Scientific Computing WS 2017/2018

Lecture 15

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Differential operators: notations

Given: domain $\Omega \subset \mathbb{R}^d$.

- Dot product: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^d x_i y_i$
- \blacktriangleright Bounded domain $\Omega \subset \mathbb{R}^d,$ with piecewise smooth boundary
- Scalar function $u: \Omega \to \mathbb{R}$

• Vector function
$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} : \Omega \to \mathbb{R}^d$$

- Write $\partial_i u = \frac{\partial u}{\partial x_i}$
- ► For a multindex $\alpha = (\alpha_1 \dots \alpha_d)$, write $|\alpha| = \alpha_1 + \dots + \alpha_d$ and define $\partial^{\alpha} u = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$

Basic Differential operators

► Gradient
grad =
$$\nabla = \begin{pmatrix} \partial_1 \\ \vdots \\ \partial_d \end{pmatrix}$$
: $u \mapsto \nabla u = \begin{pmatrix} \partial_1 u \\ \vdots \\ \partial_d u \end{pmatrix}$

Divergence

div =
$$\nabla \cdot$$
: $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \mapsto \nabla \cdot \mathbf{v} = \partial_1 v_1 + \dots + \partial_d v_d$

► Laplace operator

$$\Delta = \operatorname{div} \cdot \operatorname{grad} = \nabla \cdot \nabla : u \mapsto \Delta u = \partial_{11}u + \cdots + \partial_{dd}u$$

Lipschitz domains

Definition:

- Let D ⊂ ℝⁿ. A function f : D → ℝ^m is called Lipschitz continuous if there exists c > 0 such that ||f(x) - f(y)|| ≤ c||x - y||
- A hypersurface in \mathbb{R}^n is a graph if for some k it can be represented as

$$x_k = f(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$$

defined on some domain $D \subset \mathbb{R}^{n-1}$

A domain Ω ⊂ ℝⁿ is a *Lipschitz domain* if for all x ∈ ∂Ω, there exists a neigborhood of x on ∂Ω which can be represented as the graph of a Lipschitz continous function.

Corollaries

- Boundaries of Lipschitz domains are continuous
- Boundaries of Lipschitz domains have no cusps
- Polygonal domains are Lipschitz

Divergence theorem (Gauss' theorem)

Theorem: Let Ω be a bounded Lipschitz domain and $\mathbf{v} : \Omega \to \mathbb{R}^d$ be a continuously differentiable vector function. Let \mathbf{n} be the outward normal to Ω . Then,

$$\int_{\Omega} \nabla \cdot \mathbf{v} \, d\mathbf{x} = \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} \, ds$$

Lecture 14 Slide 8

Species balance over an REV

- Let $u(\mathbf{x}, t) : \Omega \times [0, T] \to \mathbb{R}$ be the local amount of some species.
- \blacktriangleright Assume representative elementary volume $\omega \subset \Omega$
- Subinterval in time $(t_0, t_1) \subset (0, T)$
- ► $-\delta \nabla u \cdot \mathbf{n}$ describes the flux of these species trough $\partial \omega$, where δ is some transfer coefficient
- Let f(x, t) be some local source of species. Then the flux through the boundary is balanced by the change of the amount of species in ω and the source strength.

$$0 = \int_{\omega} (u(\mathbf{x}, t_1) - u(\mathbf{x}, t_0)) \, d\mathbf{x} - \int_{t_0}^{t_1} \int_{\partial \omega} \delta \nabla u \cdot \mathbf{n} \, ds \, dt - \int_{t_0}^{t_1} \int_{\omega} f(\mathbf{x}, t) \, ds$$
$$= \int_{t_0}^{t_1} \int_{\omega} \partial_t u(\mathbf{x}, t) \, d\mathbf{x} \, dt - \int_{t_0}^{t_1} \int_{\omega} \nabla \cdot (\delta \nabla u) \, d\mathbf{x} \, dt - \int_{t_0}^{t_1} \int_{\omega} f(\mathbf{x}, t) \, ds$$

