
Lecture 10 Slide 1

Scientific Computing WS 2017/2018

Lecture 10

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 10 Slide 2

Corrigendum: there is an Perron-Frobenius theorem for general
matrices

Lecture 8 Slide 30

Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n× n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.
Proof: See Varga. �

Lecture 10 Slide 3

Lecture 8 Slide 35

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.

Lecture 10 Slide 4

Lecture 8 Slide 36

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius (for general matrices), ρ(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �

Lecture 10 Slide 5

Lecture 10 Slide 6

Perron-Frobenius for general nonnegative matrices
Each n × n matrix can be brought to the normal form

PAPT =




R11 R12 . . . R1m
0 R22 . . . R2m
... . . .
0 0 . . . Rmm




where for j = 1 . . .m, either Rjj irreducible or Rjj = (0).
Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1
σ(Rjj), apply irreducible Perron-Frobenius

to Rjj . �

Lecture 10 Slide 7

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R:

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Lecture 10 Slide 8

Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let A, B n × n matrices such that
(i) A ≤ B
(ii) bij ≤ 0 for i 6= j .

Then, if A is an M-Matrix, so is B.
Proof: For the diagonal parts, one has DB ≥ DA > 0,
DA − A ≥ DB − B ≥ 0 Therefore

I − D−1
A A ≥ D−1

A (DB − B) ≥ D−1
B (DB − B) = I − D−1

B B =: G ≥ 0.

Perron-Frobenius ⇒ ρ(G) = ρ(I − D−1
B B) ≤ ρ(I − D−1

A A) < 1
⇒ I − G is nonsingular. From the proof of the M-matrix criterion,
D−1

B B = (I − G)−1 =
∑∞

k=0 Gk ≥ 0. As DB > 0, we get B ≥ 0.
�

Lecture 10 Slide 9

M-Property propagation in Gaussian Elimination
Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A1 obtained from the first step of Gaussian elimination is an M-matrix.
Proof: One has a1

ij = aij − ai1a1j
a11

,
aij , ai1, a1j ≤ 0, a11 > 0
⇒ a1

ij ≤ 0 for i 6= j

A = L1A1 with L1 =




1 0 . . . 0
−a12
a11

1 . . . 0
... . . . 0
−a1n
a11

0 . . . 1


 nonsingular, nonnegative

⇒ A1 nonsingular

Let e1 . . . en be the unit vectors. Then A−1
1 e1 = 1

a11 e1 ≥ 0. For j > 1,
A−1

1 ej = A−1L−1ej = A−1ej ≥ 0.
⇒ A−1

1 ≥ 0
�

Lecture 10 Slide 10

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.

Lecture 10 Slide 11

Stability of ILU decomposition II

Proof

Let Ã1 = A1 + R1 = L1A + R1 where R1 is a nonnegative matrix which
occurs from dropping some off diagonal entries from A1. Thus, Ã1 ≥ A1
and Ã1 is an M-matrix. We can repeat this recursively

Ãk = Ak + Rk = LkAk−1 + Rk

= LkLk−1Ak−2 + LkRk−1 + Rk

= LkLk−1 · . . . · L1A + LkLk−1 · . . . · L2R1 + · · ·+ Rk

Let L = (Ln−1 · . . . · L1)−1, U = Ãn−1. Then U = L−1A + S with

S = Ln−1Ln−2· . . . ·L2R1+· · ·+Rn−1 = Ln−1Ln−2· . . . ·L2(R1+R2+. . .Rn−1)

Let R = R1 + R2 + . . .Rn−1, then A = LU − R where U−1L−1, R are
nonnegative.

�

Lecture 10 Slide 12

ILU(0)
I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:
for(int i=0;i<n;i++)

d(i)=a(i,i)

for(int i=0;i<n;i++)
{

d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)

}

Lecture 10 Slide 13

ILU(0)

Solve Mu = v
for(int i=0;i<n;i++)
{

double x=0.0;
for (int j=0;j<i;i++)

x=x+a(i,j)*u(j)
u(i)=d(i)*(v(i)-x)

}

for(int i=n-1;i>=0;i--)
{

double x=0.0
for(int j=i+1;j<n;j++)

x=x+a(i,j)*u(j)
u(i)=u(i)-d(i)*x

}

Lecture 10 Slide 14

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

Lecture 10 Slide 15

Preconditioners

I Leave this topic for a while now
I Hopefully, we well be able to discuss

I Multigrid: gives O(n) complexity in optimal situations
I Domain decomposition: Structurally well suited for large scale

parallelization

Lecture 10 Slide 16

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius (for general nonnegative matrices), ρ(G) is an
eigenvalue with an eigenvector x ≥ 0. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �

