
Lecture 11 Slide 1

Scientific Computing WS 2017/2018

Lecture 11

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 9 Slide 34

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑

j=1
aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.
For a given vector b, regard the function

f (u) = 1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
Lecture 11 Slide 2

Lecture 10 Slide 25

Conjugate directions
For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j .

I Look for ui+1 in the direction of di such that it minimizes f in this
direction, i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)
= (b − Aui , di)− α(Adi , di)
= (ri , di)− α(Adi , di)

αi = (ri , di)
(Adi , di)

Lecture 11 Slide 3

Lecture 10 Slide 26

Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the
search directions:

e0 =
n−1∑

i=0
δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =
n−1∑

i=0
δj(Adj , dk)

= δk(Adk , dk)

δk = (Ae0, dk)
(Adk , dk) =

(Ae0 +
∑

i<k αidi , dk)
(Adk , dk) = (Aek , dk)

(Adk , dk)

= (rk , dk)
(Adk , dk)

= −αk

Lecture 11 Slide 4

Lecture 10 Slide 27

Conjugate directions III

Then,

ei = e0 +
i−1∑

j=0
αjdj = −

n−1∑

j=0
αjdj +

i−1∑

j=0
αjdj

= −
n−1∑

j=i
αjdj

So, the iteration consists in component-wise suppression of the error, and
it must converge after n steps. Let k ≤ i . A-projection on dk gives

(Aei , dk) = −
n−1∑

j=i
αj(Adj , dk) = 0

Therefore, ri = Aei is orthogonal to d0 . . . di−1.

Lecture 11 Slide 5

Lecture 10 Slide 28

Conjugate directions IV
Looking at the error norm ||ei ||A, the method yields the element with the
minimum energy norm from all elements of the affine space e0 +Ki where
Ki = span{d0, d1 . . . di−1}

(Aei , ei) =
(n−1∑

j=i
δjdj ,

n−1∑

j=i
δjdj

)
=

n−1∑

j=i

n−1∑

k=i
δjδk(dj , dk)

=
n−1∑

j=i
δ2

j (dj , dj) = min
e∈e0+Ki

||e||A

Furthermore, we have

ui+1 = ui + αidi

ei+1 = ei + αidi

Aei+1 = Aei + αiAdi

ri+1 = ri − αiAdi

By what magic we can obtain these di ?

Lecture 11 Slide 6

Lecture 10 Slide 29

Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0

I Define

di = vi +
i−1∑

k=0
βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +
i−1∑

k=0
βik(Adk , dj)

0 = (Avi , dj) + βij(Adj , dj)

βij = − (Avi , dj)
(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory

Lecture 11 Slide 7

Lecture 10 Slide 30

Conjugate gradients (Hestenes, Stiefel, 1952)
As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri , i.e.
the residuals built up during the conjugate direction process.
Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .
From ri = ri−1 − αi−1Adi−1 we obtain
Ki = Ki−1 ∪ span{Adi−1}
This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}
= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and
orthogonalization methods are more often called Krylov subspace methods.

Lecture 11 Slide 8

Lecture 10 Slide 31

Conjugate gradients II
Look at Gram-Schmidt under these conditions. The essential data are
(setting vi = ri and using j < i) βij = − (Ari ,dj)

(Adj ,dj) = − (Adj ,ri)
(Adj ,dj) .

Then, for j ≤ i :

rj+1 = rj − αjAdj

(rj+1, ri) = (rj , ri)− αj(Adj , ri)
αj(Adj , ri) = (rj , ri)− (rj+1, ri)

(Adj , ri) =





− 1
αj

(rj+1, ri), j + 1 = i
1
αj

(rj , ri), j = i
0, else

=





− 1
αi−1

(ri , ri), j + 1 = i
1
αi

(ri , ri), j = i
0, else

For j < i :

βij =
{

1
αi−1

(ri ,ri)
(Adi−1,di−1) , j + 1 = i

0, else

Lecture 11 Slide 9

Lecture 10 Slide 32

Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri):

di = ri +
i−1∑

k=0
βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or
search directions. In the sequel, set βi := βi,i−1.
We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)
= (ri−1, ri−1)

βi = 1
αi−1

(ri , ri)
(Adi−1, di−1) = (ri , ri)

(di−1, ri−1)

= (ri , ri)
(ri−1, ri−1)

Lecture 11 Slide 10

Lecture 10 Slide 33

Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri)

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 11 Slide 11

Lecture 10 Slide 34

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).
Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):
Assume M−1Au = λu. We have

(E−1AE−T)(ET u) = (ET E−T)E−1Au = ET M−1Au = λET u

⇔ ET u is an eigenvector of E−1AE−T with eigenvalue λ.

Lecture 11 Slide 12

Lecture 10 Slide 35

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ET u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i)
(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i)

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E

Lecture 11 Slide 13

Lecture 10 Slide 36

Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

Lecture 11 Slide 14

Lecture 10 Slide 40

Unsymmetric problems
I By definition, CG is only applicable to symmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̂0 = b̂ − x̂0AT

p0 = r0 p̂0 = r̂0

αi = (r̂i , ri)
(p̂i ,Api)

xi+1 = xi + αipi x̂i+1 = x̂i + αi p̂i

ri+1 = ri − αiApi r̂i+1 = r̂i − αi p̂iAT

βi = (r̂i+1, ri+1)
(r̂i , ri)

pi+1 = ri+1 + βipi p̂i+1 = r̂i+1 + βi p̂i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̂i ,Apj) = (r̂i , rj) = 0 for i 6= j .

