Scientific Computing WS 2017/2018

Lecture 11

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form $a: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{T} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

Conjugate directions II

$e_{0}=u_{0}-\hat{u}$ (such that $A e_{0}=-r_{0}$) can be represented in the basis of the search directions:

$$
e_{0}=\sum_{i=0}^{n-1} \delta_{j} d_{j}
$$

Projecting onto d_{k} in the A scalar product gives

$$
\begin{aligned}
\left(A e_{0}, d_{k}\right) & =\sum_{i=0}^{n-1} \delta_{j}\left(A d_{j}, d_{k}\right) \\
& =\delta_{k}\left(A d_{k}, d_{k}\right) \\
\delta_{k} & =\frac{\left(A e_{0}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{0}+\sum_{i<k} \alpha_{i} d_{i}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =\frac{\left(r_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =-\alpha_{k}
\end{aligned}
$$

Conjugate directions III

Then,

$$
\begin{aligned}
e_{i} & =e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j} \\
& =-\sum_{j=i}^{n-1} \alpha_{j} d_{j}
\end{aligned}
$$

So, the iteration consists in component-wise suppression of the error, and it must converge after n steps. Let $k \leq i$. A-projection on d_{k} gives

$$
\left(A e_{i}, d_{k}\right)=-\sum_{j=i}^{n-1} \alpha_{j}\left(A d_{j}, d_{k}\right)=0
$$

Therefore, $r_{i}=A e_{i}$ is orthogonal to $d_{0} \ldots d_{i-1}$.

Conjugate directions IV

Looking at the error norm $\left\|e_{i}\right\|_{A}$, the method yields the element with the minimum energy norm from all elements of the affine space $e_{0}+\mathcal{K}_{i}$ where $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0}, d_{1} \ldots d_{i-1}\right\}$

$$
\begin{aligned}
\left(A e_{i}, e_{i}\right) & =\left(\sum_{j=i}^{n-1} \delta_{j} d_{j}, \sum_{j=i}^{n-1} \delta_{j} d_{j}\right)=\sum_{j=i}^{n-1} \sum_{k=i}^{n-1} \delta_{j} \delta_{k}\left(d_{j}, d_{k}\right) \\
& =\sum_{j=i}^{n-1} \delta_{j}^{2}\left(d_{j}, d_{j}\right)=\min _{e \in e_{0}+\mathcal{K}_{i}}\|e\|_{A}
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
e_{i+1} & =e_{i}+\alpha_{i} d_{i} \\
A e_{i+1} & =A e_{i}+\alpha_{i} A d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i}
\end{aligned}
$$

By what magic we can obtain these d_{i} ?

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors $v_{0}, v_{1} \ldots v_{n-1}$.
- Set $d_{0}=v_{0}$
- Define

$$
d_{i}=v_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k}
$$

- For $j<i$, A-project onto d_{j} and require orthogonality:

$$
\begin{aligned}
\left(A d_{i}, d_{j}\right) & =\left(A v_{i}, d_{j}\right)+\sum_{k=0}^{i-1} \beta_{i k}\left(A d_{k}, d_{j}\right) \\
0 & =\left(A v_{i}, d_{j}\right)+\beta_{i j}\left(A d_{j}, d_{j}\right) \\
\beta_{i j} & =-\frac{\left(A v_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}
\end{aligned}
$$

- If v_{i} are the coordinate unit vectors, this is Gaussian elimination!
- If v_{i} are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d_{i} from $d_{j}, j<i$, we can choose $v_{i}=r_{i}$, i.e. the residuals built up during the conjugate direction process.

Let $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0} \ldots d_{i-1}\right\}$. Then, $r_{i} \perp \mathcal{K}_{i}$
But d_{i} are built by Gram-Schmidt from the residuals, so we also have $\mathcal{K}_{i}=\operatorname{span}\left\{r_{0} \ldots r_{i-1}\right\}$ and $\left(r_{i}, r_{j}\right)=0$ for $j<i$.

From $r_{i}=r_{i-1}-\alpha_{i-1} A d_{i-1}$ we obtain
$\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup \operatorname{span}\left\{A d_{i-1}\right\}$
This gives two other representations of \mathcal{K}_{i} :

$$
\begin{aligned}
\mathcal{K}_{i} & =\operatorname{span}\left\{d_{0}, A d_{0}, A^{2} d_{0}, \ldots, A^{i-1} d_{0}\right\} \\
& =\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
\end{aligned}
$$

Such type of subspace of \mathbb{R}^{n} is called Krylov subspace, and orthogonalization methods are more often called Krylov subspace methods.

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting $v_{i}=r_{i}$ and using $\left.j<i\right) \beta_{i j}=-\frac{\left(A r_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}=-\frac{\left(A d_{j}, r_{i}\right)}{\left(A d_{j}, d_{j}\right)}$.

