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Weak formulation of homogeneous Dirichlet problem
» Search u € H}(Q) (here, tr u = 0) such that
/ AVuVvdx = / fvdx Vv € H3(Q)
Q Q
» Then,
a(u, v) ::/)\VUVvdx
Q

is a self-adjoint bilinear form defined on the Hilbert space H} ().
> It is bounded due to Cauchy-Schwarz:

|a(u, V)| = [A]- I/QVqudX\ <|ullmye) - [VIlHy@

» f(v) = [, fvdx is a linear functional on H3(S2). For Hilbert spaces V
the dual space V'’ (the space of linear functionals) can be identified
with the space itself.




The Lax-Milgram lemma

Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear
form, and f a linear functional on V. Assume a is coercive, i.e.

o> 0:Vue V, a(u,u) > allull}.

Then the problem: find u € V such that

a(u,v)=f(v)VYveV

admits one and only one solution with an a priori estimate

1
< ZIIflly
[Jullv < aH 11%




The Galerkin method I

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant +.

» Continuous problem: search u € V such that
a(u,v)=f(v)V¥veV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search u, € V), such that

a(u;” Vh) = f(v;,) Yvhp € Vy

By Lax-Milgram, this problem has a unique solution as well.




Céa's lemma

» What is the connection between u and u, ?

> Let v, € V), be arbitrary. Then

allu— up|? < a(u — up, u— up)  (Coercivity)

a(u— up,u—vp) + a(u — up, vy — up)
= a(u — up,u—vy) (Galerkin Orthogonality)
< Allu—up|| - ||lu — va|| (Boundedness)

> As a result

o,
— < — inf -
= upll < 2 inf 1w = v

» Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.




From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
» Then, we have the representation u, = Zf:1 ujp;
» In order to search u, € V), such that

a(uh, Vh) = f(vh) Yvp € Vy

it is actually sufficient to require

a(up, di) = (i) (i=1...n)

a (Z uj¢jv¢i> =f(¢))(i=1...n)

> a(¢, ¢y = £(¢7) (i=1...n)

Jj=1

AU=F

Wlth A = (a,-j), a,-j = a(¢,-,gbj), F = (ﬁ), ﬁ = F(¢,), U = (U,').
» Matrix dimension is n x n. Matrix sparsity 7




Matrix properties

> a(-,-) symmetric bilinear form = A symmetric

» Coercivity = A positive definite



Barycentric coordinates
> Let K be a simplex.
» Functions \; (i =0...d):
A:RI SR
X (x) =1 Xz
(aj —ai) - i

where a; is any vertex of K situated in F;.
» For x € K, one has
(x—a)-n;  (a—a)-n— (xfa) n;
1— =
(aj —ai) - i (aj—ai)-n
(g =x)-m; dlst( F)
~(aj—a)-n; dist(a;, F)
_ dist(x, F)|Fi|/d
~ dist(a;, F)|Fi|/d
 dist(x, F)|Fi
K|

i.e. A\j(x) is the ratio of the volume of the simplex K;(x) made up of

x and the vertices of F; to the volume of K.




Polynomial space Py
» Space of polynomials in xy ...xy of total degree < k with real
coefficients vy, i,

i i

Py =< p(x) = E Qi igX) - Xy
0<iy...ig<k
it tig <k

» Dimension:

d K k41,
dimIPk:( B ): 2(k+1)(k +2),
F(k+1)(k+2)(k +3),
dimP; =d+1
3, d
dmP, =4¢6, d
10, d

Qo Q
I
w N =

1
2
3




P, simplex finite elements

» K: simplex spanned by ap...aq in R?

» P =Py, such that s = dim P;

» For0<ig...ig <k, ig+---+iqg = k, let the set of nodes be defined
by the points a;, . j,.x with barycentric coordinates (’f e ’f)
Define & by O-i1~~<id;k(p) = p(ahmid;k)'

P, Py Py




Conformal triangulations

> Let 7, be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,,, m=1...n,

» Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K:

Km = Tm(K)

» We assume that it is conformal, i.e. if K,, K, havea d —1
dimensional intersection F = K,, N K,,, then there is a face F of K
and renuTbenngs gf the vertices of K,,, K, such that
F=Tn(F)=T,(F) and Tm|? = T,,|?




Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common
vertex

» d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

» d =3 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge or a common face

» Delaunay triangulations are conformal




H*-Conformal approximation using Lagrangian finite
elemenents

» Approximation spaceV}, with zero jumps at element faces:
Vi = {vh € C%Q) : Ym, vi|i, € P¥}

» = Zero jumps at interfaces:
Vn, m, Km 0 Ky # 0 = (vhl k) Kniko = (Vi K, ) KK,

» = V, C HY(Q).



Zero jump at interfaces with Lagrangian finite elements

> Assume geometrically conformal mesh

» Assume all faces of K have the same number of nodes s?

» For any face F = K1 N K5 there are renumberings of the nodes of Kj
and K, such that for i =1...s9, aK,,i = aK,i

» Then, vp|k, and vp|k, match at the interface K1 N Ky if and only if
they match at the common nodes

valki (aKi) = vhlio(ak,) (i=1...5°)




Global degrees of freedom

> Let {31 c. aN} = U {2K71 c. 2K75}
KETh
> Degree of freedom map

JiThx{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number

» Global shape functions ¢1,...,¢n € W), defined by

Omn if3ne{l...s}:j(K,n)=1i
0 otherwise

oilk(ak,m) = {

> Global degrees of freedom ~1,...,vy : Vi, — R defined by

i(vh) = va(a;)




Lagrange finite element basis

> {¢1,...,Pn} is a basis of Vj, and 41 ...y is a basis of L(V}, R).
Proof:

> {¢1,...,pn} are linearly independent: if ZJN:1 aj¢; = 0 then
evaluation at a; ... apy yields that a; ...ay = 0.

> Let v, € V. It is single valued in a;...ay. Let wy = ZJNZI vh(aj)o;.

Then for all K € Th, valk and wy|k coincide in the local nodes
ak,1-..akz2, and by unisolvence, vh|k = wh|k.




P! global shape functions
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P? global shape functions

Node based

N

Edge based
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Affine transformation estimates |

» K: reference element

» Let K € Tp,. Affine mapping:

Tk K= K
X = JkX + bk

with Jx € R%9 by € R, Ji nonsingular
> Diameter of K: hx = maxy ek ||x1 — X2||
> pk diameter of largest ball that can be inscribed into K

> oK = Z—i: local shape regularity




Shape regularity

Now we discuss a family of meshes 7, for h — 0. We want to
estimate global interpolation errors and see how they possibly
diminuish

v

v

For given Ty, assume that h = maxkeT; hj

v

A family of meshes is called shape regular if

h
VYhVK € Th,ox = - < a9

PK

» In1D, ok =1

» In 2D, ok < Sin20K where O is the smallest angle




Error estimates for homogeneous Dirichlet problem

» Search u € H}(Q) such that

/Wuvvdx: / fvdx Vv € H3(Q)
Q Q

Then, limp_yo ||t — upl|1.0 = 0. If u € H?(Q) (e.g. on convex domains)
then

|lu— unll1,a < chlul20
||lu— uplloq < ch?|ulaq

Under certain conditions (convex domain, smooth coefficients) one has

[lu— upllo,o < chlulio

(“*Aubin-Nitsche-Lemma")




H?-Regularity

v

u € H?(Q) may be not fulfilled e.g.

> if Q has re-entrant corners

> if on a smooth part of the domain, the boundary condition type
changes

> if problem coefficients (\) are discontinuos

» Situations differ as well between two and three space dimensions

v

Delicate theory, ongoing research in functional analysis
» Consequence for simuations

» Deterioration of convergence rate
> Remedy: local refinement of the discretization mesh
> using a priori information
> using a posteriori error estimators + automatic refinement of
discretizatiom mesh




More complicated integrals

v

Assume non-constant right hand side f, space dependent heat
conduction coefficient k.

v

Right hand side integrals

P! stiffness matrix elements

v

ajj :/ KJ(X) V)\, V)\J dx
K

v

Pk stiffness matrix elements created from higher order ansatz
functions



Quadrature rules
» Quadrature rule:

[ et ax =K S wiele)

&1 nodes, Gauss points

wy: weights

The largest number k such that the quadrature is exact for
polynomials of order k is called order k, of the quadrature rule, i.e.

vYyy

lq
Uk < kg ¥p € P [ plx) dx = K| D winl6)
1=1

» Error estimate:
lq
V(ZS c Ck +1 |K| / ¢ Zw,g(f/)
lf
< chk gt sup |0%p(x)|

x€K,|a|=kq+1



Some common quadrature rules

Nodes are characterized by the barycentric coordinates

Weights
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Matching of approximation order and quadrature order

» “Variational crime”: instead of
a(uh, Vh) = f(vh) Yvp € Vy
we solve
an(un, vi) = fa(vh) Yvi € Vj
where ap, f, are derived from their exact counterparts by quadrature

» For P! finite elements, zero order quadrature for volume integrals and
first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

» The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.