Lecture 11 Slide 15

Lecture 10 Slide 41

Unsymmetric problems II

I BiCG is very unstable and additionally needs the transposed matrix
vector product, it is seldomly used in practice

I There is as well a preconditioned variant of BiCG which also needs
the transposed preconditioner.

I Main practical approaches to fix the situation:
I “Stabilize” BiCG → BiCGstab (H. Van der Vorst, 1992)
I tweak CG → “Conjugate gradients squared” (CGS, Sonneveld, 1989)
I Error minimization in Krylov subspace → “Generalized Minimum

Residual” (GMRES, Saad/Schulz, 1986)
I Both CGS and BiCGstab can show rather erratic convergence behavior
I For GMRES one has to keep the full Krylov subspace, which is not

possible in practice ⇒ restart strategy.
I From my experience, BiCGstab is a good first guess

Lecture 11 Slide 16

Lecture 11 Slide 17

Next steps

I Put linear solution methods into our toolchest for solving PDE
problems test them later in more interesting 2D situations

I Need more “tools”:
I visualization
I triangulation of polygonal domains
I finite element, finite volume discretization methods

Lecture 11 Slide 18

Visualization in Scientific Computing

I Human perception much better adapted to visual representation than
to numbers

I Visualization of computational results necessary for the development
of understanding

I Basic needs: curve plots etc
I python/matplotlib

I Advanced needs: Visualize discretization grids, geometry descriptions,
solutions of PDEs

I Visualization in Scientific Computing: paraview
I Graphics hardware: GPU
I How to program GPU: OpenGL
I vtk

Lecture 11 Slide 19

Python
I Scripting language with huge impact in Scientific Computing
I Open Source, exhaustive documentation online

I https://docs.python.org/3/

I https://www.python.org/about/gettingstarted/

I Possibility to call C/C++ code from python
I Library API
I swig - simple wrapper and interface generator (not only python)
I pybind11 - C++11 specific

I Glue language for projects from different sources
I Huge number of libraries
I numpy/scipy

I Array + linear algebra library implemented in C

I matplotlib: graphics library
https://matplotlib.org/users/pyplot_tutorial.html

https://docs.python.org/3/
https://www.python.org/about/gettingstarted/
https://matplotlib.org/users/pyplot_tutorial.html

Lecture 11 Slide 20

C++/matplotlib workflow

I Run C++ program
I Write data generated during computations to disk
I Use python/matplotlib for to visualize results
I Advantages:

I Rich possibilities to create publication ready plots
I Easy to handle installation (write your code, install

python+matplotlib)
I Python/numpy to postprocess calculated data

I Disadvantages
I Long way to in-depth understanding of API
I Slow for large datasets
I Not immediately available for creating graphics directly from C++

Lecture 11 Slide 21

Matplotlib: Alternative tools

I Similar workflow
I gnuplot
I Latex/tikz

I Call graphics from C++ ?
I ???
I Best shot: call C++ from python, return data directly to python
I Send data to python through UNIX pipes
I Link pyton interpreter into C++ code

I Faster graphics ?

Lecture 11 Slide 22

Processing steps in visualization

I Representation of data using elementary primitives: points, lines,
triangles, . . .

I Coordinate transformation form world coordinates to screen
coordinates

I Transformation 3D → 2D - what is visible ?
I Rasterization: smooth data into pixels
I Coloring, lighting, transparency
I Similar tasks in CAD, gaming etc.
I Huge number of very similar operations

Lecture 11 Slide 23

GPU aka “Graphics Card”

I SIMD parallelism “Single instruction, multiple data” inherent to
processing steps in visualization

I Mostly float (32bit) accuracy is sufficient
I ⇒ Create specialized coprocessors devoted to this task, free CPU

from it
I Pionieering: Silicon Graphics (SGI)
I Today: nvidia, AMD
I Multiple parallel pipelines, fast memory for intermediate results

Lecture 11 Slide 24

GPU Programming
I As GPU is a different processor, one needs to write extra programs to

handle data on it – “shaders”
I Typical use:

I Include shaders as strings in C++ (or load then from extra source file)
I Compile shaders
I Send compiled shaders to GPU
I Send data to GPU – critical step for performance
I Run shaders with data

I OpenGL, Vulkan

Lecture 11 Slide 25

GPU Programming as it used to be

I Specify transformations
I Specify parameters for lighting etc.
I Specify points, lines etc. via API calls
I Graphics library sends data and manages processing on GPU
I No shaders - “fixed functions”
I Iris GL (SGI), OpenGL 1.x, now deprecated
I No simple, standardized API for 3D graphics with equivalent

functionality
I Hunt for performance (gaming)

Lecture 11 Slide 26

vtk

https://www.vtk.org/

I Visualization primitives in scientific computing
I Datasets on rectangular and unstructured discretization grids
I Scalar data
I Vector data

I The Visualization Toolkit vtk provides an API with these primitives
and uses up-to data graphics API (OpenGL) to render these data

I Well maintained, “working horse” in high performance computing
I Open Source
I Paraview, VisIt: GUI programs around vtk

https://www.vtk.org/

Lecture 11 Slide 27

Working with paraview

https://www.paraview.org/

I Write data into files using vtk specific data format
I Call paraview, load data

https://www.paraview.org/

Lecture 11 Slide 28

In-Situ visualization

I Using “paraview catalyst”
I Send data via network from simulation server to desktop running

paraview
I Call vtk API directly

I vtkfig: small library for graphics primitives compatible with numcxx