Then, for $j \leq i$:

$$
\begin{aligned}
& r_{j+1}=r_{j}-\alpha_{j} A d_{j} \\
&\left(r_{j+1}, r_{i}\right)=\left(r_{j}, r_{i}\right)-\alpha_{j}\left(A d_{j}, r_{i}\right) \\
& \alpha_{j}\left(A d_{j}, r_{i}\right)=\left(r_{j}, r_{i}\right)-\left(r_{j+1}, r_{i}\right) \\
&\left(A d_{j}, r_{i}\right)=\left\{\begin{array}{ll}
-\frac{1}{\alpha_{j}}\left(r_{j+1}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{j}}\left(r_{j}, r_{i}\right), & j=i \\
0, & \text { else }
\end{array}= \begin{cases}-\frac{1}{\alpha_{i-1}}\left(r_{i}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{i}}\left(r_{i}, r_{i}\right), & j=i \\
0, & \text { else }\end{cases} \right.
\end{aligned}
$$

For $j<i$:

$$
\beta_{i j}= \begin{cases}\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}, & j+1=i \\ 0, & \text { else }\end{cases}
$$

Conjugate gradients III

For Gram-Schmidt we defined (replacing v_{i} by r_{i}):

$$
\begin{aligned}
d_{i} & =r_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k} \\
& =r_{i}+\beta_{i, i-1} d_{i-1}
\end{aligned}
$$

So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual. We don't have to store old residuals or search directions. In the sequel, set $\beta_{i}:=\beta_{i, i-1}$.

We have

$$
\begin{aligned}
d_{i-1} & =r_{i-1}+\beta_{i-1} d_{i-2} \\
\left(d_{i-1}, r_{i-1}\right) & =\left(r_{i-1}, r_{i-1}\right)+\beta_{i-1}\left(d_{i-2}, r_{i-1}\right) \\
& =\left(r_{i-1}, r_{i-1}\right) \\
\beta_{i} & =\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}=\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i-1}, r_{i-1}\right)} \\
& =\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that $\kappa\left(M^{-1} A\right) \ll \kappa(A)$.
Let E be such that $M=E E^{\top}$, e.g. its Cholesky factorization. Then, $\sigma\left(M^{-1} A\right)=\sigma\left(E^{-1} A E^{-T}\right):$
Assume $M^{-1} A u=\lambda u$. We have

$$
\left(E^{-1} A E^{-T}\right)\left(E^{T} u\right)=\left(E^{T} E^{-T}\right) E^{-1} A u=E^{T} M^{-1} A u=\lambda E^{T} u
$$

$\Leftrightarrow E^{T} u$ is an eigenvector of $E^{-1} A E^{-T}$ with eigenvalue λ.

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

$$
E^{-1} A E^{-T} \tilde{x}=E^{-1} b
$$

with $\tilde{u}=E^{T} u$

$$
\begin{aligned}
\tilde{d}_{0} & =\tilde{r}_{0}=E^{-1} b-E^{-1} A E^{-T} u_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)}{\left(E^{-1} A E^{-T} \tilde{d}_{i}, \tilde{d}_{i}\right)} \\
\tilde{u}_{i+1} & =\tilde{u}_{i}+\alpha_{i} \tilde{d}_{i} \\
\tilde{r}_{i+1} & =\tilde{r}_{i}-\alpha_{i} E^{-1} A E^{-T} \tilde{d}_{i} \\
\beta_{i+1} & =\frac{\left(\tilde{r}_{i+1}, \tilde{r}_{i+1}\right)}{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)} \\
\tilde{d}_{i+1} & =\tilde{r}_{i+1}+\beta_{i+1} \tilde{d}_{i}
\end{aligned}
$$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

Unsymmetric problems

- By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_{0}, perform

$$
\begin{array}{rlrl}
r_{0} & =b-A x_{0} & \hat{r}_{0} & =\hat{b}-\hat{x}_{0} A^{T} \\
p_{0} & =r_{0} & \hat{p}_{0}=\hat{r}_{0} \\
\alpha_{i} & =\frac{\left(\hat{r}_{i}, r_{i}\right)}{\left(\hat{p}_{i}, A p_{i}\right)} & & \\
x_{i+1} & =x_{i}+\alpha_{i} p_{i} & \hat{x}_{i+1}=\hat{x}_{i}+\alpha_{i} \hat{p}_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} & \hat{r}_{i+1}=\hat{r}_{i}-\alpha_{i} \hat{p}_{i} A^{T} \\
\beta_{i} & =\frac{\left(\hat{r}_{i+1}, r_{i+1}\right)}{\left(\hat{r}_{i}, r_{i}\right)} & & \\
p_{i+1} & =r_{i+1}+\beta_{i} p_{i} & \hat{p}_{i+1}=\hat{r}_{i+1}+\beta_{i} \hat{p}_{i}
\end{array}
$$

