Scientific Computing WS 2017/2018

Lecture 11

Jürgen Fuhrmann

juergen.fuhrmann @wias-berlin.de

Solution of SPD system as a minimization procedure

Regard Au = f, where A is symmetric, positive definite. Then it defines a bilinear form $a : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

$$a(u, v) = (Au, v) = v^{T}Au = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}v_{i}u_{j}$$

As A is SPD, for all $u \neq 0$ we have (Au, u) > 0.

For a given vector b, regard the function

$$f(u) = \frac{1}{2}a(u, u) - b^{T}u$$

What is the minimizer of f?

$$f'(u) = Au - b = 0$$

Solution of SPD system \equiv minimization of f.

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_i = r_i = -Ae_i$ is not used several times. If all search directions would be orthogonal, or, indeed, *A*-orthogonal, one could control this situation.

So, let $d_0, d_1 \dots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $(Ad_i, d_j) = 0, i \neq j$.

Look for u_{i+1} in the direction of d_i such that it minimizes f in this direction, i.e. set u_{i+1} = u_i + α_id_i with α choosen from

$$0 = \frac{d}{d\alpha} f(u_i + \alpha d_i) = f'(u_i + \alpha d_i) \cdot d_i$$

= $(b - A(u_i + \alpha d_i), d_i)$
= $(b - Au_i, d_i) - \alpha(Ad_i, d_i)$
= $(r_i, d_i) - \alpha(Ad_i, d_i)$
 $\alpha_i = \frac{(r_i, d_i)}{(Ad_i, d_i)}$

Conjugate directions II

 $e_0 = u_0 - \hat{u}$ (such that $Ae_0 = -r_0$) can be represented in the basis of the search directions:

$$e_0 = \sum_{i=0}^{n-1} \delta_j d_j$$

Projecting onto d_k in the A scalar product gives

$$(Ae_0, d_k) = \sum_{i=0}^{n-1} \delta_j(Ad_j, d_k)$$

= $\delta_k(Ad_k, d_k)$
 $\delta_k = \frac{(Ae_0, d_k)}{(Ad_k, d_k)} = \frac{(Ae_0 + \sum_{i < k} \alpha_i d_i, d_k)}{(Ad_k, d_k)} = \frac{(Ae_k, d_k)}{(Ad_k, d_k)}$
= $\frac{(r_k, d_k)}{(Ad_k, d_k)}$
= $-\alpha_k$

Conjugate directions III

Then,

$$e_{i} = e_{0} + \sum_{j=0}^{i-1} \alpha_{j} d_{j} = -\sum_{j=0}^{n-1} \alpha_{j} d_{j} + \sum_{j=0}^{i-1} \alpha_{j} d_{j}$$
$$= -\sum_{j=i}^{n-1} \alpha_{j} d_{j}$$

So, the iteration consists in component-wise suppression of the error, and it must converge after *n* steps. Let $k \leq i$. *A*-projection on d_k gives

$$(Ae_i, d_k) = -\sum_{j=i}^{n-1} \alpha_j (Ad_j, d_k) = 0$$

Therefore, $r_i = Ae_i$ is orthogonal to $d_0 \dots d_{i-1}$.

Conjugate directions IV

Looking at the error norm $||e_i||_A$, the method yields the element with the minimum energy norm from all elements of the affine space $e_0 + \mathcal{K}_i$ where $\mathcal{K}_i = \operatorname{span}\{d_0, d_1 \dots d_{i-1}\}$

$$(Ae_i, e_i) = \left(\sum_{j=i}^{n-1} \delta_j d_j, \sum_{j=i}^{n-1} \delta_j d_j\right) = \sum_{j=i}^{n-1} \sum_{k=i}^{n-1} \delta_j \delta_k(d_j, d_k)$$
$$= \sum_{i=i}^{n-1} \delta_j^2(d_j, d_j) = \min_{e \in e_0 + \mathcal{K}_i} ||e||_A$$

Furthermore, we have

$$u_{i+1} = u_i + \alpha_i d_i$$

$$e_{i+1} = e_i + \alpha_i d_i$$

$$Ae_{i+1} = Ae_i + \alpha_i Ad_i$$

$$r_{i+1} = r_i - \alpha_i Ad_i$$

By what magic we can obtain these d_i ?

