, t)$ be some local source of species. Then the flux through the boundary is balanced by the change of the amount of species in ω and the source strength.

$$
\begin{aligned}
0 & =\int_{\omega}\left(u\left(\mathbf{x}, t_{1}\right)-u\left(\mathbf{x}, t_{0}\right)\right) d \mathbf{x}-\int_{t_{0}}^{t_{1}} \int_{\partial \omega} \delta \nabla u \cdot \mathbf{n} d s d t-\int_{t_{0}}^{t_{1}} \int_{\omega} f(\mathbf{x}, t) d s \\
& =\int_{t_{0}}^{t_{1}} \int_{\omega} \partial_{t} u(\mathbf{x}, t) d \mathbf{x} d t-\int_{t_{0}}^{t_{1}} \int_{\omega} \nabla \cdot(\delta \nabla u) d \mathbf{x} d t-\int_{t_{0}}^{t_{1}} \int_{\omega} f(\mathbf{x}, t) d s
\end{aligned}
$$

- True for all $\omega \subset \Omega,\left(t_{0}, t 1\right) \subset(0, T) \Rightarrow$ parabolic second order PDE

$$
\partial_{t} u(x, t)-\nabla \cdot(\delta \nabla u(x, t))=f(x, t)
$$

Time dependent Robin boundary value problem

- Choose final time $T>0$. Regard functions $(x, t) \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot \kappa \nabla u & =f \quad \text { in } \Omega \times[0, T] \\
\kappa \nabla u \cdot \vec{n}+\alpha(u-g) & =0 \quad \text { on } \partial \Omega \times[0, T] \\
u(x, 0) & =u_{0}(x) \quad \text { in } \Omega
\end{aligned}
$$

- This is an initial boundary value problem
- This problem has a weak formulation in the Sobolev space $L^{2}\left([0, T], H^{1}(\Omega)\right)$, which then allows for a Galerkin approximation in a corresponding subspace
- We will proceed in a simpler manner: first, perform a finite difference discretization in time, then perform a finite element (finite volume) discretization in space.
- Rothe method: first discretize in time, then in space
- Method of lines: first discretize in space, get a huge ODE system, then apply perfom discretization

Time discretization

- Choose time discretization points $0=t_{0}<t_{1} \cdots<t_{N}=T$
- let $\tau_{i}=t_{i}-t_{i-1}$

For $i=1 \ldots N$, solve

$$
\begin{array}{ll}
\frac{u_{i}-u_{i-1}}{\tau_{i}}-\nabla \cdot \kappa \nabla u_{\theta}=f & \text { in } \Omega \times[0, T] \\
\kappa \nabla u_{\theta} \cdot \vec{n}+\alpha\left(u_{\theta}-g\right)=0 & \text { on } \partial \Omega \times[0, T]
\end{array}
$$

where $u_{\theta}=\theta u_{i}+(1-\theta) u_{i-1}$

- $\theta=1$: backward (implicit) Euler method

Solve PDE problem in each timestep

- $\theta=\frac{1}{2}$: Crank-Nicolson scheme

Solve PDE problem in each timestep

- $\theta=0$: forward (explicit) Euler method

This does not involve the solution of a PDE problem. What do we have to pay for this ?

Weak formulation of time step problem

- Weak formulation: search $u \in H^{1}(\Omega)$ such that $\forall v \in H^{1}(\Omega)$

$$
\begin{array}{r}
\frac{1}{\tau_{i}} \int_{\Omega} u_{i} v d x+\theta\left(\int_{\Omega} \kappa \nabla u_{i} \nabla v d x+\int_{\partial \Omega} \alpha u_{i} v d s\right)= \\
\frac{1}{\tau_{i}} \int_{\Omega} u_{i-1} v d x+(1-\theta)\left(\int_{\Omega} \kappa \nabla u_{i-1} \nabla v d x+\int_{\partial \Omega} \alpha u_{i-1} v d s\right) \\
+\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s
\end{array}
$$

- Matrix formulation (in case of constant coefficents, $A_{i}=A$)

$$
\frac{1}{\tau_{i}} M u_{i}+\theta A_{i} u_{i}=\frac{1}{\tau_{i}} M u_{i-1}+(1-\theta) A_{i} u_{i-1}+F
$$