The two sequences produced by the algorithm are biorthogonal, i.e., $\left(\hat{p}_{i}, A p_{j}\right)=\left(\hat{r}_{i}, r_{j}\right)=0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable and additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
- "Stabilize" BiCG \rightarrow BiCGstab (H. Van der Vorst, 1992)
- tweak CG \rightarrow "Conjugate gradients squared" (CGS, Sonneveld, 1989)
- Error minimization in Krylov subspace \rightarrow "Generalized Minimum Residual" (GMRES, Saad/Schulz, 1986)
- Both CGS and BiCGstab can show rather erratic convergence behavior
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice \Rightarrow restart strategy.
- From my experience, BiCGstab is a good first guess

Next steps

- Put linear solution methods into our toolchest for solving PDE problems test them later in more interesting 2D situations
- Need more "tools":
- visualization
- triangulation of polygonal domains
- finite element, finite volume discretization methods

Visualization in Scientific Computing

- Human perception much better adapted to visual representation than to numbers
- Visualization of computational results necessary for the development of understanding
- Basic needs: curve plots etc
- python/matplotlib
- Advanced needs: Visualize discretization grids, geometry descriptions, solutions of PDEs
- Visualization in Scientific Computing: paraview
- Graphics hardware: GPU
- How to program GPU: OpenGL
- vtk

Python

- Scripting language with huge impact in Scientific Computing
- Open Source, exhaustive documentation online
- https://docs.python.org/3/
- https://www.python.org/about/gettingstarted/
- Possibility to call $\mathrm{C} / \mathrm{C}++$ code from python
- Library API
- swig - simple wrapper and interface generator (not only python)
- pybind11-C++11 specific
- Glue language for projects from different sources
- Huge number of libraries
- numpy/scipy
- Array + linear algebra library implemented in C
- matplotlib: graphics library https://matplotlib.org/users/pyplot_tutorial.html

C++/matplotlib workflow

- Run C++ program
- Write data generated during computations to disk
- Use python/matplotlib for to visualize results
- Advantages:
- Rich possibilities to create publication ready plots
- Easy to handle installation (write your code, install python+matplotlib)
- Python/numpy to postprocess calculated data
- Disadvantages
- Long way to in-depth understanding of API
- Slow for large datasets
- Not immediately available for creating graphics directly from $\mathrm{C}++$

Matplotlib: Alternative tools

- Similar workflow
- gnuplot
- Latex/tikz
- Call graphics from C++ ?
- ???
- Best shot: call C++ from python, return data directly to python
- Send data to python through UNIX pipes
- Link pyton interpreter into C++ code
- Faster graphics ?

Processing steps in visualization

- Representation of data using elementary primitives: points, lines, triangles, ...
- Coordinate transformation form world coordinates to screen coordinates
- Transformation 3D $\rightarrow 2 \mathrm{D}$ - what is visible ?
- Rasterization: smooth data into pixels
- Coloring, lighting, transparency
- Similar tasks in CAD, gaming etc.
- Huge number of very similar operations

GPU aka "Graphics Card"

- SIMD parallelism "Single instruction, multiple data" inherent to processing steps in visualization
- Mostly float (32bit) accuracy is sufficient
- \Rightarrow Create specialized coprocessors devoted to this task, free CPU from it
- Pionieering: Silicon Graphics (SGI)
- Today: nvidia, AMD
- Multiple parallel pipelines, fast memory for intermediate results

GPU Programming

- As GPU is a different processor, one needs to write extra programs to handle data on it - "shaders"
- Typical use:
- Include shaders as strings in C++ (or load then from extra source file)
- Compile shaders
- Send compiled shaders to GPU
- Send data to GPU - critical step for performance
- Run shaders with data
- OpenGL, Vulkan

GPU Programming as it used to be

- Specify transformations
- Specify parameters for lighting etc.
- Specify points, lines etc. via API calls
- Graphics library sends data and manages processing on GPU
- No shaders - "fixed functions"
- Iris GL (SGI), OpenGL 1.x, now deprecated
- No simple, standardized API for 3D graphics with equivalent functionality
- Hunt for performance (gaming)

vtk

https://www.vtk.org/

- Visualization primitives in scientific computing
- Datasets on rectangular and unstructured discretization grids
- Scalar data
- Vector data
- The Visualization Toolkit vtk provides an API with these primitives and uses up-to data graphics API (OpenGL) to render these data
- Well maintained, "working horse" in high performance computing
- Open Source
- Paraview, Vislt: GUI programs around vtk

Working with paraview

https://www.paraview.org/

- Write data into files using vtk specific data format
- Call paraview, load data

In-Situ visualization

- Using "paraview catalyst"
- Send data via network from simulation server to desktop running paraview
- Call vtk API directly
- vtkfig: small library for graphics primitives compatible with numcxx

