Scientific Computing WS 2017/2018
Lecture 10

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Corrigendum: there is an Perron-Frobenius theorem for general
matrices

Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

> positive (x > 0) if all entries of x are positive
» nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

> positive (A > 0) if all entries of A are positive
> nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n X n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(ii) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.

(iv) p(A) is a simple eigenvalue of A.

Proof: See Varga.]

Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
» M7, N are nonnegative, i.e. have nonnegative entries

» Regard the iteration ux 1 = M~ Nuy + M~1h.
» We have | — M~TA = M~1N.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A~1 >0, and A=M — N is a
regular splitting. Then p(M~IN) < 1.

Proof: Let G = M~IN. Then A= M(I — G), therefore | — G is
nonsingular.

In addition
ATIN = (M(I = MINYIN= (- MIN)IMIN=(1- G)'G

By Perron-Frobenius (for general matrices), p(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

G)
0< A lNx= Lx
- 1—p(G)

Therefore 0 < p(G) < 1.
As | — G is nonsingular, p(G) < 1. d

Perron-Frobenius for general nonnegative matrices

Each n x n matrix can be brought to the normal form

pApT 0 Rn ... Rom
0 0 ... Rmm

where for j = 1...m, either Rj irreducible or R;; = (0).
Theorem(Varga, Th. 2.20) Let A > 0 be an n x n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius p(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(i) To p(A) there corresponds a nonzero eigenvector x > 0.

(iii) p(A) does not decrease when any entry of A increases.

m

Proof: See Varga; o(A) = U o(Rj;), apply irreducible Perron-Frobenius
j=1
to RJJ O

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

> apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

» Result: incomplete LU factors L, U, remainder R:

A=LU-R

» Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let A, B n x n matrices such that
(i) A<B

(i) by <0 for i # j.

Then, if A is an M-Matrix, so is B.

Proof: For the diagonal parts, one has Dg > Da > 0,
Dy — A > Dg — B > 0 Therefore

| — D 'A> D (Dg — B) > Dg'(Dg— B) =1 — Dg'B =: G > 0.
Perron-Frobenius = p(G) = p(I — Dg'B) < p(I — D;*A) < 1

= | — G is nonsingular. From the proof of the M-matrix criterion,
Dg'B=(I-G) "t =33°,G*>0. As Dg > 0, we get B> 0.

M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A1 obtained from the first step of Gaussian elimination is an M-matrix.

. 1 __ .. _ 213y
Proof: One has a; = a; — 4,

aj,aj1,ay <0, a1 >0

= a;; <0 fori#j

1 0
—a12
an

A= L[;A; with L; = nonsingular, nonnegative

= O o o

—ain
. ai O
= A; nonsingular

Let e; ... e, be the unit vectors. Then Aflel = ﬁel >0. Forj>1,
Alle; = AlL7le = Ale > 0.
= A >0

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A= LU — R is a regular splitting.

Stability of ILU decomposition Il

Proof

Let A, = A; + R, = LA+ Ry where Ry is a nonnegative matrix which
occurs from dropping some off diagonal entries from A;. Thus, Ay > A;
and A; is an M-matrix. We can repeat this recursively

A = Ak + R = LAk 1 + Ry
= Lgly—1Ak—2 + Lk Rk—1 + R«
=Lly_q-... LA+ LLg_1-... LRy +---+ Rk

Let L=(Lp_1-... L))", U=A,_1. Then U= LA+ S with
S=L,qlp o ...- LR+ +Rp—1=Ly—1L, 5 ... -L2(R1+R2+. .. R,,,l)

Lt R=Ri+Ro+...R,_1, then A= LU — R where U"1L™1, R are
nonnegative.

ILU(0)

» Special case of ILU: ignore any fill-in.
» Representation:

M= (D—-E)D~YD - F)

» D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

» Setup:

for(int i=0;i<n;i++)
d(i)=a(i,i)

for(int i=0;i<n;i++)
{
d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}

ILU(0)

Solve Mu =v

Lecture 10 Slide 13

ILU(0)

vy

vvyvyyy

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified"): add ignored off-diagonal entries to D

> ILUT: zero pattern calculated dynamically based on drop tolerance
Dependence on ordering
Can be parallelized using graph coloring
Not much theory: experiment for particular systems
| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU

Preconditioners

» Leave this topic for a while now
» Hopefully, we well be able to discuss
> Multigrid: gives O(n) complexity in optimal situations
» Domain decomposition: Structurally well suited for large scale
parallelization

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A1>0 and A=M—Nisa
regular splitting. Then p(M~1N) < 1.