- M : mass matrix, $A=A_{0}+D, A_{0}$: stiffness matrix, D : boundary contribution

Mass matrix properties

- Mass matrix $M=\left(m_{i j}\right)$:

$$
m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x
$$

- Self-adjoint, coercive bilinear form $\Rightarrow M$ is symmetric, positiv definite
- For a family of quasi-uniform, shape-regular triangulations, for every eigenvalue μ one has the estimate

$$
c_{1} h^{d} \leq \mu \leq c_{2} h^{d}
$$

$\mathrm{T} \Rightarrow$ condition number $\kappa(M)$ bounded by constant independent of h :

$$
\kappa(M) \leq c
$$

- How to see this? Let $u_{h}=\sum_{i=1}^{N} U_{i} \phi_{i}$, and μ an eigenvalue (positive,real!) Then

$$
\left\|u_{h}\right\|_{0}^{2}=(U, M U)_{\mathbb{R}^{N}}=\mu(U, U)_{\mathbb{R}^{N}}=\mu\|U\|_{\mathbb{R}^{N}}^{2}
$$

From quasi-uniformity we obtain

$$
c_{1} h^{d}\|U\|_{\mathbb{R}^{N}}^{2} \leq\left\|u_{h}\right\|_{0}^{2} \leq c_{2} h^{d}\|U\|_{\mathbb{R}^{N}}^{2}
$$

and conclude

Mass matrix M-Property (P1 FEM) ?

- For P^{1}-finite elements, all integrals $m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x$ are zero or positive, so we get positive off diagonal elements.
- No M-Property!

Mass matrix lumping (P1 FEM)

- Local mass matrix for P1 FEM on element K (calculated by 2 nd order exact edge midpoint quadrature rule):

$$
M_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{6}
\end{array}\right)
$$

- Lumping: sum up off diagonal elements to main diagonal, set off diagonal entries to zero

$$
\tilde{M}_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

- Interpretation as change of quadrature rule to first order exact vertex based quadrature rule
- Loss of accuracy, gain of stability

Stiffness matrix condition number + row sums (FEM)

- Stiffness matrix $A_{0}=\left(a_{i j}\right)$:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x
$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A_{0} is symmetric, positive definite
- Condition number estimate for P^{1} finite elements on quasi-uniform triangulation:

$$
\kappa\left(A_{0}\right) \leq c h^{-2}
$$

- Row sums:

$$
\begin{aligned}
\sum_{j=1}^{N} a_{i j} & =\sum_{j=1}^{N} \int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{\Omega} \nabla \phi_{i} \nabla\left(\sum_{j=1}^{N} \phi_{j}\right) d x \\
& =\int_{\Omega} \nabla \phi_{i} \nabla(1) d x \\
& =0
\end{aligned}
$$

Stiffness matrix entry signs (P1 FEM)

Local stiffness matrix S_{K}

$$
s_{i j}=\int_{K} \nabla \lambda_{i} \nabla \lambda_{j} d x=\frac{|K|}{2|K|^{2}}\left(y_{i+1}-y_{i+2}, x_{i+2}-x_{i+1}\right)\binom{y_{j+1}-y_{j+2}}{x_{j+2}-x_{j+1}}
$$

- Main diagonal entries are be positive
- Local contributions from element stiffness matrices: Scalar products of vectors orthogonal to edges. These are nonpositive if the angle between the edges are $\leq 90^{\circ}$
- weakly acute triangulation: all triangle angles are less than $\leq 90^{\circ}$
- In fact, for constant coefficients, in 2D, Delaunay is sufficient!
- All row sums are zero $\Rightarrow A_{0}$ is singular
- Matrix becomes irreducibly diagonally dominant if we add at least one positive value to the main diagonal, e.g. from Dirichlet BC or lumped mass matrix $\Rightarrow A=A_{0}+D$: M-Matrix
- Adding a mass matrix which is not lumped yields a positive definite matrix and thus nonsingularity, but destroys M-property unless the absolute values of its off diagonal entries are less than those of A_{0}.