▶ True for all $\omega \subset \Omega$, $(t_0, t_1) \subset (0, T) \Rightarrow$ parabolic second order PDE

$$\partial_t u(x,t) - \nabla \cdot (\delta \nabla u(x,t)) = f(x,t)$$

PDE examples

Heat conduction:

u: temperature, $\delta:$ heat conduction coefficient, f: heat source flux= $-\delta \nabla u:$ "Fourier law"

Diffusion:

u: concentration, δ : diffusion coefficient, f: species source flux= $-\delta \nabla u$: "Fick's law"

Second order *elliptic* PDE describes stationary case:

 $-\nabla \cdot (\delta \nabla u(x)) = f(x)$

- Incompressible flow in saturated porous media
 u: pressure, δ: permeability,
 flux=-δ∇*u*: "Darcy's law"
- Electrical conduction:
 - *u*: electrostatic potential, δ : conductivity
 - flux= $-\delta \nabla u$ = current density: "Ohms's law"

Poisson equation (electrostatics in a constant magnetic field):

- u: electrostatic potential, ∇u : electric field, δ : dielectric permittivity,
- f: charge density

PDEs: boundary conditions, generalizations

- ► Given bounded domain Ω , combine PDE in the interior with boundary conditions specifiying u or $\nabla u \cdot \mathbf{n}$
- ▶ δ may depend on **x**, u, $|\nabla u| \dots \Rightarrow$ equations become nonlinear
- Coupled equations:

▶ ...

- temperature can influence conductvity
- source terms can describe chemical reactions between different species
- chemical reactions can generate/consume heat
- Electric current generate heat ("Joule heating")

Problems with "strong formulation"

Writing the PDE with divergence and gradient assumes smoothness of coefficients and at least second derivatives for the solution.

- δ may not be continuous what is then $\nabla \cdot (\delta u)$?
- In FEM we want to approximate u e.g. by piecewise linear functions once again: what does ∇ · (δu) mean in this case ?
- The structure of the space of continuously differentiable functions is not very convenient
 - they can be equipped with norms \Rightarrow Banach spaces
 - no scalar product \Rightarrow no Hilbert space
 - Not complete: Cauchy sequences of functions may not converge

Cauchy sequences of functions

- Regard sequences of functions on a given domain
- ► A Cauchy sequence is a sequence f_n of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \forall m, n > n_0, ||f_n - f_m|| < \varepsilon$$

- All convergent sequences of functions are Cauchy sequences
- A metric space is *complete* if all Cauchy sequences of its elements have a limit within this space

Riemann integral \rightarrow Lebesgue integral

- Let Ω be a Lipschitz domain, let C_c(Ω) be the set of continuous functions f : Ω → ℝ with compact support. (⇒ they vanish on ∂Ω)
- For these functions, the Riemann integral ∫_Ω f(x)dx is well defined, and ||f||_{L¹} := ∫_Ω |f(x)|dx provides a norm, and induces a metric.
- Let $L^1(\Omega)$ be the completion of $C_c(\Omega)$ with respect to the metric defined by the norm $\|\cdot\|_{L^1}$. That means that $L^1(\Omega)$ consists of all elements of $C_c(\Omega)$, and of all limites of Cauchy sequences of elements of $C_c(\Omega)$. Such functions are called *measurable*.
- For any measurable f = lim_{n→∞} f_n ∈ L¹(Ω) with f_n ∈ C_c(Ω), define the Lebesque integral

$$\int_{\Omega} f(x) \, d\mathbf{x} := \lim_{n \to \infty} \int_{\Omega} f_n(x) \, d\mathbf{x}$$

as the limit of a sequence of Riemann integrals of continuous functions

Examples for Lebesgue integrable (measurable) functions

- Bounded functions continuous except in a finite number of points
- Step functions

$$f_{\epsilon}(x) = \begin{cases} 1, & x \ge \epsilon \\ -(\frac{x-\epsilon}{\epsilon})^{2} + 1, & 0 \le x < \epsilon \\ (\frac{x+\epsilon}{\epsilon})^{2} - 1, & -\epsilon \le x < 0 \\ -1, & x < -\epsilon \end{cases} \quad f(x) = \begin{cases} 1, & x \ge 0 \\ -1, & \text{else} \end{cases}$$

Equality of L¹ functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere". In particular, L¹ functions whose values differ in a finite number of points are equal almost everywhere.

