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Definition of a Finite Element (Ciarlet)

Triplet {K, P, X} where

» K C RY: compact, connected Lipschitz domain with non-empty
interior

» P: finite dimensional vector space of functions p: K — R

> Y ={01...0s} C L(P,R): set of linear forms defined on P called
local degrees of freedom such that the mapping

/\z P> TR°
p = (91(p) .. os(p))
is bijective, i.e. X is a basis of L(P,R).




Local shape functions

» Due to bijectivity of Ay, for any finite element {K, P, X}, there exists
a basis {67 ...0s} C P such that

O','(ej) = 6’] (1 S i,j S S)

» Elements of such a basis are called local shape functions




Unisolvence

» Bijectivity of Ay is equivalent to the condition

V(o ...as) € R®lp € Psuch thatoi(p) =a; (1 <i<5s)

i.e. for any given tuple of values a = (v ... as) there is a unique
polynomial p € P such that As(p) = a.
» Equivalent to unisolvence:

dmP=|X|=s
VpeP: oi(p)=0(i=1...s) = p=0




Lagrange finite elements

> A finite element {K, P, X} is called Lagrange finite element (or nodal
finite element) if there exist a set of points {a;...as} C K such that

oilp)=p(a;) 1<i<s

» {a1...as}: nodes of the finite element
» nodal basis: {0;...6s} C P such that

Gj(a,-) = (;,J (1 S I,j S S)




Hermite finite elements

> All or a part of degrees of freedoms defined by derivatives of p in
some points




Local interpolation operator
> Let {K, P,X} be a finite element with shape function bases
{61 ...6s}. Let V(K) be a normed vector space of functions
v : K — R such that
» PC V(K)
> The linear forms in X can be extended to be defined on V(K)
» local interpolation operator

k:V(K)— P
Vi ZO’,’(V)Q

» P is invariant under the action of Zg, i.e. Vp € P,Zk(p) = p:
> Let p= ijl a;jf; Then,

s

Iu(p) = Y oi(P)0i = Y > ajoi(0)0

i=1 i=1 j=1

—ZZaJ(SUG 72041 )i

i=1 j=1




Local Lagrange interpolation operator

> Let V(K) = (C°(K))

Ix: V(K) > P

vV = /KV = Z v(a,-)t9,-

i=1




Simplices

v

Let {ap...aq4} C R? such that the d vectors a; — ag ... aq — ag are
linearly independent. Then the convex hull K of ag... ay is called
simplex, and ag . .. ay are called vertices of the simplex.

Unit simplex: ap = (0...0),a; = (0,1...0)...a;=(0...0,1).

v

d
K—{xe]Rd:x,-ZO(i—l...d)and Zx,-g1}
i=1

> A general simplex can be defined as an image of the unit simplex
under some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;




Barycentric coordinates
> Let K be a simplex.
» Functions \; (i =0...d):
A:RI SR
X (x) =1 Xz
(aj —ai) - i

where a; is any vertex of K situated in F;.
» For x € K, one has
(x—a)-n;  (a—a)-n— (xfa) n;
1— =
(aj —ai) - i (aj—ai)-n
(g =x)-m; dlst( F)
~(aj—a)-n; dist(a;, F)
_ dist(x, F)|Fi|/d
~ dist(a;, F)|Fi|/d
 dist(x, F)|Fi
K|

i.e. A\j(x) is the ratio of the volume of the simplex K;(x) made up of

x and the vertices of F; to the volume of K.




