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Differential operators: notations

Given: domain Ω ⊂ Rd .
I Dot product: for x, y ∈ Rd , x · y =

∑d
i=1 xi yi

I Bounded domain Ω ⊂ Rd , with piecewise smooth boundary
I Scalar function u : Ω→ R

I Vector function v =




v1
...

vd


 : Ω→ Rd

I Write ∂i u = ∂u
∂xi

I For a multindex α = (α1 . . . αd ), write |α| = α1 + · · ·+αd and define
∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d

Lecture 15 Slide 2



Lecture 14 Slide 6

Basic Differential operators

I Gradient

grad = ∇ =



∂1
...
∂d


: u 7→ ∇u =



∂1u

...
∂d u




I Divergence

div = ∇· : v =




v1
...

vd


 7→ ∇ · v = ∂1v1 + · · ·+ ∂d vd

I Laplace operator
∆ = div · grad = ∇ · ∇: u 7→ ∆u = ∂11u + · · ·+ ∂dd u
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Lipschitz domains
Definition:

I Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x)− f (y)‖ ≤ c‖x − y‖

I A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

I A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continous function.

Corollaries
I Boundaries of Lipschitz domains are continuous
I Boundaries of Lipschitz domains have no cusps
I Polygonal domains are Lipschitz
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and v : Ω→ Rd be a
continuously differentiable vector function. Let n be the outward normal to
Ω. Then, ∫

Ω
∇ · v dx =

∫

∂Ω
v · n ds

�
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Species balance over an REV
I Let u(x, t) : Ω× [0,T ]→ R be the local amount of some species.
I Assume representative elementary volume ω ⊂ Ω
I Subinterval in time (t0, t1) ⊂ (0,T )
I −δ∇u · n describes the flux of these species trough ∂ω, where δ is

some transfer coefficient
I Let f (x, t) be some local source of species. Then the flux through the

boundary is balanced by the change of the amount of species in ω
and the source strength.

0 =
∫

ω

(u(x, t1)− u(x, t0)) dx−
∫ t1

t0

∫

∂ω

δ∇u · n ds dt −
∫ t1

t0

∫

ω

f (x, t) ds

=
∫ t1

t0

∫

ω

∂tu(x, t) dx dt −
∫ t1

t0

∫

ω

∇ · (δ∇u) dx dt −
∫ t1

t0

∫

ω

f (x, t) ds

I True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒ parabolic second order PDE

∂tu(x , t)−∇ · (δ∇u(x , t)) = f (x , t)
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PDE examples
I Heat conduction:

u: temperature, δ: heat conduction coefficient, f : heat source
flux=−δ∇u: “Fourier law”

I Diffusion:
u: concentration, δ: diffusion coefficient, f : species source
flux=−δ∇u: “Fick’s law”

Second order elliptic PDE describes stationary case:

−∇ · (δ∇u(x)) = f (x)

I Incompressible flow in saturated porous media
u: pressure, δ: permeability,
flux=−δ∇u: “Darcy’s law”

I Electrical conduction:
u: electrostatic potential, δ: conductivity
flux=−δ∇u= current density: “Ohms’s law”

I Poisson equation (electrostatics in a constant magnetic field):
u: electrostatic potential,∇u: electric field, δ: dielectric permittivity,
f : charge density
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PDEs: boundary conditions, generalizations

I Given bounded domain Ω, combine PDE in the interior with boundary
conditions specifiying u or ∇u · n

I δ may depend on x, u, |∇u| . . . ⇒ equations become nonlinear
I Coupled equations:

I temperature can influence conductvity
I source terms can describe chemical reactions between different species
I chemical reactions can generate/consume heat
I Electric current generate heat (“Joule heating”)
I . . .
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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

I δ may not be continuous – what is then ∇ · (δu)?
I In FEM we want to approximate u e.g. by piecewise linear functions –

once again: what does ∇ · (δu) mean in this case ?
I The structure of the space of continuously differentiable functions is

not very convenient
I they can be equipped with norms ⇒ Banach spaces
I no scalar product ⇒ no Hilbert space
I Not complete: Cauchy sequences of functions may not converge
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Cauchy sequences of functions