Lecture 10 Slide 17

Recap (ILU + proof

Lecture 9 Slide 34

ILU(0)
I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:
for(int i=0;i<n;i++)

d(i)=a(i,i)

for(int i=0;i<n;i++)
{

d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)

}

Lecture 10 Slide 18

Lecture 9 Slide 35

ILU(0)

Solve Mu = v
for(int i=0;i<n;i++)
{

double x=0.0;
for (int j=0;j<i;i++)

x=x+a(i,j)*u(j)
u(i)=d(i)*(v(i)-x)

}

for(int i=n-1;i>=0;i--)
{

doubl x=0.0
for(int j=i+1;j<n;j++)

x=x+a(i,j)*u(j)
u(i)=u(i)-d(i)*x

}

Lecture 10 Slide 19

Lecture 9 Slide 36

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

Lecture 10 Slide 20

Lecture 9 Slide 40

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑

j=1
aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.
For a given vector b, regard the function

f (u) = 1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
Lecture 10 Slide 21

Lecture 9 Slide 41

Method of steepest descent

I Given some vector ui , look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui).
I So look for ui+1 in the direction of −f ′(ui) = ri = b − Aui such that

it minimizes f in this direction, i.e. set ui+1 = ui +αri with α choosen
from

0 = d
dα f (ui + αri) = f ′(ui + αri) · ri

= (b − A(ui + αri), ri)
= (b − Aui , ri)− α(Ari , ri)
= (ri , ri)− α(Ari , ri)

α = (ri , ri)
(Ari , ri)

Lecture 10 Slide 22

Lecture 9 Slide 42

Method of steepest descent: iteration scheme

ri = b − Aui

αi = (ri , ri)
(Ari , ri)

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u) 1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 10 Slide 23

Lecture 9 Slide 43

Method of steepest descent: advantages

I Simple Richardson iteration uk+1 = uk − α(Auk − f) needs good
eigenvalue estimate to be optimal with α = 2

λmax +λmin

I In this case, asymptotic convergence rate is ρ = κ−1
κ+1

I Steepest descent has the same rate without need for spectral estimate

Lecture 10 Slide 24

Lecture 10 Slide 25

Conjugate directions
For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j .

I Look for ui+1 in the direction of di such that it minimizes f in this
direction, i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)
= (b − Aui , di)− α(Adi , di)
= (ri , di)− α(Adi , di)

αi = (ri , di)
(Adi , di)

Lecture 10 Slide 26

Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the
search directions:

e0 =
n−1∑

i=0
δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =
n−1∑

i=0
δj(Adj , dk)

= δk(Adk , dk)

δk = (Ae0, dk)
(Adk , dk) =

(Ae0 +
∑

i<k αidi , dk)
(Adk , dk) = (Aek , dk)

(Adk , dk)

= (rk , dk)
(Adk , dk)

= −αk

Lecture 10 Slide 27

Conjugate directions III

Then,

ei = e0 +
i−1∑

j=0
αjdj = −

n−1∑

j=0
αjdj +

i−1∑

j=0
αjdj

= −
n−1∑

j=i
αjdj

So, the iteration consists in component-wise suppression of the error, and
it must converge after n steps. Let k ≤ i . A-projection on dk gives

(Aei , dk) = −
n−1∑

j=i
αj(Adj , dk) = 0

Therefore, ri = Aei is orthogonal to d0 . . . di−1.

Lecture 10 Slide 28

Conjugate directions IV
Looking at the error norm ||ei ||A, the method yields the element with the
minimum energy norm from all elements of the affine space e0 +Ki where
Ki = span{d0, d1 . . . di−1}

(Aei , ei) =
(n−1∑

j=i
δjdj ,

n−1∑

j=i
δjdj

)
=

n−1∑

j=i

n−1∑

k=i
δjδk(dj , dk)

=
n−1∑

j=i
δ2

j (dj , dj) = min
e∈e0+Ki

||e||A

Furthermore, we have

ui+1 = ui + αidi

ei+1 = ei + αidi

Aei+1 = Aei + αiAdi

ri+1 = ri − αiAdi

By what magic we can obtain these di ?