Barycentric coordinates |l

> Ai(aj) = 0y

» \i(x)=0Vx € F;

> Z,io Ai(x) =1Vx € RY
(just sum up the volumes)

> S N(X)(x — ai) = 0 Vx € RY
(due to > \i(x)x = x and Y A\;a; = x as the vector of linear
coordinate functions)

» Unit simplex:

> do(x)=1-— 27:1 Xi
» Ai(x)=x for1 <i<d




Polynomial space Py
» Space of polynomials in xy ...xy of total degree < k with real
coefficients vy, i,

i i

Py =< p(x) = E Qi igX) - Xy
0<iy...ig<k
it tig <k

» Dimension:

d K k41,
dimIPk:( B ): 2(k+1)(k +2),
F(k+1)(k+2)(k +3),
dimP; =d+1
3, d
dmP, =4¢6, d
10, d

Qo Q
I
w N =

1
2
3




P, simplex finite elements

» K: simplex spanned by ap...aq in R?

» P =Py, such that s = dim P;

» For0<ig...ig <k, ig+---+iqg = k, let the set of nodes be defined
by the points a;, . j,.x with barycentric coordinates (’f e ’f)
Define & by O-i1~~<id;k(p) = p(ahmid;k)'

P, Py Py




[P; simplex finite elements

K: simplex spanned by ag...aq in RY

P =P, suchthat s=d +1

Nodes = vertices

Basis functions = barycentric coordinates

ad
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P, simplex finite elements
> K: simplex spanned by ag...aq in R?
» P =P,, Nodes = vertices + edge midpoints
» Basis functions:

)\,'(2)\,' — 1),(0 <i< d), 4)\,’)\], (0 <i <j < d)

("edge bubbles”)




General finite elements

» Simplicial finite elements can be defined on triangulations of
polygonal domains. During the course we will stick to this case.

» For vector PDEs, one can define finite elements for vector valued
functions

> A curved domain 2 may be approximated by a polygonal domain €2
which is then triangulated. During the course, we will ignore this
difference.

» As we have seen, more general elements are possible: cuboids, but
also prismatic elements etc.

» Curved geometries are possible. Isoparametric finite elements use the
polynomial space to define a mapping of some polyghedral reference
element to an element with curved boundary




Conformal triangulations

> Let 7, be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,,, m=1...n,

» Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K:

Km = Tm(K)

» We assume that it is conformal, i.e. if K,, K, havea d —1
dimensional intersection F = K,, N K,,, then there is a face F of K
and renuTbenngs gf the vertices of K,,, K, such that
F=Tn(F)=T,(F) and Tm|? = T,,|?




Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common
vertex

» d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

» d =3 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge or a common face

» Delaunay triangulations are conformal




Reference finite element

> Let {I?’7 K, f} be a fixed finite element
» Let Tk be some affine transformation and K = Tk(K)
» There is a linear bijective mapping 1k between functions on K and
functions on K:
Pk V(K) = V(K)
frfoTg
> Let

> K = Tk(K)

> Px={t'(p):p € P, R

» Tk ={oki,i=1...5:0ki(p) = gi(vk(p))}
Then {K, Pk, Xk} is a finite element.




Commutativity of interpolation and reference mapping

> Ty otk = Pk oIk,
i.e. the following diagram is commutative:

V(K) —— V(K)

B2 |7«




Global interpolation operator Z,
> Let {K, Px,Xk}keT, be a triangulation of Q.

» Domain:

D(Zy) = {v € (L(Q)) such that VK € Ty, v|x € V(K)}

> For all v € D(Zy), define Zyv via

s
Ihvik = Ik(vlk) = ZUK,,'(V\KWK,,' VK € T,

i=1

Assuming 6k ; = 0 outside of K, one can write

Tpv = Z ZJK,;(le)ek,i,

KeTy, i=1

mapping D(Z) to the approximation space




H*'-Conformal approximation using Lagrangian finite
elemenents

» Let V be a Banach space of functions on 2. The approximation
space W, is said to be V-conformal if W, C V.

» Non-conformal approximations are possible, we will stick to the
conformal case.

» Conformal subspace of W}, with zero jumps at element faces:

Vi, ={vip € W, :¥n,m, K, N Ky, £ 0 = (Vilk, ) k..nk, = (Vhlk,)K.nK, }

» Then: V, C HY(Q).




