Scientific Computing WS 2017/2018

Lecture 18

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Weak formulation of homogeneous Dirichlet problem

• Search $u \in H^1_0(\Omega)$ (here, tr u = 0) such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \lambda
abla u
abla v \, d\mathbf{x}$$

is a self-adjoint bilinear form defined on the Hilbert space H¹₀(Ω).
It is bounded due to Cauchy-Schwarz:

$$|\boldsymbol{a}(u,v)| = |\lambda| \cdot |\int_{\Omega}
abla u
abla v \, d\mathbf{x}| \leq ||u||_{H^1_0(\Omega)} \cdot ||v||_{H^1_0(\Omega)}$$

• f(v) = ∫_Ω fv dx is a linear functional on H¹₀(Ω). For Hilbert spaces V
the dual space V' (the space of linear functionals) can be identified
with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$\exists \alpha > 0 : \forall u \in V, a(u, u) \ge \alpha ||u||_V^2.$$

Then the problem: find $u \in V$ such that

 $a(u,v) = f(v) \ \forall v \in V$

admits one and only one solution with an a priori estimate

$$||u||_{\mathcal{V}} \leq \frac{1}{\alpha} ||f||_{\mathcal{V}}$$

The Galerkin method II

- Let V be a Hilbert space. Let $a : V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u,v) = f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad (\text{Coercivity}) \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad (\text{Galerkin Orthogonality}) \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad (\text{Boundedness}) \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

▶ Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h.

From the Galerkin method to the matrix equation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{j=1}^n u_j \phi_j$
- ▶ In order to search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

Matrix dimension is $n \times n$. Matrix sparsity ?

Matrix properties

- $a(\cdot, \cdot)$ symmetric bilinear form $\Rightarrow A$ symmetric
- Coercivity \Rightarrow *A* positive definite

Barycentric coordinates

- ▶ Let *K* be a simplex.
- Functions λ_i $(i = 0 \dots d)$:

$$egin{aligned} \lambda_i : \mathbb{R}^d &
ightarrow \mathbb{R} \ x &\mapsto \lambda_i(x) = 1 - rac{(x-a_i) \cdot \mathbf{n}_i}{(a_j-a_i) \cdot \mathbf{n}_i} \end{aligned}$$

where a_j is any vertex of K situated in F_i .

For $x \in K$, one has

$$1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{(a_j - a_i) \cdot \mathbf{n}_i - (x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$
$$= \frac{(a_j - x) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{\operatorname{dist}(x, F_i)}{\operatorname{dist}(a_i, F_i)}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|/d}{\operatorname{dist}(a_i, F_i)|F_i|/d}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|}{|\mathcal{K}|}$$

i.e. $\lambda_i(x)$ is the ratio of the volume of the simplex $K_i(x)$ made up of x and the vertices of F_i to the volume of K.

Polynomial space \mathbb{P}_k

Space of polynomials in x₁...x_d of total degree ≤ k with real coefficients α_{i₁...i_d}:

$$\mathbb{P}_{k} = \left\{ p(x) = \sum_{\substack{0 \le i_{1} \dots i_{d} \le k \\ i_{1} + \dots + i_{d} \le k}} \alpha_{i_{1} \dots i_{d}} x_{1}^{i_{1}} \dots x_{d}^{i_{d}} \right\}$$

Dimension:

$$\dim \mathbb{P}_{k} = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$
$$\dim \mathbb{P}_{1} = d+1$$
$$\dim \mathbb{P}_{2} = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_k$, such that $s = \dim P_k$
- For 0 ≤ i₀...i_d ≤ k, i₀ + ··· + i_d = k, let the set of nodes be defined by the points a_{i1...id;k} with barycentric coordinates (^{i₀}/_k...^{i_d}/_k). Define Σ by σ_{i1...id;k}(p) = p(a_{i1...id;k}).