Spaces of integrable functions

 For 1 ≤ p ≤ ∞, let L^p(Ω) be the space of measureable functions such that

$$\int_{\Omega} |f(x)|^p d\mathbf{x} < \infty$$

equipped with the norm

$$||f||_p = \left(\int_{\Omega} |f(x)|^p d\mathbf{x}\right)^{\frac{1}{p}}$$

- ▶ These spaces are *Banach spaces*, i.e. complete, normed vector spaces.
- The space L²(Ω) is a *Hilbert space*, i.e. a Banach space equipped with a scalar product (·, ·) whose norm is induced by that scalar product, i.e. ||u|| = √(u, u). The scalar product in L² is

$$(f,g)=\int_{\Omega}f(x)g(x)d\mathbf{x}.$$

Green's theorem for smooth functions

Theorem Let $u, v \in C^1(\overline{\Omega})$ (continuously differentiable). Then for $\mathbf{n} = (n_1 \dots n_d)$ being the outward normal to Ω ,

$$\int_{\Omega} u \partial_i v \, d\mathbf{x} = \int_{\partial \Omega} u v n_i \, d\mathbf{s} - \int_{\Omega} v \partial_i u \, d\mathbf{x}$$

Corollaries

• Let
$$\mathbf{u} = (u_1 \dots u_d)$$
. Then

$$\int_{\Omega} \left(\sum_{i=1}^{d} u_i \partial_i v \right) d\mathbf{x} = \int_{\partial \Omega} v \sum_{i=1}^{d} (u_i n_i) ds - \int_{\Omega} v \sum_{i=1}^{d} (\partial_i u_i) d\mathbf{x}$$
$$\int_{\Omega} \mathbf{u} \cdot \nabla v \, d\mathbf{x} = \int_{\partial \Omega} v \mathbf{u} \cdot \mathbf{n} \, ds - \int_{\Omega} v \nabla \cdot \mathbf{u} \, d\mathbf{x}$$

• If v = 0 on $\partial \Omega$:

$$\int_{\Omega} u \partial_i v \, d\mathbf{x} = -\int_{\Omega} v \partial_i u \, d\mathbf{x}$$
$$\int_{\Omega} \mathbf{u} \cdot \nabla v \, d\mathbf{x} = -\int_{\Omega} v \nabla \cdot \mathbf{u} \, d\mathbf{x}$$

Weak derivative

- Let L¹_{loc}(Ω) be the set of functions which are Lebesgue integrable on every compact subset K ⊂ Ω. Let C[∞]₀(Ω) be the set of functions infinitely differentiable with zero values on the boundary.
- For $u \in L^1_{loc}(\Omega)$ we define $\partial_i u$ by

$$\int_{\Omega} v \partial_i u d\mathbf{x} = -\int_{\Omega} u \partial_i v d\mathbf{x} \quad \forall v \in C_0^{\infty}(\Omega)$$

and $\partial^{lpha} u$ by

$$\int_{\Omega} v \partial^{lpha} \mathit{udx} = (-1)^{|lpha|} \int_{\Omega} \mathit{u} \partial_i \mathit{vdx} \quad orall v \in C_0^\infty(\Omega)$$

if these integrals exist.