Zero jump at interfaces with Lagrangian finite elements

» Assume geometrically conformal mesh
» Assume all faces of K have the same number of nodes s?

» For any face F = Kj N K; there are renumberings of the nodes of Kj
and K> such that for i=1...s9, aKy,i = aK,,i

» Then, vi|k, and vp|k, match at the interface K N K if and only if
they match at the common nodes

Vali, (ak,.i) = vhlio(aK,i)  (P=1...5°)



Global degrees of freedom

> Let {21 - aN} = U {aK,1 - aK,s}
KeT,
» Degree of freedom map

J:Tax{l...s} > {1...N}
(K, m) — j(K, m) the global degree of freedom number

» Global shape functions ¢1,...,¢n € W} defined by

Omn if3ne{l...s}:j(K,n)=i
0 otherwise

bilk(ak,m) = {

> Global degrees of freedom ~1,...,vn : Vi, — R defined by

Yi(vn) = va(ai)



Lagrange finite element basis

> {¢1,...,0n} is a basis of V}, and ~1 ... is a basis of L(V}, R).
Proof:

> {¢1,...,0n} are linearly independent: if ZJNZI aj¢p; = 0 then
evaluation at aj ... ap yields that a3 ... ay = 0.

- . N

> Let v, € V}. It is single valued in a; ...ay. Let wy, = Zj:1 va(aj)o;.
Then for all K € Ty, va|k and wy|k coincide in the local nodes
aK,1---4dK,2, and by unisolvence, Vh|K = Wh‘K-



Finite element approximation space

> Pﬁ’h:PﬁI{VhGCO(Qh)lVKEﬁ,,VkO Tk EPk}

» ‘c’ for continuity across mesh interfaces. There are also discontinuous
FEM spaces which we do not consider here.

d k N=dim P;;

1 1 N,

1 2 N,+ Ng

1 3 N, +2Ng

2 1 N,

2 2 N, + Ny

2 3 N, +2Ngg + Ny
3 1 N,

3 2 N,+ Ngy

3 3 N, + 2Ny + Nf




P! global shape functions
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P? global shape functions

Node based Edge based
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Global Lagrange interpolation operator

Let V, = Pk

Ih . CO(Q;,) — Vh

N
V Z v(a,-)ng,-
i=1



Further finite element constructions

> In the realm considered in this course, we stick to H' conformal finite
elements as the weak formulations regarded work in H(Q).

» With higher regularity, or for more complex problems one can
construct H? conformal finite elements etc.

» Further possibilities for vector finite elements (divergence free etc.)



Affine transformation estimates |

~

» K: reference element

v

Let K € Tp. Affine mapping:
Tk:K—= K
X = JxX + bk

with Jx € R%9 by € RY, Ji nonsingular

» Diameter of K: hx = maxy, ek ||X1 — x2|]

v

pk diameter of largest ball that can be inscribed into K

v

oK = Z—’;: local shape regularity



Affine transformation estimates Il

Lemma
- lde ] = 240
- el <
> [l < 2
Proof:
> |det Jk| = &Eg basic property of affine mappings
» Further:

Jkx 1 .
I al I sup || JkX]|
20 Xl PR 1sl1=ok

[kl =

Set X = X1 — % with X, % € K. Then JxX = TkX1 — TkX> and one
can estimate ||JxX|| < hk.