Conformal triangulations

Let *T_h* be a subdivision of the polygonal domain Ω ⊂ ℝ^d into non-intersecting compact simplices *K_m*, *m* = 1...*n_e*:

$$\overline{\Omega} = \bigcup_{m=1}^{n_e} K_m$$

Each simplex can be seen as the image of a affine transformation of a reference (e.g. unit) simplex K:

$$K_m = T_m(\widehat{K})$$

▶ We assume that it is conformal, i.e. if K_m , K_n have a d-1 dimensional intersection $F = K_m \cap K_n$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_n , K_m such that $F = T_m(\widehat{F}) = T_n(\widehat{F})$ and $T_m|_{\widehat{F}} = T_n|_{\widehat{F}}$

Conformal triangulations II

- ▶ d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- ► d = 2: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge

- ► d = 3: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

H^1 -Conformal approximation using Lagrangian finite elemenents

• Approximation space V_h with zero jumps at element faces:

$$V_h = \{v_h \in C^0(\Omega) : \forall m, v_h |_{K_m} \in \mathbb{P}^k\}$$

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- For any face F = K₁ ∩ K₂ there are renumberings of the nodes of K₁ and K₂ such that for i = 1...s[∂], a_{K1,i} = a_{K2,i}
- ► Then, v_h|_{K1} and v_h|_{K2} match at the interface K₁ ∩ K₂ if and only if they match at the common nodes

$$v_h|_{K_1}(a_{K_1,i}) = v_h|_{K_2}(a_{K_2,i}) \quad (i = 1 \dots s^{\partial})$$

Global degrees of freedom

• Let
$$\{a_1 \ldots a_N\} = \bigcup_{K \in \mathcal{T}_h} \{a_{K,1} \ldots a_{K,s}\}$$

Degree of freedom map

$$j: \mathcal{T}_h imes \{1 \dots s\} o \{1 \dots N\}$$

 $(K, m) \mapsto j(K, m)$ the global degree of freedom number

▶ Global shape functions $\phi_1, \ldots, \phi_N \in W_h$ defined by

$$\phi_i|_{\mathcal{K}}(a_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

▶ Global degrees of freedom $\gamma_1, \ldots, \gamma_N : V_h \to \mathbb{R}$ defined by

$$\gamma_i(v_h) = v_h(a_i)$$

Lagrange finite element basis

• $\{\phi_1, \ldots, \phi_N\}$ is a basis of V_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(V_h, \mathbb{R})$.

Proof:

- $\{\phi_1, \ldots, \phi_N\}$ are linearly independent: if $\sum_{j=1}^N \alpha_j \phi_j = 0$ then evaluation at $a_1 \ldots a_N$ yields that $\alpha_1 \ldots \alpha_N = 0$.
- ▶ Let $v_h \in V_h$. It is single valued in $a_1 \dots a_N$. Let $w_h = \sum_{j=1}^N v_h(a_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $a_{K,1} \dots a_{K,2}$, and by unisolvence, $v_h|_K = w_h|_K$.

Affine transformation estimates I

- \widehat{K} : reference element
- Let $K \in \mathcal{T}_h$. Affine mapping:

$$egin{aligned} &\mathcal{T}_{\mathcal{K}}:\widehat{\mathcal{K}}
ightarrow\mathcal{K}\ &\widehat{x}\mapsto\mathcal{J}_{\mathcal{K}}\widehat{x}+b_{\mathcal{K}} \end{aligned}$$

with $J_{\mathcal{K}} \in \mathbb{R}^{d,d}, b_{\mathcal{K}} \in \mathbb{R}^{d}$, $J_{\mathcal{K}}$ nonsingular

- Diameter of K: $h_K = \max_{x_1, x_2 \in K} ||x_1 x_2||$
- ρ_K diameter of largest ball that can be inscribed into K

•
$$\sigma_K = \frac{h_K}{\rho_K}$$
: local shape regularity

Shape regularity

- Now we discuss a family of meshes T_h for h → 0. We want to estimate global interpolation errors and see how they possibly diminuish
- For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_j$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = rac{h_K}{
ho_K} \leq \sigma_0$$

▶ In 1D, $\sigma_K = 1$ ▶ In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Error estimates for homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then, $\lim_{h\to 0} ||u - u_h||_{1,\Omega} = 0$. If $u \in H^2(\Omega)$ (e.g. on convex domains) then

 $\begin{aligned} ||u - u_h||_{1,\Omega} &\leq ch|u|_{2,\Omega} \\ ||u - u_h||_{0,\Omega} &\leq ch^2|u|_{2,\Omega} \end{aligned}$

Under certain conditions (convex domain, smooth coefficients) one has

$$||u - u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")

H^2 -Regularity

- $u \in H^2(\Omega)$ may be *not* fulfilled e.g.
 - if Ω has re-entrant corners
 - if on a smooth part of the domain, the boundary condition type changes
 - if problem coefficients (λ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence rate
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - using a posteriori error estimators + automatic refinement of discretizatiom mesh