I Regard sequences of functions on a given domain
I A Cauchy sequence is a sequence fn of functions where the norm of

the difference between two elements can be made arbitrarily small by
increasing the element numbers:

∀ε > 0 ∃n0 ∈ N : ∀m, n > n0, ||fn − fm|| < ε

I All convergent sequences of functions are Cauchy sequences
I A metric space is complete if all Cauchy sequences of its elements

have a limit within this space
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Riemann integral → Lebesgue integral

I Let Ω be a Lipschitz domain, let Cc(Ω) be the set of continuous
functions f : Ω→ R with compact support. (⇒ they vanish on ∂Ω)

I For these functions, the Riemann integral
∫

Ω f (x)dx is well defined,
and ‖f ‖L1 :=

∫
Ω |f (x)|dx provides a norm, and induces a metric.

I Let L1(Ω) be the completion of Cc(Ω) with respect to the metric
defined by the norm ‖·‖L1 . That means that L1(Ω) consists of all
elements of Cc(Ω), and of all limites of Cauchy sequences of elements
of Cc(Ω). Such functions are called measurable.

I For any measurable f = limn→∞ fn ∈ L1(Ω) with fn ∈ Cc(Ω), define
the Lebesque integral

∫

Ω
f (x) dx := lim

n→∞

∫

Ω
fn(x) dx

as the limit of a sequence of Riemann integrals of continuous
functions
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Examples for Lebesgue integrable (measurable) functions
I Bounded functions continuous except in a finite number of points
I Step functions

fε(x) =





1, x ≥ ε
−( x−ε

ε )2 + 1, 0 ≤ x < ε

( x+ε
ε )2 − 1, −ε ≤ x < 0

−1, x < −ε

ε→0−→ f (x) =
{

1, x ≥ 0
−1, else

I Equality of L1 functions is elusive as they are not necessarily
continuous: best what we can say is that they are equal “almost
everywhere”. In particular, L1 functions whose values differ in a finite
number of points are equal almost everywhere.
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Spaces of integrable functions
I For 1 ≤ p ≤ ∞, let Lp(Ω) be the space of measureable functions

such that

∫

Ω
|f (x)|pdx <∞

equipped with the norm

||f ||p =
(∫

Ω
|f (x)|pdx

) 1
p

I These spaces are Banach spaces, i.e. complete, normed vector spaces.
I The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped

with a scalar product (·, ·) whose norm is induced by that scalar
product, i.e. ||u|| =

√
(u, u). The scalar product in L2 is

(f , g) =
∫

Ω
f (x)g(x)dx.
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Green’s theorem for smooth functions
Theorem Let u, v ∈ C 1(Ω) (continuously differentiable). Then for
n = (n1 . . . nd ) being the outward normal to Ω,

∫

Ω
u∂i v dx =

∫

∂Ω
uvni ds −

∫

Ω
v∂i u dx

Corollaries
I Let u = (u1 . . . ud ). Then

∫

Ω
(

d∑

i=1
ui∂i v) dx =

∫

∂Ω
v

d∑

i=1
(ui ni ) ds −

∫

Ω
v

d∑

i=1
(∂i ui ) dx

∫

Ω
u · ∇v dx =

∫

∂Ω
vu · n ds −

∫

Ω
v∇ · u dx

I If v = 0 on ∂Ω:
∫

Ω
u∂i v dx = −

∫

Ω
v∂i u dx

∫

Ω
u · ∇v dx = −

∫

Ω
v∇ · u dx
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Weak derivative

I Let L1
loc(Ω) be the set of functions which are Lebesgue integrable on

every compact subset K ⊂ Ω. Let C∞0 (Ω) be the set of functions
infinitely differentiable with zero values on the boundary.