 For smooth functions, weak derivatives coincide with with the usual derivative

Sobolev spaces

For k≥ 0 and 1 ≤ p < ∞, the Sobolev space W^{k,p}(Ω) is the space functions where all up to the k-th derivatives are in L^p:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \partial^{\alpha} u \in L^p(\Omega) \; \forall |\alpha| \le k \}$$

with then norm

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha}u||_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

- ► Alternatively, they can be defined as the completion of C[∞] in the norm ||u||_{W^{k,p}(Ω)}
- $W_0^{k,p}(\Omega)$ is the completion of C_0^{∞} in the norm $||u||_{W^{k,p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Sobolev spaces of square integrable functions $H^{k}(\Omega) = W^{k,2}(\Omega)$ with the scalar product

• $H^k(\Omega) = W^{k,2}(\Omega)$ with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, d\mathbf{x}$$

is a Hilbert space.

• $H_0^k(\Omega) = W_0^{\dot{k},2}(\Omega)$ with the scalar product

$$(u,v)_{H_0^k(\Omega)} = \sum_{|\alpha|=k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, d\mathbf{x}$$

is a Hilbert space as well.

The initally most important:

- $L^{2}(\Omega)$, scalar product $(u, v)_{L^{2}(\Omega)} = (u, v)_{0,\Omega} = \int_{\Omega} uv \, d\mathbf{x}$
- $H^1(\Omega)$, scalar product $(u, v)_{H^1(\Omega)} = (u, v)_{1,\Omega} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) d\mathbf{x}$
- $H_0^1(\Omega)$, scalar product $(u, v)_{H_0^1(\Omega)} = \int_{\Omega} (\nabla u \cdot \nabla v) d\mathbf{x}$

Inequalities:

$$\begin{split} |(u,v)|^2 &\leq (u,u)(v,v) \quad \text{Cauchy-Schwarz} \\ ||u+v|| &\leq ||u||+||v|| \quad \text{Triangle inequality} \end{split}$$

The notion of function values on the boundary initially is only well defined for continouos functions. So we need an extension of this notion to functions from Sobolev spaces.

Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a bounded linear mapping

$$\operatorname{tr}: H^1(\Omega) \to L^2(\partial \Omega)$$

such that

(i)
$$\exists c > 0$$
 such that $\| \operatorname{tr} u \|_{0,\partial\Omega} \leq c \| u \|_{1,\Omega}$
(ii) $\forall u \in C^1(\overline{\Omega})$, $\operatorname{tr} u = u |_{\partial\Omega}$

Derivation of weak formulation

- Sobolev space theory provides a convenient framework to formulate existence and uniqueness of solutions of PDEs.
- Stationary heat conduction equation with homogeneous Dirichlet boundary conditions:

$$-\nabla \cdot \lambda \nabla u(x) = f(x) \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

Multiply and integrate with an arbitrary test function $v \in C_0^{\infty}(\Omega)$ and apply Green's theorem using v = 0 on $\partial \Omega$

$$-\int_{\Omega} (\nabla \cdot \lambda \nabla u) \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathsf{f} \mathbf{v} \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla \mathbf{v} \, d\mathbf{x} = \int_{\Omega} \mathsf{f} \mathbf{v} \, d\mathbf{x}$$

Weak formulation of homogeneous Dirichlet problem

• Search $u \in H^1_0(\Omega)$ (here, tr u = 0) such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \lambda
abla u
abla v \, d\mathbf{x}$$

is a self-adjoint bilinear form defined on the Hilbert space H¹₀(Ω).
It is bounded due to Cauchy-Schwarz:

$$|\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v})| = |\lambda| \cdot |\int_{\Omega} \nabla \boldsymbol{u} \nabla \boldsymbol{v} \, d\mathbf{x}| \leq ||\boldsymbol{u}||_{H^1_0(\Omega)} \cdot ||\boldsymbol{v}||_{H^1_0(\Omega)}$$

• f(v) = ∫_Ω fv dx is a linear functional on H¹₀(Ω). For Hilbert spaces V
the dual space V' (the space of linear functionals) can be identified
with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$\exists \alpha > 0 : \forall u \in V, a(u, u) \ge \alpha ||u||_V^2.$$

Then the problem: find $u \in V$ such that

 $a(u,v) = f(v) \ \forall v \in V$

admits one and only one solution with an a priori estimate

$$||u||_{\mathcal{V}} \le \frac{1}{\alpha} ||f||_{\mathcal{V}}$$

Coercivity of weak formulation

Theorem: Assume $\lambda > 0$. Then the weak formulation of the heat conduction problem: search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x} \, \forall v \in H^1_0(\Omega)$$

has an unique solution.