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient κ.
- Right hand side integrals

$$f_i = \int_{\mathcal{K}} f(x) \lambda_i(x) \, d\mathbf{x}$$

$$\mathsf{a}_{ij} = \int_K \kappa(\mathbf{x}) \;
abla \lambda_i \;
abla \lambda_j \; d\mathbf{x}$$

P^k stiffness matrix elements created from higher order ansatz functions

Quadrature rules

Quadrature rule:

$$\int_{\mathcal{K}} g(x) \, d\mathbf{x} pprox |\mathcal{K}| \sum_{l=1}^{l_q} \omega_l g(\xi_l)$$

- ξ_I : nodes, Gauss points
- $\blacktriangleright \omega_l$: weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_q of the quadrature rule, i.e.

$$orall k \leq k_q, orall p \in \mathbb{P}^k \int_K p(x) \, d\mathbf{x} = |K| \sum_{l=1}^{l_q} \omega_l p(\xi_l)$$

Error estimate:

$$\forall \phi \in \mathcal{C}^{k_q+1}(\mathcal{K}), \left| \frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} \phi(x) \, d\mathbf{x} - \sum_{l=1}^{l_q} \omega_l g(\xi_l) \right| \\ \leq ch_{\mathcal{K}}^{k_q+1} \sup_{x \in \mathcal{K}, |\alpha| = k_q+1} |\partial^{\alpha} \phi(x)|$$

Some common quadrature rules

d	k _q	I_q	Nodes	Weights
1	1	1	$\left(\frac{1}{2},\frac{1}{2}\right)$	1
	1	2	$(\tilde{1}, \tilde{0}), (0, 1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$(\frac{1}{2} + \frac{\sqrt{3}}{6}, \frac{1}{2} - \frac{\sqrt{3}}{6}), (\frac{1}{2} - \frac{\sqrt{3}}{6}, \frac{1}{2} + \frac{\sqrt{3}}{6})$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$(\frac{1}{2},),(\frac{1}{2}+\sqrt{\frac{3}{20}},\frac{1}{2}-\sqrt{\frac{3}{20}}),(\frac{1}{2}-\sqrt{\frac{3}{20}},\frac{1}{2}+\sqrt{\frac{3}{20}})$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	1
	1	3	(1, 0, 0), (0, 1, 0), (0, 0, 1)	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})$	$\left \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right $
	3	4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right), \left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right), \left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right), \\ \left(\frac{3}{5}, \frac{1}{5}, \left(\frac$	$-\frac{9}{16}, \frac{25}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	1
	1	4	(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)	$\left \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right $
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3\sqrt{5}}{20}\right)\dots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Nodes are characterized by the barycentric coordinates

Matching of approximation order and quadrature order

"Variational crime": instead of

$$a(u_h, v_h) = f(v_h) \; \forall v_h \in V_h$$

we solve

$$a_h(u_h,v_h)=f_h(v_h) \; orall v_h \in V_h$$

where a_h , f_h are derived from their exact counterparts by quadrature

- ► For P¹ finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

Practical realization of integrals

Integral over barycentric coordinate function

$$\int_{K} \lambda_i(x) \, d\mathbf{x} = \frac{1}{3} |K|$$

▶ Right hand side integrals. Assume f(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$f_i = \int_{K} f(x) \lambda_i(x) \ d\mathbf{x} \approx \frac{1}{3} |K| f(a_i)$$

Integral over space dependent heat conduction coefficient: Assume κ(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$a_{ij} = \int_{K} \kappa(\mathbf{x}) \nabla \lambda_{i} \nabla \lambda_{j} d\mathbf{x} = \frac{1}{3} (\kappa(a_{0}) + \kappa(a_{1}) + \kappa(a_{2})) \int_{K} \nabla \lambda_{i} \nabla \lambda_{j} d\mathbf{x}$$

Stiffness matrix for Laplace operator for P1 FEM

Element-wise calculation:

$$m{a}_{ij} = m{a}(\phi_i, \phi_j) = \int_\Omega
abla \phi_i
abla \phi_j \ m{d} m{x} = \int_\Omega \sum_{K \in \mathcal{T}_h}
abla \phi_i |_K
abla \phi_j |_K \ m{d} m{x}$$