Practical realization of integrals

» Integral over barycentric coordinate function

/ Ai(x) dx = 1|K\
K 3

» Right hand side integrals. Assume f(x) is given as a piecewise linear
function with given values in the nodes of the triangulation

f_/ FoON(x) ox ~ 5 KIF(a)

> Integral over space dependent heat conduction coefficient: Assume
k(x) is given as a piecewise linear function with given values in the
nodes of the triangulation

a,-,-:/ K(x) VA VA, dx = %(m(ao)—m(al)—m(ag))/ VA V), dx
K K



Stiffness matrix for Laplace operator for P1 FEM

» Element-wise calculation:

ay = 361, ¢)) = /Q ViV oy dx = / 2 VoKVl dx

KeTh

» Standard assembly loop:
fori,j=1...N do
| seta;=0
end
for K € 7, do
for m,n=0...d do

Smn :/ VARV, dx
K

Bjor (K, m) o (K1) = Bfgor (K,m)juor (K,n) T+ Smn

end
end

» Local stiffness matrix:

SK = (SK;m,n) = / VAmV)\n dx
K



Local stiffness matrix calculation for P1 FEM

> 3p...ay: vertices of the simplex K, a € K.

[Ki(a)l
K]

» Barycentric coordinates: A;(a)
» For indexing modulo d+1 we can write
1
|K‘ = Idet (aj+1 — 3jy..-3j4d — aj)

1
|KJ(a)| = E det (aj+1 —a,...3j4+d — a)

» From this information, we can calculate explicitelyV\;(x) (which are

constant vectors due to linearity) and the corresponding entries of the
local stiffness

Sjj :/VA,V)\J dx
K



Local stiffness matrix calculation for P1 FEM in 2D

> a9 = (x0,%0)---ad = (X2, y2): vertices of the simplex K,
a=(x,y)€eK.

[K;(x,x)|
K]

» Barycentric coordinates: A;(x,y) =
» For indexing modulo d+1 we can write
K| = L det <Xj+1 =X X2 _Xj>
2 Yier =Y Yi+2 7Y

1 Xit1 — X  Xjio — X
Ki(x = Zdet [ V! +2 >
Kl = et (507 02

» Therefore, we have

K506 = 2 (g0 = X)e2 — ¥) — G2 = 20031~ )
0ulKi(x )| = 5 (U351 = ¥) = vz = ) = 5001 = 3342)
01K (x, )] = 5 (G512 = X) — Gg11 = 2) = 3012 — 1)



Local stiffness matrix calculation for P1 FEM in 2D ||

>

K| Yj+1 = Yj+2
i= [ VAV dx = 1 — Yit2s Xit2 — Xi J I
Sij /K iVAj ax 4‘K|2 (y:+1 Yi+2; Xi+2 XI+1) Xji2 — Xj41

> So let V= (170 X2TX
Yi—Y Y2—Yo
» Then

x; —xo = Voo — Vo1

yi—ya=Vio— Vi1
_(ri=y2\ _ (Vio— Vi
21K1 VAo = (Xz - X1> B <V01 - Voo>
— V;
ok o= (2 20) = (%)

- —V
2kl v = (2 0) = ()

and



Degree of freedom map representation for P1 finite
elements

> List of global nodes a ... ay: two dimensional array of coordinate
values with N rows and d columns

» Local-global degree of freedom map: two-dimensional array C of
index values with Ng rows and d + 1 columns such that
C(i, m) = jaor (Ki, m).

> The mesh generator triangle generates this information directly



Practical realization of boundary conditions

v

Robin boundary value problem

-V -kVu=f inQ
kVu+a(u—g)=0 on0Q

v

Weak formulation: search u € H(Q) such that

/nVquder/ auv ds:/fvder/ agvds Vv € HY(Q)
Q o9 Q Glel

In 2D, for P! FEM, boundary integrals can be calculated by
trapezoidal rule without sacrificing approximation order
Use Dirichlet penalty method to handle Dirichlet boundary conditions

v

v



Next lecture

Next lecture: Jan. 9, 2018.
Happy holidays!