Proof: a(u, v) is cocercive:

$$a(u, \mathbf{v}) = \int_{\Omega} \lambda \nabla u \nabla u \, d\mathbf{x} = \lambda ||u||^2_{H^1_0(\Omega)}$$

Weak formulation of inhomogeneous Dirichlet problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

• If g is smooth enough, there exists a lifting $u_g \in H^1(\Omega)$ such that $u_g|_{\partial\Omega} = g$. Then, we can re-formulate:

$$-\nabla \cdot \lambda \nabla (u - u_g) = f + \nabla \cdot \lambda \nabla u_g \text{ in } \Omega$$
$$u - u_g = 0 \text{ on } \partial \Omega$$

• Search $u \in H^1(\Omega)$ such that

$$egin{aligned} & u = u_g + \phi \ & \int_\Omega \lambda
abla \phi
abla oldsymbol{v} \, d \mathbf{x} = \int_\Omega \mathsf{f} v \, d \mathbf{x} + \int_\Omega \lambda
abla u_g
abla v \, orall v \in H^1_0(\Omega) \end{aligned}$$

Here, necessarily, $\phi \in H_0^1(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

Weak formulation of Robin problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$\lambda \nabla u \cdot \mathbf{n} + \alpha (u - g) = 0 \text{ on } \partial \Omega$$

• Multiply and integrate with an arbitrary *test function* from $C_c^{\infty}(\Omega)$:

$$-\int_{\Omega} (\nabla \cdot \lambda \nabla u) v \, d\mathbf{x} = \int_{\Omega} f v \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} (\lambda \nabla u \cdot \mathbf{n}) v ds = \int_{\Omega} f v \, d\mathbf{x}$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, ds$$

Weak formulation of Robin problem II

Let

$$egin{aligned} & a^R(u,v) := \int_\Omega \lambda
abla u
abla v \, d\mathbf{x} + \int_{\partial\Omega} lpha u v \, ds \ & f^R(v) := \int_\Omega f v \, d\mathbf{x} + \int_{\partial\Omega} lpha g v \, ds \end{aligned}$$

• Search $u \in H^1(\Omega)$ such that

$$a^{R}(u,v) = f^{R}(v) \ \forall v \in H^{1}(\Omega)$$

• If $\lambda > 0$ and $\alpha > 0$ then $a^{R}(u, v)$ is cocercive.

Neumann boundary conditions

Homogeneous Neumann:

 $\lambda \nabla u \cdot \mathbf{n} = 0 \text{ on } \partial \Omega$

Inhomogeneous Neumann:

 $\lambda \nabla u \cdot \mathbf{n} = g \text{ on } \partial \Omega$

• Weak formulation: Search $u \in H^1(\Omega)$ such that

$$\int_{\Omega}
abla u
abla v \ d\mathbf{x} = \int_{\partial \Omega} g v \ ds \ orall v \in H^1(\Omega)$$

Not coercive due to the fact that we can add an arbitrary constant to u and a(u, u) stays the same!