Back to time dependent problem

Assume M diagonal, $A=A_{0}+D$ where A_{0} is the stiffness matrix, and D is a nonnegative diagonal matrix. We have

$$
\begin{aligned}
\left(A_{0} u\right)_{i} & =\sum_{j} a_{i j} u_{j}=a_{i i} u_{i}+\sum_{i \neq j} a_{i j} u_{j} \\
& =\left(-\sum_{i \neq j} a_{i j}\right) u_{i}+\sum_{i \neq j} a_{i j} u_{j} \\
& =\sum_{i \neq j}-a_{i j}\left(u_{i}-u_{j}\right)
\end{aligned}
$$

Forward Euler

$$
\begin{aligned}
\frac{1}{\tau_{i}} M u_{i} & =\frac{1}{\tau_{i}} M u_{i-1}+A_{i} u_{i-1} \\
u_{i} & =u_{i-1}+\tau_{i} M^{-1} A_{i} u_{i-1}=\left(I+\tau M^{-1} D+\tau M^{-1} A_{0}\right) u_{i-1}
\end{aligned}
$$

- Entries of $\tau M^{-1} A$ are of order $\frac{1}{h^{2}}$, and so we can expect an h independent estimate of u_{i} via u_{i-1} resp. u_{0} only if τ balances $\frac{1}{h^{2}}$, i.e.

$$
\tau \leq C h^{2}
$$

- This is the CFL (Courant-Friedrichs-Lewy) condition

Backward Euler

$$
\begin{aligned}
\frac{1}{\tau_{i}} M u_{i}+A u_{i} & =\frac{1}{\tau_{i}} M u_{i-1} \\
\left(I+\tau_{i} M^{-1} A\right) u_{i} & =u_{i-1} \\
u_{i} & =\left(I+\tau_{i} M^{-1} A\right)^{-1} u_{i-1}
\end{aligned}
$$

But here, we can estimate that

$$
\left\|\left(I+\tau_{i} M^{-1} A\right)^{-1}\right\|_{\infty} \leq 1
$$

Backward Euler Estimate

Theorem: Assume $A_{0}=\left(a_{i j}\right)$ has the sign pattern of an M-Matrix with row sum zero, and D is a nonnegative diagonal matrix. Then $\left\|\left(I+D+A_{0}\right)^{-1}\right\|_{\infty} \leq 1$
Proof: Assume that $\left\|\left(I+A_{0}\right)^{-1}\right\|_{\infty}>1$. We know that $\left(I+A_{0}\right)^{-1}$ has positive entries. Then for $\alpha_{i j}$ being the entries of $\left(I+A_{0}\right)^{-1}$,

$$
\max _{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j}>1
$$

Let k be a row where the maximum is reached. Let $e=(1 \ldots 1)^{T}$. Then for $v=\left(I+A_{0}\right)^{-1} e$ we have that $v>0, v_{k}>1$ and $v_{k} \geq v_{j}$ for all $j \neq k$. The k th equation of $e=\left(I+A_{0}\right) v$ then looks like

$$
\begin{aligned}
1 & =v_{k}+v_{k} \sum_{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{j} \\
& \geq v_{k}+v_{k} \sum_{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{k} \\
& =v_{k}>1
\end{aligned}
$$

This contradiction enforces $\left\|\left(I+A_{0}\right)^{-1}\right\|_{\infty} \leq 1$.

Backward Euler Estimate II

$$
\begin{aligned}
I+A & =I+D+A_{0} \\
& =(I+D)(I+D)^{-1}\left(I+D+A_{0}\right) \\
& =(I+D)\left(I+A_{D 0}\right)
\end{aligned}
$$

with $A_{D 0}=(I+D)^{-1} A_{0}$ has row sum zero Thus

$$
\begin{aligned}
\left\|(I+A)^{-1}\right\|_{\infty} & =\left\|\left(I+A_{D 0}\right)^{-1}(I+D)^{-1}\right\|_{\infty} \\
& \leq\left\|(I+D)^{-1}\right\|_{\infty} \\
& \leq 1
\end{aligned}
$$

because all main diagonal entries of $I+D$ are greater or equal to $1 . \square$

Backward Euler Estimate III

We can estimate that

$$
I+\tau_{i} M^{-1} A=I+\tau_{i} M^{-1} D+\tau_{i} M^{-1} A_{0}
$$

and obtain

$$
\left\|\left(I+\tau_{i} M^{-1} A\right)^{-1}\right\|_{\infty} \leq 1
$$

- We get this stability independent of the time step.
- Another theory is possible using L^{2} estimates and positive definiteness
- Assuming $v \geq 0$ we can conclude $u \geq 0$.