Proof: Let G= M~IN. Then A= M(l — G), therefore | — G is
nonsingular.

In addition
ATIN = (M(I = M*N)IN= (- MIN)*MIN = (I - G)'G

By Perron-Frobenius (for general nonnegative matrices), p(G) is an
eigenvalue with an eigenvector x > 0. Thus,

0<ainx= A6

1-p(G)

Therefore 0 < p(G) < 1.
As | — G is nonsingular, p(G) < 1.

Recap (ILU + proof

ILU(0)

» Special case of ILU: ignore any fill-in.
» Representation:

M= (D—-E)D~Y(D - F)

» D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

> Setup:

for(int i=0;i<n;i++)
d(i)=a(i,i)

for(int i=0;i<n;i++)

{
d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,jl*d(i)*a(j,1)

ILU(0)

Solve Mu = v

for(int i=0;i<n;i++)
{
double x=0.0;
for (int j=0;j<i;i++)
x=x+a (i, j)*u(j)
u(i)=d(i)*(v(i)-x)

}

for(int i=n-1;i>=0;i--)
{
doubl x=0.0
for(int j=i+1;j<n;j++)
x=x+a(i,j)*u(j)
u(i)=u(i)-d(i)*x

ILU(0)

> Generally better convergence properties than Jacobi, Gauss-Seidel

» One can develop block variants
> Alternatives:
> ILUM: (“modified”): add ignored off-diagonal entries to D
> ILUT: zero pattern calculated dynamically based on drop tolerance
» Dependence on ordering
» Can be parallelized using graph coloring
» Not much theory: experiment for particular systems
» | recommend it as the default initial guess for a sensible preconditioner
> Incomplete Cholesky: symmetric variant of ILU

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R” x R" - R

n n
a(u,v) = (Au,v) = v Au= ZZBUV{UJ

i=1 j=1

As A is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function

f(u) = %a(u, u)—bTu

What is the minimizer of ?

fluy=Au—b=0

» Solution of SPD system = minimization of f.

Method of steepest descent

» Given some vector u;, look for a new iterate ujy;.
» The direction of steepest descend is given by —f'(u;).

» So look for uj1 in the direction of —f'(u;) = r; = b — Au; such that
it minimizes f in this direction, i.e. set uj11 = u; + ar; with a choosen
from

0= %f(u,— + Oéf,') = f’(u,- + ar;) e

=(b—A(ui + ar),n)

= (b— Auj, r;) — a(Ari, 1)

= (ri,r;) — a(Ar, ri)
(ri, i)

(AI’,‘,I’,‘)

Method of steepest descent: iteration scheme

r,':b*AU,'
_ (riari)
4= (Ar,-,r,-)

Uiyl = Ui + ol

Let & the exact solution. Define e = u; — @I, then r; = —Aeg;
Let ||u||a = (Au, u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

€illA S % €A
Whee R = A X()

A is the spectral condition number.

Method of steepest descent: advantages

» Simple Richardson iteration w1 = ux — a(Aug — f) needs good

eigenvalue estimate to be optimal with a = ﬁ
max+ A min

r—1

> In this case, asymptotic convergence rate is p = oy

> Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction
di = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let dy, d ... d,—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Ad;, d;) =0, i #J.