Further discussion on boundary conditions

Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann These are imposed in a "natural" way in the weak formulation
- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients λ, α... can be functions from Sobolev spaces as long as they do not change integrability of terms in the bilinear forms

The Dirichlet penalty method

▶ Robin problem: search $u_{\alpha} \in H^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u_{\alpha} \nabla v \, d\mathbf{x} + \int_{\partial \Omega} \alpha u_{\alpha} v \, d\mathbf{s} = \int_{\Omega} f v \, d\mathbf{x} + \int_{\partial \Omega} \alpha g v \, d\mathbf{s} \quad \forall v \in H^{1}(\Omega)$$

• Dirichlet problem: search $u \in H^1(\Omega)$ such that

$$egin{aligned} & u = u_g + \phi \quad ext{where} \, \, u_g|_{\partial\Omega} = g \ & \int_\Omega \lambda
abla \phi
abla v \, d\mathbf{x} = \int_\Omega f v \, d\mathbf{x} + \int_\Omega \lambda
abla u_g
abla v \, d\mathbf{x} \ \, orall v \in H^1_0(\Omega) \end{aligned}$$

Penalty limit:

$$\lim_{\alpha\to\infty}u_{\alpha}=u$$

- Formally, the convergence rate is quite low
- Implementing Dirichlet boundary conditions directly leads to a number of technical problems
- Implementing the penalty method is technically much simpler
- Proper way of handling the parameter leads to exact fulfillment of Dirichlet boundary condition in the floating point precision

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations

The Galerkin method II

- Let V be a Hilbert space. Let $a : V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u,v) = f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem ≡ Galerkin approximation: Search u_h ∈ V_h such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad (\text{Coercivity}) \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad (\text{Galerkin Orthogonality}) \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad (\text{Boundedness}) \end{split}$$

► As a result

(

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

▶ Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h.

From the Galerkin method to the matrix equation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{j=1}^n u_j \phi_j$
- ▶ In order to search $u_h \in V_h$ such that

$$a(u_h,v_h)=f(v_h) \;\forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with $A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$ Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

• Let
$$\Omega = (a, b) \subset \mathbb{R}^1$$

• Let
$$a(u, v) = \int_{\Omega} \lambda(x) \nabla u \nabla v d\mathbf{x}$$
.

- ► Analysis I provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

The finite element idea

- Choose basis functions with local support. In this case, the matrix becomes sparse, as only integrals of basis function pairs with overlapping support contribute to the matrix.
- Linear finite elements in $\Omega = (a, b) \subset \mathbb{R}^1$:

• Partition
$$a = x_1 \le x_2 \le \cdots \le x_n = b$$

• Basis functions (for
$$i = 1 \dots n$$
)

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & i > 1, x \in (x_{i-1}, x_i) \\ \frac{x_{i+1} - x}{x_{i+1} - x_i}, & i < n, x \in (x_i, x_{i+1}) \\ 0, & \text{else} \end{cases}$$

- Any function u_h ∈ V_h = span{φ₁...φ_n} is piecewise linear, and the coefficients in the representation u_h = ∑ⁿ_{i=1} u_iφ_i are the values u_h(x_i).
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined !

1D matrix elements for heat equation

• Assume
$$(\lambda = 1, x_{i+1} - x_i = h)$$

$$a(u,v) = \int_{a}^{b} \nabla u \nabla v \, dx + \alpha u(a)v(a) + \alpha u(b)v(b)$$

▶ The integrals are nonzero for i = j, i + 1 = j, i - 1 = j
▶ Let j = i + 1

$$\int_{\Omega} \nabla \phi_i \nabla \phi_j d\mathbf{x} = \int_{x_i}^{x_{i+1}} \nabla \phi_i \nabla \phi_j d\mathbf{x} = -\int_{x_i}^{x_{i+1}} \frac{1}{h^2} d\mathbf{x} = -\frac{1}{h} d\mathbf{x}$$

$$\int_{\Omega} \nabla \phi_i \nabla \phi_i d\mathbf{x} = \int_{x_{i-1}}^{x_{i+1}} \nabla \phi_i \nabla \phi_i d\mathbf{x} = \int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^2} d\mathbf{x} = \frac{2}{h}$$

• For i = 1 or i = N, $a(\phi_i, \phi_i) = \frac{1}{h} + \alpha$

1D matrix elements II

Adding the boundary integrals yields

$$A = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \end{pmatrix}$$

... the same matrix as for the finite difference method...