Discrete maximum principle

$$
\begin{aligned}
\frac{1}{\tau} M u+\left(D+A_{0}\right) u & =\frac{1}{\tau} M v \\
\left(\frac{1}{\tau} m_{i}+d_{i}\right) u_{i}+a_{i i} u_{i} & =\frac{1}{\tau} m_{i} v_{i}+\sum_{i \neq j}\left(-a_{i j}\right) u_{j} \\
u_{i} & =\frac{1}{\frac{1}{\tau} m_{i}+d_{i}+\sum_{i \neq j}\left(-a_{i j}\right)}\left(\frac{1}{\tau} m_{i} v_{i}+\sum_{i \neq j}\left(-a_{i j}\right) u_{j}\right) \\
& \leq \frac{\frac{1}{\tau} m_{i} v_{i}+\sum_{i \neq j}\left(-a_{i j}\right) u_{j}}{\frac{1}{\tau} m_{i}+d_{i}+\sum_{i \neq j}\left(-a_{i j}\right)} \max \left(\left\{v_{i}\right\} \cup\left\{u_{j}\right\}_{j \neq i}\right) \\
& \leq \max \left(\left\{v_{i}\right\} \cup\left\{u_{j}\right\}_{j \neq i}\right)
\end{aligned}
$$

- Provided, the right hand side is zero, the solution in a given node is bounded by the value from the old timestep, and by the solution in the neigboring points.
- No new local maxima can appear during time evolution
- There is a continuous counterpart which can be derived from weak solution
- Sign pattern is crucial for the proof.

Finite volumes for time dependent problem

Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{array}{rlrl}
\partial_{t} u-\nabla \cdot \lambda \nabla u & =0 & \text { in } \Omega \times[0, T] \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g) & =0 & & \text { on } \Gamma \times[0, T]
\end{array}
$$

- Given control volume ω_{k}, integrate equation over space-time control volume

$$
\begin{aligned}
0 & =\int_{\omega_{k}}\left(\frac{1}{\tau}(u-v)-\nabla \cdot \lambda \nabla u\right) d \omega=\frac{1}{\tau} \int_{\omega_{k}}(u-v) d \omega-\int_{\partial \omega_{k}} \lambda \nabla u \cdot \mathbf{n}_{k} d \gamma \\
& =-\sum_{l \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \lambda \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} \lambda \nabla u \cdot \mathbf{n} d \gamma-\frac{1}{\tau} \int_{\omega_{k}}(u-v) d \omega \\
& \approx \underbrace{\frac{\left|\omega_{k}\right|}{\tau}\left(u_{k}-v_{k}\right)}_{\rightarrow M}+\underbrace{\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}}\left(u_{k}-u_{l}\right)}_{\rightarrow A_{0}}+\underbrace{\left|\gamma_{k}\right| \alpha\left(u_{k}-g_{k}\right)}_{\rightarrow D}
\end{aligned}
$$

- Here, $u_{k}=u\left(\mathbf{x}_{k}\right), g_{k}=g\left(\mathbf{x}_{k}\right), f_{k}=f\left(\mathbf{x}_{k}\right)$
$-\frac{1}{\tau_{i}} M u_{i}+A u_{i}=\frac{1}{\tau_{i}} M u_{i-1}$ where $A=A_{0}+D$

Finite volumes for time dependent problem II

- The finite volume method provides the M-Property of the stiffness matrix and immediately to a diagonal mass matrix M.
- \Rightarrow Unconditional stability of the implicit Euler method
- CFL condition for time step size for explicit Euler

More general problems: linear reaction-diffusion

- Assume additional process in each REV which produces or destroys species depending on the amount of species present with given rate r. Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{array}{ll}
\partial_{t} u-\nabla \cdot \lambda \nabla u+r u=0 & \text { in } \Omega \times[0, T] \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g)=0 & \text { on } \Gamma \times[0, T]
\end{array}
$$

- \Rightarrow additional, time step independent term in mass matrix
- Be careful about coercivity (guaranteed for $R>0$ which means species destruction)

More general problems: convection-diffusion

Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{aligned}
\partial_{t} u-\nabla(\cdot D \nabla u-u \mathbf{v})=0 & \text { in } \Omega \times[0, T] \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g)=0 & \text { on } \Gamma \times[0, T]
\end{aligned}
$$