» Look for ujy; in the direction of d; such that it minimizes f in this
direction, i.e. set ujy1 = u; + a;d; with o choosen from

d /
0= af(u, + ad;) = f'(u; + ad;) - d;
= (b— A(u; + ad;), d;)
= (b — Au;, d;) — oAd;, d;)
= (I’,’, d,) — Oé(Adh dl)
. (I’,‘,di)
Y1 (Ad;, d))

Conjugate directions Il

ey = up — I (such that Aeg = —rp) can be represented in the basis of the

search directions:

n—1
€ = Z (5JdJ
i=0

Projecting onto di in the A scalar product gives

(Aeo, dk) =

O =

fury

n—

> 0j(Ad,di)

i—0

Ok (Ady, dy)

(Aep, d) _ (Aeo + >y aidh, di) _ (Aex, d)
(Ady, dk) (Ady, dk) (Ady, dk)
(re, di)

(Adk,dk)

= _ak

Conjugate directions Il

Then,
i—1 n—1 i—1
e=e+y adi=—Y adi+Y ad
j=0 j=0 j=0
n—1
== oy
j=i

So, the iteration consists in component-wise suppression of the error, and
it must converge after n steps. Let k < i. A-projection on dj gives

(Aei, di) = Z aj(Adj, di) =0

Therefore, r; = Ae; is orthogonal to dy ... di—1.

Conjugate directions IV

Looking at the error norm ||e;||a, the method yields the element with the
minimum energy norm from all elements of the affine space ey + K; where
IC,' = span{do, d1 . d,'_l}

n—1n-1

(Aej, &) = (ZM,,ZM) >0 66kl di)

Jj=i k=i
= §2(d.. d)) = i
Z 7(dj,d) = _min_|lel|a

Furthermore, we have

Ujy1 = Uj + O{,'d,'

€1 = € + o;d;
Ae,-+1 = Ae,~ + Oé,'Ad,'

r,-+1 =1 — Oé,'Ad,'

By what magic we can obtain these d;?

Gram-Schmidt Orthogonalization

>

Assume we have been given some linearly independent vectors
Vo, V1...Vp—1.

Set dy = v
Define
i—1
di=vi+ Zﬂikdk
k=0
For j < i, A-project onto d; and require orthogonality:

i—1

(Ads,) = (Avi.d)) + 3 Bu(Adk. o)

k=0
0 = (Av;, d;) + Bj(Ad;, d))
g, = Avind)
o (Ad,d))

If v; are the coordinate unit vectors, this is Gaussian elimination!

If v; are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d; from dj, j < i, we can choose v; = r;, i.e.
the residuals built up during the conjugate direction process.

Let K; = span{dy...dj_1}. Then, r; L K;

But d; are built by Gram-Schmidt from the residuals, so we also have
Ki=span{ry...ri_1} and (r;,r;) =0 for j < i.

From r; = ri_1 — a;_1Ad;_1 we obtain
’C,‘ = K:,'_l U span{Ad,-_l}

This gives two other representations of K;:
K; = span{dy, Ady, A%dp, ..., A 1dy}
= span{ry, Arg, Arg, ..., A}

Such type of subspace of R” is called Krylov subspace, and
orthogonalization methods are more often called Krylov subspace methods.

Conjugate gradients Il

Look at Gram-Schmidt under these conditions. The essential data are

. _ (An,d) _ (Ad,n)
(setting v; = r; and using j < i) B = *(Adj,djj) = *(Adj,dj)'
Then, for j < i
rj+1 = rj — a;jAd;
(1741, ri) = (1, ri) — a;(Adj, ri)
aj(Adj, ri) = (15, ri) — (rjs1, 1)
_O%j(':j+1ari)7 J+1:’ *ﬁ(riari)a J+1:I
(Adj7ri): O%j(rj?ri); J:I = o%.(rhri)v ./:I
0, else 0, else

For j < i:

1 (ri,r) . .
gy = J w Gdady JHL=T
=
’ 07 else

Conjugate gradients |l
For Gram-Schmidt we defined (replacing v; by r;):
i—1

d=r+ Zﬁikdk

k=0
=ri + Bii—1di—1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don't have to store old residuals or
search directions. In the sequel, set 3; :== f3; ;_1.

We have

di1 =ri-1+ Bi—1di—
(di—1,ric1) = (ric1, ric1) + Bica(di—2, rie1)

= (rifl, rifl)
5 = 1 (riyri) _ (n,n)
o Q1 (Adi—l, di—l) - (di—l, fi—1)
- (fi, fi)

(rifly rifl)

Conjugate gradients IV - The algorithm

Given initial value up, spd matrix A, right hand side b.
do = I = b— AUO
(rl'a ri)

o= ———

(Ad;, d;)
Uip1 = Ui + oid

riy1 = r — O[,'Ad,'

5'+1 _ (fi+17 ri+1)
I (riari)

dit1 = rig1 + Biyrd;

At the i-th step, the algorithm yields the element from ey + KC; with the
minimum energy error.