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors $v_0, v_1 \dots v_{n-1}$.
- Set $d_0 = v_0$
- Define

$$d_i = v_i + \sum_{k=0}^{i-1} \beta_{ik} d_k$$

For j < i, A-project onto d_j and require orthogonality:

$$egin{aligned} (Ad_i, d_j) &= (A \mathsf{v}_i, d_j) + \sum_{k=0}^{i-1} eta_{ik} (Ad_k, d_j) \ 0 &= (A \mathsf{v}_i, d_j) + eta_{ij} (Ad_j, d_j) \ eta_{ij} &= - rac{(A \mathsf{v}_i, d_j)}{(Ad_j, d_j)} \end{aligned}$$

▶ If *v_i* are the coordinate unit vectors, this is Gaussian elimination!

• If v_i are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d_i from d_j , j < i, we can choose $v_i = r_i$, i.e. the residuals built up during the conjugate direction process.

Let
$$\mathcal{K}_i = \operatorname{span}\{d_0 \dots d_{i-1}\}$$
. Then, $r_i \perp \mathcal{K}_i$

But d_i are built by Gram-Schmidt from the residuals, so we also have $\mathcal{K}_i = \operatorname{span}\{r_0 \dots r_{i-1}\}$ and $(r_i, r_j) = 0$ for j < i.

From $r_i = r_{i-1} - \alpha_{i-1} A d_{i-1}$ we obtain

$$\mathcal{K}_i = \mathcal{K}_{i-1} \cup \operatorname{span}\{Ad_{i-1}\}$$

This gives two other representations of \mathcal{K}_i :

$$\begin{aligned} \mathcal{K}_i &= \operatorname{span}\{d_0, Ad_0, A^2 d_0, \dots, A^{i-1} d_0\} \\ &= \operatorname{span}\{r_0, Ar_0, A^2 r_0, \dots, A^{i-1} r_0\} \end{aligned}$$

Such type of subspace of \mathbb{R}^n is called *Krylov subspace*, and orthogonalization methods are more often called *Krylov subspace methods*.

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting $v_i = r_i$ and using j < i) $\beta_{ij} = -\frac{(Ar_i, d_j)}{(Ad_j, d_j)} = -\frac{(Ad_j, r_i)}{(Ad_j, d_j)}$. Then, for j < i:

$$\begin{aligned} r_{j+1} &= r_j - \alpha_j A d_j \\ (r_{j+1}, r_i) &= (r_j, r_i) - \alpha_j (A d_j, r_i) \\ \alpha_j (A d_j, r_i) &= (r_j, r_i) - (r_{j+1}, r_i) \\ (A d_j, r_i) &= \begin{cases} -\frac{1}{\alpha_j} (r_{j+1}, r_i), & j+1 = i \\ \frac{1}{\alpha_j} (r_j, r_i), & j = i \\ 0, & \text{else} \end{cases} = \begin{cases} -\frac{1}{\alpha_{i-1}} (r_i, r_i), & j+1 = i \\ \frac{1}{\alpha_i} (r_i, r_i), & j = i \\ 0, & \text{else} \end{cases} \end{aligned}$$

For j < i:

$$\beta_{ij} = \begin{cases} \frac{1}{\alpha_{i-1}} \frac{(r_i,r_i)}{(\mathit{Ad}_{i-1},\mathit{d}_{i-1})}, & j+1 = i\\ 0, & \text{else} \end{cases}$$

Conjugate gradients III

For Gram-Schmidt we defined (replacing v_i by r_i):

$$d_i = r_i + \sum_{k=0}^{i-1} \beta_{ik} d_k$$
$$= r_i + \beta_{i,i-1} d_{i-1}$$

So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual. We don't have to store old residuals or search directions. In the sequel, set $\beta_i := \beta_{i,i-1}$.

We have

$$d_{i-1} = r_{i-1} + \beta_{i-1}d_{i-2}$$

$$d_{i-1}, r_{i-1}) = (r_{i-1}, r_{i-1}) + \beta_{i-1}(d_{i-2}, r_{i-1})$$

$$= (r_{i-1}, r_{i-1})$$

$$\beta_i = \frac{1}{\alpha_{i-1}} \frac{(r_i, r_i)}{(Ad_{i-1}, d_{i-1})} = \frac{(r_i, r_i)}{(d_{i-1}, r_{i-1})}$$

$$= \frac{(r_i, r_i)}{(r_{i-1}, r_{i-1})}$$

Conjugate gradients IV - The algorithm

Given initial value u_0 , spd matrix A, right hand side b.

$$d_{0} = r_{0} = b - Au_{0}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(Ad_{i}, d_{i})}$$

$$u_{i+1} = u_{i} + \alpha_{i}d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i}Ad_{i}$$

$$\beta_{i+1} = \frac{(r_{i+1}, r_{i+1})}{(r_{i}, r_{i})}$$

$$d_{i+1} = r_{i+1} + \beta_{i+1}d_{i}$$

At the i-th step, the algorithm yields the element from $e_0 + K_i$ with the minimum energy error.

