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Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑

j=1
aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.
For a given vector b, regard the function

f (u) = 1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
Lecture 11 Slide 2



Lecture 10 Slide 25

Conjugate directions
For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j .

I Look for ui+1 in the direction of di such that it minimizes f in this
direction, i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi ) = f ′(ui + αdi ) · di

= (b − A(ui + αdi ), di )
= (b − Aui , di )− α(Adi , di )
= (ri , di )− α(Adi , di )

αi = (ri , di )
(Adi , di )
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Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the
search directions:

e0 =
n−1∑

i=0
δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =
n−1∑

i=0
δj(Adj , dk)

= δk(Adk , dk)

δk = (Ae0, dk)
(Adk , dk) =

(Ae0 +
∑

i<k αidi , dk)
(Adk , dk) = (Aek , dk)

(Adk , dk)

= (rk , dk)
(Adk , dk)

= −αk
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Conjugate directions III

Then,

ei = e0 +
i−1∑

j=0
αjdj = −

n−1∑

j=0
αjdj +

i−1∑

j=0
αjdj

= −
n−1∑

j=i
αjdj

So, the iteration consists in component-wise suppression of the error, and
it must converge after n steps. Let k ≤ i . A-projection on dk gives

(Aei , dk) = −
n−1∑

j=i
αj(Adj , dk) = 0

Therefore, ri = Aei is orthogonal to d0 . . . di−1.
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Conjugate directions IV
Looking at the error norm ||ei ||A, the method yields the element with the
minimum energy norm from all elements of the affine space e0 +Ki where
Ki = span{d0, d1 . . . di−1}

(Aei , ei ) =
(n−1∑

j=i
δjdj ,

n−1∑

j=i
δjdj

)
=

n−1∑

j=i

n−1∑

k=i
δjδk(dj , dk)

=
n−1∑

j=i
δ2

j (dj , dj) = min
e∈e0+Ki

||e||A

Furthermore, we have

ui+1 = ui + αidi

ei+1 = ei + αidi

Aei+1 = Aei + αiAdi

ri+1 = ri − αiAdi

By what magic we can obtain these di ?
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Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0

I Define

di = vi +
i−1∑

k=0
βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +
i−1∑

k=0
βik(Adk , dj)

0 = (Avi , dj) + βij(Adj , dj)

βij = − (Avi , dj)
(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory
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Conjugate gradients (Hestenes, Stiefel, 1952)
As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri , i.e.
the residuals built up during the conjugate direction process.
Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .
From ri = ri−1 − αi−1Adi−1 we obtain
Ki = Ki−1 ∪ span{Adi−1}
This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}
= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and
orthogonalization methods are more often called Krylov subspace methods.
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Conjugate gradients II
Look at Gram-Schmidt under these conditions. The essential data are
(setting vi = ri and using j < i) βij = − (Ari ,dj )

(Adj ,dj ) = − (Adj ,ri )
(Adj ,dj ) .

Then, for j ≤ i :

rj+1 = rj − αjAdj

(rj+1, ri ) = (rj , ri )− αj(Adj , ri )
αj(Adj , ri ) = (rj , ri )− (rj+1, ri )

(Adj , ri ) =





− 1
αj

(rj+1, ri ), j + 1 = i
1
αj

(rj , ri ), j = i
0, else

=





− 1
αi−1

(ri , ri ), j + 1 = i
1
αi

(ri , ri ), j = i
0, else

For j < i :

βij =
{

1
αi−1

(ri ,ri )
(Adi−1,di−1) , j + 1 = i

0, else
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Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri ):

di = ri +
i−1∑

k=0
βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or
search directions. In the sequel, set βi := βi,i−1.
We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)
= (ri−1, ri−1)

βi = 1
αi−1

(ri , ri )
(Adi−1, di−1) = (ri , ri )

(di−1, ri−1)

= (ri , ri )
(ri−1, ri−1)
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Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri )

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 11 Slide 11



Lecture 10 Slide 34

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).
Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T ):
Assume M−1Au = λu. We have

(E−1AE−T )(ET u) = (ET E−T )E−1Au = ET M−1Au = λET u

⇔ ET u is an eigenvector of E−1AE−T with eigenvalue λ.
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Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ET u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i )
(E−1AE−T d̃i , d̃i )

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i )

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E
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Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri )
(Adi , di )

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri )

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.
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Unsymmetric problems
I By definition, CG is only applicable to symmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̂0 = b̂ − x̂0AT

p0 = r0 p̂0 = r̂0

αi = (r̂i , ri )
(p̂i ,Api )

xi+1 = xi + αipi x̂i+1 = x̂i + αi p̂i

ri+1 = ri − αiApi r̂i+1 = r̂i − αi p̂iAT

βi = (r̂i+1, ri+1)
(r̂i , ri )

pi+1 = ri+1 + βipi p̂i+1 = r̂i+1 + βi p̂i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̂i ,Apj) = (r̂i , rj) = 0 for i 6= j .
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Unsymmetric problems II

I BiCG is very unstable and additionally needs the transposed matrix
vector product, it is seldomly used in practice

I There is as well a preconditioned variant of BiCG which also needs
the transposed preconditioner.