Theorem The convergence rate of the method is

VE-1Y
(14 <2
el <2 (Y277) Nl
Am.ax(A)

Py y is the spectral condition number.

where Kk =

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
k(M™LA) << K(A).

Let E be such that M = EET, e.g. its Cholesky factorization. Then,
o(M71A) = o(E7TAE"T):

Assume M~1Au = Au. We have

(ETPAE""WETu)=(ETET)E'Au=E" M *Au=XE"u

& ETuis an eigenvector of ETYAE™T with eigenvalue).

Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system
ET'AE" Tk =E7'b
with 1= ETu
dy=F=E *b— ETAE Ty

(Fi, %)
(E-YAE-Td;, d;)
i1 = Ui + oid;
7‘,‘+1 = 7‘,‘ — a,-E_lAE_TZJ’,-

Fiv1, i

ﬂi+1 = M
(riv ri)

diy1 = Fip1 + Birds

i =

Not very practical as we need E

Preconditioned CG Il

Assume F; = E~1r;, di = ETd};, we get the equivalent algorithm

nh = b— AUO
do = M71r0
=1, ,
o — (M=t)
(Ad;, d;)

Ujy1 = Uj + Oé,'d,'

riy1 = ri — Oé,'Ad,'

Birg = (Mg, rig1)
i+1 — (ri, ri)

diy1 = M~ rigy + Bigad;

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However
during the iteration, floating point errors occur which distort the
calculations and lead to the fact that the accumulated residuals

riy1 = ri — ajAd;
give a much more optimistic picture on the state of the iteration than the

real residual

riy1 = b — Aujyy

C++ implementation

template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,
const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r = b - A¥x;
if (normb 0.0) normb = 1;
if ((resid = norm(r) / mormb) <= tol) {
tol = resid;
max_iter = 0;
return 0;

for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);
tho(0) = dot(r, z);
if (3 1)
P =z
else {
beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;

q = Axp;

alpha(0) = rho(0) / dot(p, q);

x += alpha(0) * p;

r -= alpha(0) * q;

if ((resid = norm(r) / mormb) <= tol) {
tol = resid;
max_iter
return 0;

¥

rho_1(0) = rho(0);

i;

tol = resid; return 1;

}

C++ implementation Il

> Available from http://www.netlib.org/templates/cpp//cg.h
» Slightly adapted for numcxx
» Available in numxx in the namespace netlib.

Unsymmetric problems

» By definition, CG is only applicable to symmetric problems.
» The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xg, perform

nn=b—Axo Fo = b — %AT
Po="ro bo="y
(%, 1)
ap =
(pivApi)
Xi41 = Xi + @;p; Kit1 =X + aip;i
N N A AT
fiy1 = ri — a;Ap; Fir1 =P — a;piA
(Fis1, riv1)
Bi=—"r~—"
(riv ri)
pit1 = riy1+ Bipi Piv1 = Fir1 + Bipi

The two sequences produced by the algorithm are biorthogonal, i.e.,
(Pi, Apj) = (Fi, r;) = 0 for i # j.

Unsymmetric problems Il

» BiCG is very unstable and additionally needs the transposed matrix
vector product, it is seldomly used in practice
> There is as well a preconditioned variant of BiCG which also needs
the transposed preconditioner.
» Main practical approaches to fix the situation:
> “Stabilize” BiCG — BiCGstab (H. Van der Vorst, 1992)
> tweak CG — "Conjugate gradients squared” (CGS, Sonneveld, 1989)
> Error minimization in Krylov subspace — “Generalized Minimum
Residual” (GMRES, Saad/Schulz, 1986)
» Both CGS and BiCGstab can show rather erratic convergence behavior
» For GMRES one has to keep the full Krylov subspace, which is not
possible in practice = restart strategy.
» From my experience, BiCGstab is a good first guess