Theorem The convergence rate of the method is

$$||e_i||_A \leq 2\left(rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
ight)^i ||e_0||_A$$

where $\kappa = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ is the spectral condition number.

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that $\kappa(M^{-1}A) << \kappa(A)$.

Let *E* be such that $M = EE^{T}$, e.g. its Cholesky factorization. Then, $\sigma(M^{-1}A) = \sigma(E^{-1}AE^{-T})$:

Assume $M^{-1}Au = \lambda u$. We have

$$(E^{-1}AE^{-T})(E^{T}u) = (E^{T}E^{-T})E^{-1}Au = E^{T}M^{-1}Au = \lambda E^{T}u$$

 $\Leftrightarrow E^T u$ is an eigenvector of $E^{-1}AE^{-T}$ with eigenvalue λ .

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

 $E^{-1}AE^{-T}\tilde{x} = E^{-1}b$

with $\tilde{u} = E^T u$ $\tilde{d}_0 = \tilde{r}_0 = E^{-1}b - E^{-1}AE^{-T}u_0$ $\alpha_i = \frac{(\tilde{r}_i, \tilde{r}_i)}{(E^{-1}AE^{-T}\tilde{d}_i, \tilde{d}_i)}$ $\tilde{u}_{i+1} = \tilde{u}_i + \alpha_i \tilde{d}_i$ $\tilde{r}_{i+1} = \tilde{r}_i - \alpha_i E^{-1}AE^{-T}\tilde{d}_i$ $\beta_{i+1} = \frac{(\tilde{r}_{i+1}, \tilde{r}_{i+1})}{(\tilde{r}_i, \tilde{r}_i)}$ $\tilde{d}_{i+1} = \tilde{r}_{i+1} + \beta_{i+1}\tilde{d}_i$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_i = E^{-1}r_i$, $\tilde{d}_i = E^T d_i$, we get the equivalent algorithm

$$r_{0} = b - Au_{0}$$

$$d_{0} = M^{-1}r_{0}$$

$$\alpha_{i} = \frac{(M^{-1}r_{i}, r_{i})}{(Ad_{i}, d_{i})}$$

$$u_{i+1} = u_{i} + \alpha_{i}d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i}Ad_{i}$$

$$\beta_{i+1} = \frac{(M^{-1}r_{i+1}, r_{i+1})}{(r_{i}, r_{i})}$$

$$d_{i+1} = M^{-1}r_{i+1} + \beta_{i+1}d_{i}$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

Unsymmetric problems

- ▶ By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_0 , perform

 $\begin{aligned} r_{0} &= b - A x_{0} & \hat{r}_{0} &= \hat{b} - \hat{x}_{0} A^{T} \\ p_{0} &= r_{0} & \hat{p}_{0} &= \hat{r}_{0} \\ \alpha_{i} &= \frac{(\hat{r}_{i}, r_{i})}{(\hat{p}_{i}, Ap_{i})} & \\ x_{i+1} &= x_{i} + \alpha_{i} p_{i} & \hat{x}_{i+1} &= \hat{x}_{i} + \alpha_{i} \hat{p}_{i} \\ r_{i+1} &= r_{i} - \alpha_{i} Ap_{i} & \hat{r}_{i+1} &= \hat{r}_{i} - \alpha_{i} \hat{p}_{i} A^{T} \\ \beta_{i} &= \frac{(\hat{r}_{i+1}, r_{i+1})}{(\hat{r}_{i}, r_{i})} & \\ p_{i+1} &= r_{i+1} + \beta_{i} p_{i} & \hat{p}_{i+1} &= \hat{r}_{i+1} + \beta_{i} \hat{p}_{i} \end{aligned}$

The two sequences produced by the algorithm are biorthogonal, i.e., $(\hat{p}_i, Ap_j) = (\hat{r}_i, r_j) = 0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable and additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
 - "Stabilize" $BiCG \rightarrow BiCGstab$ (H. Van der Vorst, 1992)
 - ▶ tweak CG \rightarrow "Conjugate gradients squared" (CGS, Sonneveld, 1989)
 - ► Error minimization in Krylov subspace → "Generalized Minimum Residual" (GMRES, Saad/Schulz, 1986)
- Both CGS and BiCGstab can show rather erratic convergence behavior
- ► For GMRES one has to keep the full Krylov subspace, which is not possible in practice ⇒ restart strategy.
- From my experience, BiCGstab is a good first guess