> For ||J,!|| regard the inverse mapping O



Local interpolation |

> For w € H*(K) recall the H® seminorm w2 ,c = 375, ||85W||%2(K)

Lemma: Let w € H5(K) and w = w o Tk. There exists a constant ¢
such that

N _1
[Wls x < cllJkl[* det Jx| "2 |wls k

- 1.
[wlsi < cllJicH[*] det Jic |2 4
Proof: Let |a| = s. By affinity and chain rule one obtains

10| 2y < €l dl[* D 1107w o Tacllizgi
|Bl=s

Changing variables in the right hand side yields
10| 2y < €l ][] det Jic| =% wls i

Summation over « yields the first inequality. Regarding the inverse
mapping yields the second estimate. [



Local interpolation Il
Theorem: Let {K, P,X} be a finite element with associated normed
vector space V/(K). Assume there exists k such that

Px C P c H*1(K) c V(K)

and H(K) c V(K) for 0 < I < k. There exists ¢ > 0 such that for all
m=0...1+1, K& T, veHK):

I+1—m
hK

v = Tgv|mk < c oV k

Draft of Proof Estimate using deeper results from functional analysis:

e = T e < el i

(From Poincare like inequality, e.g. for v € H}(Q), c||v|[;2 < ||V V]|L2:
under certain circumstances, we can can estimate the norms of lower
dervivatives by those of the higher ones)



Local interpolation Il

(Proof, continued)
Let v € H™1(K) and set ¥ = v o Tx. We know that (Zfv) o Tk :I{f(\?.

We have

_ 1. ~
v = Zivimk < cllJt |7 det S |20 — Tg v,

IN

— 1.
cl[Jc ™ det Sk |2 [0, 1 &
| I v g1k
(|11 D™ 1k 1™ v g,k

I+1—m __m
chy MoK vk

ININ A



Local interpolation: special cases for Lagrange finite
elements

» k=1,1=1,m=0: |v—Zkv|ok < ch¥|v|ak

» k=11=1m=1:|v —I,’Qv|17K < chxok|v]o,k



Shape regularity

» Now we discuss a family of meshes 7, for h — 0. We want to
estimate global interpolation errors and see how they possibly
diminuish

» For given Tj, assume that h = maxkeT; hj

A family of meshes is called shape regular if

v

h
VhVK € Th,ox = — < a9
PK
» In1D, ok =1

2 .
> In 2D, ok < S where O is the smallest angle




Global interpolation error estimate

Theorem Let Q2 be polyhedral, and let 7, be a shape regular family of
affine meshes. Then there exists ¢ such that for all h, v € H'*1(Q),

[N

KeTh

I+1
Iv = Zivllea + 3247 (Z v—Tk, ) < ch*|vlii1a
and

lim ( inf ||v—vh||,_z(9)> 0

h—0



Global interpolation error estimate for Lagrangian finite
elements, kK =1

» Assume v € H?(Q), e.g. if problem coefficients are smooth and the
domain is convex

lv — Z¥vlloa + hlv — Zfviia < ch’|v]zq

lv—Tivlia < chlvla
lim inf [v—wil10] =0
h—0 \ vye vy

> If v € H?(Q) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

» These results immediately can be applied in Cea’s lemma.



Error estimates for homogeneous Dirichlet problem

» Search u € H3(Q) such that

/Wqudx:/fvdxvve H3 ()
Q Q

Then, limy_0 ||u — uh|l1.0 = 0. If u € H*(Q) (e.g. on convex domains)
then

[|u— unll10 < chlula

[lu = |

0.0 < ch?lulaq

Under certain conditions (convex domain, smooth coefficients) one has

[lu = unllo,0 < chlulr0

(“Aubin-Nitsche-Lemma")



H?-Regularity

» u € H?(2) may be not fulfilled e.g.
> if Q has re-entrant corners
> if on a smooth part of the domain, the boundary condition type
changes
> if problem coefficients (\) are discontinuos
» Situations differ as well between two and three space dimensions
» Delicate theory, ongoing research in functional analysis
» Consequence for simuations

> Deterioration of convergence rate
> Remedy: local refinement of the discretization mesh
> using a priori information
> using a posteriori error estimators + automatic refinement of
discretizatiom mesh



Higher regularity

> If ue H°(Q) for s > 2, convergence order estimates become even
better for Pk finite elements of order k > 1.

» Depending on the regularity of the solution the combination of grid
adaptation and higher oder ansatz functions may be successful



