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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength.

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

=
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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Boundary conforming Delaunay triangulations
Definition: An admissible triangulation of a polygonal Domain Ω ⊂ Rd

has the boundary conforming Delaunay property if
(i) All simplices are Delaunay
(ii) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel

property, i.e. their minimal circumdisks are empty
I Equivalent definition in 2D: sum of angles opposite to interior edges
≤ π, angle opposite to boundary edge ≤ π

2

I Creation of boundary conforming Delaunay triangulation description
may involve insertion of Steiner points at the boundary

Delaunay grid of Ω Boundary conforming Delaunay grid of Ω

Lecture 20 Slide 3



Lecture 12 Slide 15

Domain blendend Voronoi cells

I For Boundary conforming Delaunay triangulations, the intersection of
the Voronoi diagram with the domain yields a well defined dual
subdivision which can be used for finite volume discretizations
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Constructing control volumes I

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k such that
I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines
I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neigbours
I neigbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such
that

I admissibility condition: if l ∈ Nk then the line xkxl is orthogonal to
σkl

I if ωk is situated at the boundary, i.e. γk = ∂ωk ∩ ∂Ω 6= ∅, then
xk ∈ ∂Ω
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Constructing control volumes II

xk xl
σklωk

ωlnkl

I We know how to construct this partition:
I obtain a boundary conforming Delaunay triangulation
I construct restricted Voronoi cells
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Discretization ansatz for Robin boundaray value problem

−∇ · κ∇u = f in Ω
κ∇u · n + α(u − g) = 0 on ∂Ω

I Given control volume ωk , integrate equation over control volume

0 =
∫

ωk

(−∇ · κ∇u − f ) dω

= −
∫

∂ωk

κ∇u · nkdγ −
∫

ωk

fdω (Gauss)

= −
∑

L∈Nk

∫

σkl

κ∇u · nkldγ −
∫

γk

κ∇u · ndγ −
∫

ωk

fdω

≈
∑

L∈Nk

σkl
hkl

(uk − ul ) + |γk |α(uk − gk)− |ωk |fk

I Here,
I uk = u(xk )
I gk = g(xk )
I fk = f (xk )
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Solvability of discrete problem

I N = |N | equations (one for each control volume)
I N = |N | unknowns (one in each collocation point ≡ control volume)
I Graph of discretzation matrix ≡ edge graph of triangulation ⇒ matrix

is irreducible
I Matrix is irreducibly diagonally dominant
I Main diagonal entries are positive, off diagonal entries are non-positive
⇒ the discretization matrix has the M-property.
In addition, it is symmetric.
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Finite volume local stiffness matrix calculation I

B

A

C
sa

sbsc

a

c b

I Triangle edge lengths: a, b, c
I Semiperimeter: s = a

2 + b
2 + c

2

I Square area (from Heron’s formula):
16A2 = 16s(s − a)(s − b)(s − c) =
(−a + b + c) (a − b + c) (a + b − c) (a + b + c)

I Square circumradius: R2 = a2b2c2

(−a+b+c)(a−b+c)(a+b−c)(a+b+c) = a2b2c2

16A2
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Finite volume local stiffness matrix calculation II

I Square of the Voronoi surface contribution via Pythagoras:
s2
a = R2 −

( 1
2 a
)2 = − a2(a2−b2−c2)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c)

I Square of edge contribution in the finite volume method:
e2

a = s2
a

a2 = − (a2−b2−c2)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c) = (b2+c2−a2)2

64A2

I Edge contribution. ea = sa
a = b2+c2−a2

8A

I The sign chosen implies a positive value if the angle α < π
2 , and a

negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.
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Finite volume local stiffness matrix calculation
a0 = (x0, y0) . . . ad = (x2, y2): vertices of the simplex K Calculate the
contribution from triangle to σkl

hkl
in the finite volume discretization

a0

a2

a1
s2

s0s1

ω2

ω0 ω1

h2

h1 h0

Let hi = ||ai+1 − ai+2|| (i counting modulo 2) be the lengths of the
discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

|si |
hi

= 1
8A (h2

i+1 + h2
i+2 − h2

i )

|ωi | = (|si+1|hi+1 + |si+2|hi+2)/4

Assembly loop similar to that from finite elements.
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