- Here:
- u : species concentration
- D: diffusion coefficient
- v: velocity of medium (e.g. fluid)

Tentative examination dates

Tue Feb 27
Mon March 5
Wed March 7
Mon March 12
Tue March 13
Wed March 14
Mon March 26
Tue March 27
Time: 10:00-13:00 (6 slots per examination date)
Room: t.b.a. (MA, third floor)

Finite volumes for convection-diffusion

$$
\frac{\left|\omega_{k}\right|}{\tau}\left(u_{k}-v_{k}\right)+\sum_{l \in \mathcal{N}_{k}} \frac{\left|\sigma_{k \mid}\right|}{h_{k l}} g\left(u_{k}, u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-w_{k}\right)
$$

Let $v_{k l}=\frac{1}{\left|\sigma_{k \mid}\right|} \int \sigma_{k \mid} \mathbf{v} \cdot \mathbf{n}_{k l} d \gamma$

Finite volumes for convection - diffusion II

- Central difference flux:

$$
\begin{aligned}
g\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)-h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l} \\
& =\left(D-\frac{1}{2} h_{k l} v_{k l}\right) u_{k}-\left(D+\frac{1}{2} h_{k l} v_{k l}\right) x u_{l}
\end{aligned}
$$

- M-Property (sign pattern) only guaranteed for $h \rightarrow 0$!
- Upwind flux:

$$
\begin{aligned}
g\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+ \begin{cases}h_{k l} u_{k} v_{k l}, & v_{k l}<0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}>0\end{cases} \\
& =(D+\tilde{D})\left(u_{k}-u_{l}\right)-h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}
\end{aligned}
$$

- M-Property guaranteed unconditonally !
- Artificial diffusion $\tilde{D}=\frac{1}{2} h_{k l}\left|v_{k l}\right|$

Finite volumes for convection - diffusion: exponential fitting

Project equation onto edge $x_{K} x_{L}$ of length $h=h_{k l}$, integrate once -$q=-v_{k l}$

$$
\begin{aligned}
c^{\prime}+c q & =j \\
\left.c\right|_{0} & =c_{K} \\
\left.c\right|_{h} & =c_{L}
\end{aligned}
$$

Solution of the homogeneus problem:

$$
\begin{array}{r}
c^{\prime}=-c q \\
c^{\prime} / c=-q \\
\ln c=c_{0}-q x \\
c=K \exp (-q x)
\end{array}
$$

Exponential fitting II

Solution of the inhomogeneous problem: set $K=K(x)$:

$$
\begin{aligned}
K^{\prime} \exp (-q x)-q K \exp (-q x)+q K \exp (-q x) & =j \\
K^{\prime} & =j \exp (q x) \\
K & =K_{0}+\frac{1}{q} j \exp (q x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c & =K_{0} \exp (-q x)+\frac{1}{q} j \\
c_{K} & =K_{0}+\frac{1}{q} j \\
c_{L} & =K_{0} \exp (-q h)+\frac{1}{q} j
\end{aligned}
$$

Exponential fitting III

Use boundary conditions

$$
\begin{aligned}
K_{0} & =\frac{c_{K}-c_{L}}{1-\exp (-q h)} \\
c_{K} & =\frac{c_{K}-c_{L}}{1-\exp (-q h)}+\frac{1}{q} j \\
j & =q c_{K}-\frac{q}{1-\exp (-q h)}\left(c_{K}-c_{L}\right) \\
& =q\left(1-\frac{1}{1-\exp (-q h)}\right) c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =q\left(\frac{-\exp (-q h)}{1-\exp (-q h)}\right) c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =\frac{-q}{\exp (q h)-1} c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =\frac{B(-q h) c_{L}-B(q h) c_{K}}{h}
\end{aligned}
$$

where $B(\xi)=\frac{\xi}{\exp (\xi)-1}$: Bernoulli function

Exponential fitting IV

- Upwind flux:

$$
g\left(u_{k}, u_{l}\right)=D \frac{B\left(\frac{-v_{k} h_{k l}}{D}\right) u_{k}-B\left(\frac{v_{k} h_{k l}}{D}\right) u_{l}}{h}
$$

- Allen+Southell 1955
- Scharfetter+Gummel 1969
- Ilin 1969
- Chang+Cooper 1970
- Guaranteed M property!