Next steps

- Put linear solution methods into our toolchest for solving PDE problems test them later in more interesting 2D situations
- Need more "tools":
 - visualization
 - triangulation of polygonal domains
 - finite element, finite volume discretization methods

Visualization in Scientific Computing

- Human perception much better adapted to visual representation than to numbers
- Visualization of computational results necessary for the development of understanding
- Basic needs: curve plots etc
 - python/matplotlib
- Advanced needs: Visualize discretization grids, geometry descriptions, solutions of PDEs
 - Visualization in Scientific Computing: paraview
 - Graphics hardware: GPU
 - How to program GPU: OpenGL
 - vtk

Python

- Scripting language with huge impact in Scientific Computing
- Open Source, exhaustive documentation online
 - https://docs.python.org/3/
 - https://www.python.org/about/gettingstarted/
- ▶ Possibility to call C/C++ code from python
 - Library API
 - swig simple wrapper and interface generator (not only python)
 - pybind11 C++11 specific
- Glue language for projects from different sources
- Huge number of libraries
- numpy/scipy
 - Array + linear algebra library implemented in C
- matplotlib: graphics library https://matplotlib.org/users/pyplot_tutorial.html

C++/matplotlib workflow

- ► Run C++ program
- Write data generated during computations to disk
- Use python/matplotlib for to visualize results
- Advantages:
 - Rich possibilities to create publication ready plots
 - Easy to handle installation (write your code, install python+matplotlib)
 - Python/numpy to postprocess calculated data
- Disadvantages
 - Long way to in-depth understanding of API
 - Slow for large datasets
 - ▶ Not immediately available for creating graphics directly from C++

Matplotlib: Alternative tools

- Similar workflow
 - gnuplot
 - Latex/tikz
- ► Call graphics from C++ ?
 - ???
 - ▶ Best shot: call C++ from python, return data directly to python
 - Send data to python through UNIX pipes
 - ► Link pyton interpreter into C++ code
- Faster graphics ?

Processing steps in visualization

- Representation of data using elementary primitives: points, lines, triangles, ...
- Coordinate transformation form world coordinates to screen coordinates
- \blacktriangleright Transformation 3D \rightarrow 2D what is visible ?
- Rasterization: smooth data into pixels
- Coloring, lighting, transparency
- Similar tasks in CAD, gaming etc.
- Huge number of very similar operations

GPU aka "Graphics Card"

- SIMD parallelism "Single instruction, multiple data" inherent to processing steps in visualization
- Mostly float (32bit) accuracy is sufficient
- $\blacktriangleright \Rightarrow$ Create specialized coprocessors devoted to this task, free CPU from it
- Pionieering: Silicon Graphics (SGI)
- Today: nvidia, AMD
- Multiple parallel pipelines, fast memory for intermediate results

GPU Programming

- As GPU is a different processor, one needs to write extra programs to handle data on it – "shaders"
- Typical use:
 - ▶ Include shaders as strings in C++ (or load then from extra source file)
 - Compile shaders
 - Send compiled shaders to GPU
 - Send data to GPU critical step for performance
 - Run shaders with data
- OpenGL, Vulkan

GPU Programming as it used to be

- Specify transformations
- Specify parameters for lighting etc.
- Specify points, lines etc. via API calls
- Graphics library sends data and manages processing on GPU
- No shaders "fixed functions"
- Iris GL (SGI), OpenGL 1.x, now deprecated
- No simple, standardized API for 3D graphics with equivalent functionality
- Hunt for performance (gaming)

vtk

https://www.vtk.org/

- Visualization primitives in scientific computing
 - Datasets on rectangular and unstructured discretization grids
 - Scalar data
 - Vector data
- ► The Visualization Toolkit vtk provides an API with these primitives and uses up-to data graphics API (OpenGL) to render these data
- Well maintained, "working horse" in high performance computing
- Open Source
- Paraview, Vislt: GUI programs around vtk

Working with paraview

https://www.paraview.org/

- Write data into files using vtk specific data format
- Call paraview, load data

In-Situ visualization

- Using "paraview catalyst"
 - Send data via network from simulation server to desktop running paraview
- Call vtk API directly
 - vtkfig: small library for graphics primitives compatible with numcxx