Standard assembly loop:

for
$$i, j = 1 \dots N$$
 do
| set $a_{ij} = 0$

end

for
$$K \in \mathcal{T}_h$$
 do
for $m, n=0...d$ do
 $s_{mn} = \int_{\mathcal{K}} \nabla \lambda_m \nabla \lambda_n \, d\mathbf{x}$
 $a_{j_{dof}(K,m), j_{dof}(K,n)} = a_{j_{dof}(K,m), j_{dof}(K,n)} + s_{mn}$
end

Local stiffness matrix:

$$S_{\mathcal{K}}=(s_{\mathcal{K};m,n})=\int_{\mathcal{K}}\nabla\lambda_{m}\nabla\lambda_{n}\ d\mathbf{x}$$

Local stiffness matrix calculation for P1 FEM

- $a_0 \dots a_d$: vertices of the simplex K, $a \in K$.
- Barycentric coordinates: $\lambda_j(a) = \frac{|K_j(a)|}{|K|}$
- ▶ For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{d!} \det \left(a_{j+1} - a_j, \dots a_{j+d} - a_j \right)$$
$$|\mathcal{K}_j(a)| = \frac{1}{d!} \det \left(a_{j+1} - a, \dots a_{j+d} - a \right)$$

From this information, we can calculate explicitely ∇λ_j(x) (which are constant vectors due to linearity) and the corresponding entries of the local stiffness

$$s_{ij} = \int_{K}
abla \lambda_i
abla \lambda_j \, d\mathbf{x}$$

Local stiffness matrix calculation for P1 FEM in 2D

- a₀ = (x₀, y₀) ... a_d = (x₂, y₂): vertices of the simplex K, a = (x, y) ∈ K.
- Barycentric coordinates: $\lambda_j(x, y) = \frac{|K_j(x, y)|}{|K|}$
- ▶ For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x_j & x_{j+2} - x_j \\ y_{j+1} - y_j & y_{j+2} - y_j \end{pmatrix}$$
$$\mathcal{K}_j(x, y)| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x & x_{j+2} - x \\ y_{j+1} - y & y_{j+2} - y \end{pmatrix}$$

► Therefore, we have

$$|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+1} - x)(y_{j+2} - y) - (x_{j+2} - x)(y_{j+1} - y) \right)$$

$$\partial_{x}|K_{j}(x,y)| = \frac{1}{2} \left((y_{j+1} - y) - (y_{j+2} - y) \right) = \frac{1}{2} (y_{j+1} - y_{j+2})$$

$$\partial_{y}|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+2} - x) - (x_{j+1} - x) \right) = \frac{1}{2} (x_{j+2} - x_{j+1})$$

Local stiffness matrix calculation for P1 FEM in 2D II

$$s_{ij} = \int_{K} \nabla \lambda_{i} \nabla \lambda_{j} \, d\mathbf{x} = \frac{|K|}{4|K|^{2}} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

So, let $V = \begin{pmatrix} x_{1} - x_{0} & x_{2} - x_{0} \\ y_{1} - y_{0} & y_{2} - y_{0} \end{pmatrix}$

Then

$$\begin{aligned} x_1 - x_2 &= V_{00} - V_{01} \\ y_1 - y_2 &= V_{10} - V_{11} \end{aligned}$$

and

$$2|\mathcal{K}| \nabla \lambda_{0} = \begin{pmatrix} y_{1} - y_{2} \\ x_{2} - x_{1} \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_{1} = \begin{pmatrix} y_{2} - y_{0} \\ x_{0} - x_{2} \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_{2} = \begin{pmatrix} y_{0} - y_{1} \\ x_{1} - x_{0} \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

Degree of freedom map representation for P1 finite elements

- List of global nodes a₀...a_N: two dimensional array of coordinate values with N rows and d columns
- ► Local-global degree of freedom map: two-dimensional array C of index values with N_{el} rows and d + 1 columns such that C(i, m) = j_{dof}(K_i, m).
- > The mesh generator triangle generates this information directly

Practical realization of boundary conditions

Robin boundary value problem

$$-\nabla \cdot \kappa \nabla u = f \quad \text{in } \Omega$$

$$\kappa \nabla u + \alpha (u - g) = 0 \quad \text{on } \partial \Omega$$

• Weak formulation: search $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \kappa \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, ds \, \forall v \in H^1(\Omega)$$

- In 2D, for P¹ FEM, boundary integrals can be calculated by trapezoidal rule without sacrificing approximation order
- Use Dirichlet penalty method to handle Dirichlet boundary conditions

Next lecture

Next lecture: Jan. 9, 2018. Happy holidays!