I Main practical approaches to fix the situation:
I “Stabilize” BiCG → BiCGstab (H. Van der Vorst, 1992)
I tweak CG → “Conjugate gradients squared” (CGS, Sonneveld, 1989)
I Error minimization in Krylov subspace → “Generalized Minimum

Residual” (GMRES, Saad/Schulz, 1986)
I Both CGS and BiCGstab can show rather erratic convergence behavior
I For GMRES one has to keep the full Krylov subspace, which is not

possible in practice ⇒ restart strategy.
I From my experience, BiCGstab is a good first guess
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Next steps

I Put linear solution methods into our toolchest for solving PDE
problems test them later in more interesting 2D situations

I Need more “tools”:
I visualization
I triangulation of polygonal domains
I finite element, finite volume discretization methods
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Visualization in Scientific Computing

I Human perception much better adapted to visual representation than
to numbers

I Visualization of computational results necessary for the development
of understanding

I Basic needs: curve plots etc
I python/matplotlib

I Advanced needs: Visualize discretization grids, geometry descriptions,
solutions of PDEs

I Visualization in Scientific Computing: paraview
I Graphics hardware: GPU
I How to program GPU: OpenGL
I vtk
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Python
I Scripting language with huge impact in Scientific Computing
I Open Source, exhaustive documentation online

I https://docs.python.org/3/

I https://www.python.org/about/gettingstarted/

I Possibility to call C/C++ code from python
I Library API
I swig - simple wrapper and interface generator (not only python)
I pybind11 - C++11 specific

I Glue language for projects from different sources
I Huge number of libraries
I numpy/scipy

I Array + linear algebra library implemented in C

I matplotlib: graphics library
https://matplotlib.org/users/pyplot_tutorial.html

https://docs.python.org/3/
https://www.python.org/about/gettingstarted/
https://matplotlib.org/users/pyplot_tutorial.html
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C++/matplotlib workflow

I Run C++ program
I Write data generated during computations to disk
I Use python/matplotlib for to visualize results
I Advantages:

I Rich possibilities to create publication ready plots
I Easy to handle installation (write your code, install

python+matplotlib)
I Python/numpy to postprocess calculated data

I Disadvantages
I Long way to in-depth understanding of API
I Slow for large datasets
I Not immediately available for creating graphics directly from C++
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Matplotlib: Alternative tools

I Similar workflow
I gnuplot
I Latex/tikz

I Call graphics from C++ ?
I ???
I Best shot: call C++ from python, return data directly to python
I Send data to python through UNIX pipes
I Link pyton interpreter into C++ code

I Faster graphics ?
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Processing steps in visualization

I Representation of data using elementary primitives: points, lines,
triangles, . . .

I Coordinate transformation form world coordinates to screen
coordinates

I Transformation 3D → 2D - what is visible ?
I Rasterization: smooth data into pixels
I Coloring, lighting, transparency
I Similar tasks in CAD, gaming etc.
I Huge number of very similar operations
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GPU aka “Graphics Card”

I SIMD parallelism “Single instruction, multiple data” inherent to
processing steps in visualization

I Mostly float (32bit) accuracy is sufficient
I ⇒ Create specialized coprocessors devoted to this task, free CPU

from it
I Pionieering: Silicon Graphics (SGI)
I Today: nvidia, AMD
I Multiple parallel pipelines, fast memory for intermediate results
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GPU Programming
I As GPU is a different processor, one needs to write extra programs to

handle data on it – “shaders”
I Typical use:

I Include shaders as strings in C++ (or load then from extra source file)
I Compile shaders
I Send compiled shaders to GPU
I Send data to GPU – critical step for performance
I Run shaders with data

I OpenGL, Vulkan
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GPU Programming as it used to be

I Specify transformations
I Specify parameters for lighting etc.
I Specify points, lines etc. via API calls
I Graphics library sends data and manages processing on GPU
I No shaders - “fixed functions”
I Iris GL (SGI), OpenGL 1.x, now deprecated
I No simple, standardized API for 3D graphics with equivalent

functionality
I Hunt for performance (gaming)
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vtk

https://www.vtk.org/

I Visualization primitives in scientific computing
I Datasets on rectangular and unstructured discretization grids
I Scalar data
I Vector data

I The Visualization Toolkit vtk provides an API with these primitives
and uses up-to data graphics API (OpenGL) to render these data

I Well maintained, “working horse” in high performance computing
I Open Source
I Paraview, VisIt: GUI programs around vtk

https://www.vtk.org/
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Working with paraview

https://www.paraview.org/

I Write data into files using vtk specific data format
I Call paraview, load data

https://www.paraview.org/
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In-Situ visualization

I Using “paraview catalyst”
I Send data via network from simulation server to desktop running

paraview
I Call vtk API directly

I vtkfig: small library for graphics primitives compatible with numcxx


