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More complicated integrals

v

Assume non-constant right hand side f, space dependent heat
conduction coefficient k.

v

Right hand side integrals
f; :/ f(x)Ai(x) dx
K

P! stiffness matrix elements

v

aj = / K(X) VA, V)\_, dx
K

v

P* stiffness matrix elements created from higher order ansatz
functions




Quadrature rules
» Quadrature rule:
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&) nodes, Gauss points

wy: weights

The largest number k such that the quadrature is exact for
polynomials of order k is called order kq of the quadrature rule, i.e.
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Vk < kq,¥p € IP”‘/ p(x) dx = K| Y wip(&)
K =1

v

Error estimate:

V¢€Ck+1 |K|/¢(X dfow/g &)

<<:hk+1 sup  |0%¢(x))|

xeK,|a|=kq+1




Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d | kg Iy | Nodes Weights
1|1 1 (%,%) 1
1 2 (10),(0,1) 303
1 V31 3 31 V3 11
S A N N A
5 31G)GH Vi -Va)hG VetV | wms
2 1 1 (%’%7% 1
1 3 (17070)’(07170)’(07071) %7%7%
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1 4 (170a070)’(07170’0)’(070’1a0)7(070a0’1) %a%7%7%
2 4 (5—\/5 5—v56 5—v5 5+3\/§) 1111
20 ° 20 20 > 20 1°20 203




Matching of approximation order and quadrature order

» “Variational crime”: instead of
a(uh, Vh) = f(Vh) Vv, € Vy
we solve
ah(uh, Vh) = fh(vh) Vvh S Vh
where ap, f, are derived from their exact counterparts by quadrature

> For P! finite elements, zero order quadrature for volume integrals and
first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

> The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.




Practical realization of integrals

> Integral over barycentric coordinate function

/ M(x) dx = LIK|
p 3

» Right hand side integrals. Assume f(x) is given as a piecewise linear
function with given values in the nodes of the triangulation

f—/ f(x)Ai(x) dx~f|K|f(a,)

> Integral over space dependent heat conduction coefficient: Assume
k(x) is given as a piecewise linear function with given values in the
nodes of the triangulation

1
aj = /KH(X) Vi VA dx = g(m(a0)+f<;(a1)+/4;(ag)) /K Vi VA dx




Stiffness matrix for Laplace operator for P1 FEM

» Element-wise calculation:

aj = a(¢i, ¢j) = /QV¢:'V¢J' dx :/Q Z VéilkVejlk dx

KeTh

» Standard assembly loop:
fori,j=1...N do
| seta;=0
end
for K € T, do
for m,n=0...d do

Smn :/ VAnVA, dx
K

3jor (K, m) sjaor (Kyn) = e (K,m).jsor (K,n) T Smin

end
end

» Local stiffness matrix:

SK = (SK;m,n) :/ V/\mV/\n dx
K




Local stiffness matrix calculation for P1 FEM

> ag...ay: vertices of the simplex K, a € K.

» Barycentric coordinates: \;(a) = %

» For indexing modulo d41 we can write
1
‘KI = mdet (aj+1 — 3j,...3j+d — aj)

1
|Ki(a)| = ai det (aj41 — a,...a544 — a)

» From this information, we can calculate explicitelyVA;(x) (which are
constant vectors due to linearity) and the corresponding entries of the
local stiffness

Sjj = / VA,VAJ dx
K




Local stiffness matrix calculation for P1 FEM in 2D

> a9 = (X0, Y0)---ad = (X2, y2): vertices of the simplex K,
a=(x,y) e K.

_ [Ki(xy)l
IK]

» For indexing modulo d+1 we can write

» Barycentric coordinates: A;j(x,y)

1= Lam (3 32 )
2 Yitr =Y Yiv2 =Y

) = e (5 2 )
> Therefore, we have
K506l = 5 (051 = )52 = ¥) — g2 = X1 — )
01K ) = 5 (U161 =) = (2 = YD) = 501 = x312)
81K x, )] = 5 (52— x) — G = x)) = 052~ x5:0)




Local stiffness matrix calculation for P1 FEM in 2D II

|

IK|
Sij = /KV)\:'V)V dx = i (Vid1 = Yie2: Xiz2 — Xig1)

» So, let V = <X1 —%
Y1—Y
» Then
and

X2 — Xo
Y2 — Yo

x1—x2 = Voo — Viu
yi—Yy2=Vio—Vua

_(n—y2\ _ (Vio— Vi1
2|K| Vo= <X2 *Xl) N <V01 - Voo)
— Vj
ok v = (220) = ()
21K| Vo = Yo—Y1)\ _ _VIO
K| VA2 = x1—x)  \ Voo

Yi+1 — Yj+2
Xj+2 = Xj+1

)




Degree of freedom map representation for P1 finite
elements

> List of global nodes a ... ay: two dimensional array of coordinate
values with N rows and d columns

> Local-global degree of freedom map: two-dimensional array C of
index values with N, rows and d + 1 columns such that
C(i, m) = joor (Ki, m).