I For u ∈ L1
loc(Ω) we define ∂i u by

∫

Ω
v∂i udx = −

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

and ∂αu by

∫

Ω
v∂αudx = (−1)|α|

∫

Ω
u∂i vdx ∀v ∈ C∞0 (Ω)

if these integrals exist.
I For smooth functions, weak derivatives coincide with with the usual

derivative
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Sobolev spaces
I For k ≥ 0 and 1 ≤ p <∞, the Sobolev space W k,p(Ω) is the space

functions where all up to the k-th derivatives are in Lp:

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k}

with then norm

||u||W k,p(Ω) =


∑

|α|≤k
||∂αu||pLp(Ω)




1
p

I Alternatively, they can be defined as the completion of C∞ in the
norm ||u||W k,p(Ω)

I W k,p
0 (Ω) is the completion of C∞0 in the norm ||u||W k,p(Ω)

I The Sobolev spaces are Banach spaces.
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Sobolev spaces of square integrable functions
I Hk(Ω) = W k,2(Ω) with the scalar product

(u, v)Hk (Ω) =
∑

|α|≤k

∫

Ω
∂αu∂αv dx

is a Hilbert space.
I Hk

0 (Ω) = W k,2
0 (Ω) with the scalar product

(u, v)Hk
0 (Ω) =

∑

|α|=k

∫

Ω
∂αu∂αv dx

is a Hilbert space as well.
I The initally most important:

I L2(Ω), scalar product (u, v)L2(Ω) = (u, v)0,Ω =
∫

Ω uv dx
I H1(Ω), scalar product (u, v)H1(Ω) = (u, v)1,Ω =

∫
Ω(uv +∇u · ∇v) dx

I H1
0 (Ω), scalar product (u, v)H1

0 (Ω) =
∫

Ω(∇u · ∇v) dx
I Inequalities:

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u||+ ||v || Triangle inequality
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A trace theorem

The notion of function values on the boundary initially is only well defined
for continouos functions. So we need an extension of this notion to
functions from Sobolev spaces.
Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a
bounded linear mapping

tr : H1(Ω)→ L2(∂Ω)

such that
(i) ∃c > 0 such that ‖tr u‖0,∂Ω ≤ c‖u‖1,Ω
(ii) ∀u ∈ C 1(Ω̄), tr u = u|∂Ω

�
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Derivation of weak formulation
I Sobolev space theory provides a convenient framework to formulate

existence and uniqueness of solutions of PDEs.
I Stationary heat conduction equation with homogeneous Dirichlet

boundary conditions:

−∇ · λ∇u(x) = f (x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞0 (Ω) and
apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx

Lecture 15 Slide 19



Lecture 14 Slide 23

Weak formulation of homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) (here, tr u = 0) such that
∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

I Then,

a(u, v) :=
∫

Ω
λ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

I It is bounded due to Cauchy-Schwarz:

|a(u, v)| = |λ| · |
∫

Ω
∇u∇v dx| ≤ ||u||H1

0 (Ω) · ||v ||H1
0 (Ω)

I f (v) =
∫

Ω fv dx is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma
Let V be a Hilbert space. Let a : V × V → R be a self-adjoint bilinear
form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that

∫

Ω
λ∇u∇v dx =

∫

Ω
fv dx ∀v ∈ H1

0 (Ω)

has an unique solution.
Proof: a(u, v) is cocercive:

a(u, v) =
∫

Ω
λ∇u∇u dx = λ||u||2H1

0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ∇u = f in Ω
u = g on ∂Ω

I If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ∇(u − ug ) = f +∇ · λ∇ug in Ω
u − ug = 0 on ∂Ω

I Search u ∈ H1(Ω) such that

u = ug + φ∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Weak formulation of Robin problem

−∇ · λ∇u = f in Ω
λ∇u · n + α(u − g) = 0 on ∂Ω

I Multiply and integrate with an arbitrary test function from C∞c (Ω):

−
∫

Ω
(∇ · λ∇u)v dx =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
(λ∇u · n)vds =

∫

Ω
fv dx

∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds =

∫

Ω
fv dx +

∫

∂Ω
αgv ds



Lecture 15 Slide 25

Weak formulation of Robin problem II

I Let

aR(u, v) :=
∫

Ω
λ∇u∇v dx +

∫

∂Ω
αuv ds

f R(v) :=
∫

Ω
fv dx +

∫

∂Ω
αgv ds

I Search u ∈ H1(Ω) such that

aR(u, v) = f R(v) ∀v ∈ H1(Ω)

I If λ > 0 and α > 0 then aR(u, v) is cocercive.
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Neumann boundary conditions
I Homogeneous Neumann:

λ∇u · n = 0 on ∂Ω

I Inhomogeneous Neumann:

λ∇u · n = g on ∂Ω

I Weak formulation: Search u ∈ H1(Ω) such that

∫

Ω
∇u∇v dx =

∫

∂Ω
gv ds ∀v ∈ H1(Ω)

Not coercive due to the fact that we can add an arbitrary constant to
u and a(u, u) stays the same!
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Further discussion on boundary conditions

I Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero,
the binlinear form becomes coercive.

I Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

I Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

I Coefficients λ, α . . . can be functions from Sobolev spaces as long as
they do not change integrability of terms in the bilinear forms
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The Dirichlet penalty method
I Robin problem: search uα ∈ H1(Ω) such that

∫

Ω
λ∇uα∇v dx +

∫

∂Ω
αuαv ds =

∫

Ω
fv dx +

∫

∂Ω
αgv ds ∀v ∈ H1(Ω)

I Dirichlet problem: search u ∈ H1(Ω) such that

u = ug + φ where ug |∂Ω = g∫

Ω
λ∇φ∇v dx =

∫

Ω
fv dx +

∫

Ω
λ∇ug∇v dx ∀v ∈ H1

0 (Ω)

I Penalty limit:

lim
α→∞

uα = u

I Formally, the convergence rate is quite low
I Implementing Dirichlet boundary conditions directly leads to a

number of technical problems
I Implementing the penalty method is technically much simpler
I Proper way of handling the parameter leads to exact fulfillment of

Dirichlet boundary condition in the floating point precision
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The Galerkin method I

I Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

I For computer representations we need finite dimensional
approximations

I The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations
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The Galerkin method II
I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint

bilinear form, and f a linear functional on V . Assume a is coercive
with coercivity constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma
I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)
= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a
( n∑

j=1
ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑

j=1
a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij), aij = a(φi , φj), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

I Let Ω = (a, b) ⊂ R1

I Let a(u, v) =
∫

Ω λ(x)∇u∇vdx.
I Analysis I provides a finite dimensional subspace: the space of sin/cos

functions up to a certain frequency ⇒ spectral method
I Ansatz functions have global support ⇒ full n × n matrix
I OTOH: rather fast convergence for smooth data
I Generalization to higher dimensions possible
I Big problem in irregular domains: we need the eigenfunction basis of

some operator. . .
I Spectral methods are successful in cases where one has regular

geometry structures and smooth/constant coefficients – e.g.
“Spectral Einstein Code”
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The finite element idea
I Choose basis functions with local support. In this case, the matrix

becomes sparse, as only integrals of basis function pairs with
overlapping support contribute to the matrix.

I Linear finite elements in Ω = (a, b) ⊂ R1:
I Partition a = x1 ≤ x2 ≤ · · · ≤ xn = b
I Basis functions (for i = 1 . . . n)

φi (x) =





x−xi−1
xi−xi−1

, i > 1, x ∈ (xi−1, xi )
xi+1−x
xi+1−xi

, i < n, x ∈ (xi , xi+1)
0, else

I Any function uh ∈ Vh = span{φ1 . . . φn} is piecewise linear, and the
coefficients in the representation uh =

∑n
i=1 uiφi are the values

uh(xi ).
I Fortunately, we are working with a weak formulation, and weak

derivatives are well defined !
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1D matrix elements for heat equation
I Assume (λ = 1, xi+1 − xi = h)

a(u, v) =
∫ b

a
∇u∇v dx + αu(a)v(a) + αu(b)v(b)

I The integrals are nonzero for i = j , i + 1 = j , i − 1 = j
I Let j = i + 1

∫

Ω
∇φi∇φjdx =

∫ xi+1

xi

∇φi∇φjdx = −
∫ xi+1

xi

1
h2 dx = −1

hdx

I Similarly, for j = i + 1,
∫

Ω∇φi∇φjdx = − 1
h

I For 1 < i < N:
∫

Ω
∇φi∇φidx =

∫ xi+1

xi−1

∇φi∇φidx =
∫ xi+1

xi−1

1
h2 dx = 2

h

I For i = 1 or i = N, a(φi , φi ) = 1
h + α
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1D matrix elements II

Adding the boundary integrals yields

A =




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α




. . . the same matrix as for the finite difference method. . .