» The mesh generator triangle generates this information directly




Practical realization of boundary conditions

v

Robin boundary value problem

—V-kVu=f inQ
kVu+a(u—g)=0 ondQ

v

Weak formulation: search u € H*() such that

/nVqudx—l—/ auyv ds:/ fvdx+/ agvds Vv € HY(Q)
Q o] Q o]

In 2D, for P* FEM, boundary integrals can be calculated by
trapezoidal rule without sacrificing approximation order
Use Dirichlet penalty method to handle Dirichlet boundary conditions

v

v




The Finite volume method



Species balance over an REV

|

>

|

Let u(x,t): Q x [0, T] — R be the local amount of some species.
Assume representative elementary volume w C Q
Subinterval in time (to, t1) C (0, T)

—0Vu - n describes the flux of these species trough dw, where § is
some transfer coefficient

Let f(x,t) be some local source of species. Then the flux through the
boundary is balanced by the change of the amount of species in w
and the source strength.

O:/w(u(x,tl)—u(x71_‘o))dx—/t1 , (5Vu~ndsdt—/:/wf(x,t)ds

to Ow
t1 t1 ty
:/ /atu(x,t)dxdt—/ /V~(6Vu)dxdt—/ /f(x,t)ds
to w to w to w

True for all w C €, (t, t1) C (0, T) = parabolic second order PDE

Oru(x, t) — V- (6Vu(x,t)) = f(x,t)




Boundary conforming Delaunay triangulations

Definition: An admissible triangulation of a polygonal Domain Q c R
has the boundary conforming Delaunay property if

(i) All simplices are Delaunay

(i) All boundary simplices (edges in 2D, facets in 3d) have the Gabriel
property, i.e. their minimal circumdisks are empty

» Equivalent definition in 2D: sum of angles opposite to interior edges
< m, angle opposite to boundary edge < 7

» Creation of boundary conforming Delaunay triangulation description
may involve insertion of Steiner points at the boundary

Delaunay grid of Q Boundary conforming Delaunay grid of Q




Domain blendend Voronoi cells

» For Boundary conforming Delaunay triangulations, the intersection of
the Voronoi diagram with the domain yields a well defined dual
subdivision which can be used for finite volume discretizations




Constructing control volumes |

> Assume Q is a polygon
» Subdivide the domain € into a finite number of control volumes :

Q:

>

vVvYyVvVVvyvy

Ukear @k such that

wy are open (not containing their boundary) convex domains
wrk Nwy = 0 if wk ;éw/

ok = Wk N are either empty, points or straight lines

we will write || for the length

if |ow| > 0 we say that wg, w; are neigbours

neigbours of wi: N = {/ € N : |ow| > 0}

» To each control volume wy assign a collocation point: x, € Wy such

that

>

admissibility condition: if / € Ny then the line xxx, is orthogonal to
Okl

if wg is situated at the boundary, i.e. vk = dwx N AN # (), then

X, € 00



Constructing control volumes I

» We know how to construct this partition:
> obtain a boundary conforming Delaunay triangulation
> construct restricted Voronoi cells



Discretization ansatz for Robin boundaray value problem

-V -kVu=finQ
kVu-n+a(u—g)=00n 90

» Given control volume wy, integrate equation over control volume

0:/ (-V-kVu—-f)dw
wi
= —/ kVu-ngedy — fdw (Gauss)
Owy Wk

= — Z/ kVu-ngdy — /ls:Vu-nd'y—/ fdw
LeNK Wk
o
~ D (o= )+ [iela(ue — g6) = el
LeNK Kt

» Here,

> uk = u(xk)

> gk = g(xk)

> fi = f(x«)



Solvability of discrete problem

» N = |N] equations (one for each control volume)

» N = |[N| unknowns (one in each collocation point = control volume)

> Graph of discretzation matrix = edge graph of triangulation = matrix
is irreducible

» Matrix is irreducibly diagonally dominant

» Main diagonal entries are positive, off diagonal entries are non-positive
= the discretization matrix has the M-property.

In addition, it is symmetric.



Finite volume local stiffness matrix calculation |

Sa

B a C

» Triangle edge lengths: a, b, ¢
> Semiperimeter: s = 3 + g +£

» Square area (from Heron's formula):
16A% = 16s(s — a)(s — b)(s — ¢) =
(—a+b+c)(a—b+c)(a+b—c)(a+b+c)

a’b?c? a’b?c?

. . . 2 _ _
» Square circumradius: R° = CorhrO—bro b0 (a7bT0) — 1642



Finite volume local stiffness matrix calculation |l

» Square of the Voronoi surface contribution via Pythagoras:

2 2(2-p—c?)’
Sg = R? - (%a) = _4(afbfc)(agb+c)(a+b)fc)(a+b+c)

» Square of edge contribution in the finite volume method:

2
2 __ ﬁ _ (aszzfcz) (PP a?)?
€ = 37 = T Ia—b-c)(a—bro)(atb—c)(athbtc) _  G4A?
s, b2+ —2°

» Edge contribution. e, = % A

» The sign chosen implies a positive value if the angle o < 7, and a
negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.



Finite volume local stiffness matrix calculation
ap = (x0,¥0) - - - 34 = (x2, ¥2): vertices of the simplex K Calculate the
contribution from triangle to 24 in the finite volume discretization

[
a
h 0
W w
0 4 1
ao h a
Let h; = ||ai+1 — aiy2]| (i counting modulo 2) be the lengths of the

discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

sl _ 1

|wil = (Isiv1lhiv1 + |sit2|hiv2)/4

Assembly loop similar to that from finite elements.