Lecture 10 Slide 29

Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0

I Define

di = vi +
i−1∑

k=0
βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +
i−1∑

k=0
βik(Adk , dj)

0 = (Avi , dj) + βij(Adj , dj)

βij = − (Avi , dj)
(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory

Lecture 10 Slide 30

Conjugate gradients (Hestenes, Stiefel, 1952)
As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri , i.e.
the residuals built up during the conjugate direction process.
Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .
From ri = ri−1 − αi−1Adi−1 we obtain
Ki = Ki−1 ∪ span{Adi−1}
This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}
= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and
orthogonalization methods are more often called Krylov subspace methods.

Lecture 10 Slide 31

Conjugate gradients II
Look at Gram-Schmidt under these conditions. The essential data are
(setting vi = ri and using j < i) βij = − (Ari ,dj)

(Adj ,dj) = − (Adj ,ri)
(Adj ,dj) .

Then, for j ≤ i :

rj+1 = rj − αjAdj

(rj+1, ri) = (rj , ri)− αj(Adj , ri)
αj(Adj , ri) = (rj , ri)− (rj+1, ri)

(Adj , ri) =





− 1
αj

(rj+1, ri), j + 1 = i
1
αj

(rj , ri), j = i
0, else

=





− 1
αi−1

(ri , ri), j + 1 = i
1
αi

(ri , ri), j = i
0, else

For j < i :

βij =
{

1
αi−1

(ri ,ri)
(Adi−1,di−1) , j + 1 = i

0, else

Lecture 10 Slide 32

Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri):

di = ri +
i−1∑

k=0
βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or
search directions. In the sequel, set βi := βi,i−1.
We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)
= (ri−1, ri−1)

βi = 1
αi−1

(ri , ri)
(Adi−1, di−1) = (ri , ri)

(di−1, ri−1)

= (ri , ri)
(ri−1, ri−1)

Lecture 10 Slide 33

Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri)

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 10 Slide 34

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).
Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):
Assume M−1Au = λu. We have

(E−1AE−T)(ET u) = (ET E−T)E−1Au = ET M−1Au = λET u

⇔ ET u is an eigenvector of E−1AE−T with eigenvalue λ.

Lecture 10 Slide 35

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ET u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i)
(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i)

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E

Lecture 10 Slide 36

Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

Lecture 10 Slide 37

A few issues

Usually we stop the iteration when the residual r becomes small. However
during the iteration, floating point errors occur which distort the
calculations and lead to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than the
real residual

ri+1 = b − Aui+1

Lecture 10 Slide 38

C++ implementation
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;

Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r = b - A*x;
if (normb == 0.0) normb = 1;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = 0;
return 0;

}
for (int i = 1; i <= max_iter; i++) {

z = M.solve(r);
rho(0) = dot(r, z);
if (i == 1)

p = z;
else {

beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;

}
q = A*p;
alpha(0) = rho(0) / dot(p, q);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = i;
return 0;

}
rho_1(0) = rho(0);

}
tol = resid; return 1;

}

Lecture 10 Slide 39

C++ implementation II

I Available from http://www.netlib.org/templates/cpp//cg.h
I Slightly adapted for numcxx
I Available in numxx in the namespace netlib.

Lecture 10 Slide 40

Unsymmetric problems
I By definition, CG is only applicable to symmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̂0 = b̂ − x̂0AT

p0 = r0 p̂0 = r̂0

αi = (r̂i , ri)
(p̂i ,Api)

xi+1 = xi + αipi x̂i+1 = x̂i + αi p̂i

ri+1 = ri − αiApi r̂i+1 = r̂i − αi p̂iAT

βi = (r̂i+1, ri+1)
(r̂i , ri)

pi+1 = ri+1 + βipi p̂i+1 = r̂i+1 + βi p̂i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̂i ,Apj) = (r̂i , rj) = 0 for i 6= j .

Lecture 10 Slide 41

Unsymmetric problems II

I BiCG is very unstable and additionally needs the transposed matrix
vector product, it is seldomly used in practice

I There is as well a preconditioned variant of BiCG which also needs
the transposed preconditioner.

I Main practical approaches to fix the situation:
I “Stabilize” BiCG → BiCGstab (H. Van der Vorst, 1992)
I tweak CG → “Conjugate gradients squared” (CGS, Sonneveld, 1989)
I Error minimization in Krylov subspace → “Generalized Minimum

Residual” (GMRES, Saad/Schulz, 1986)
I Both CGS and BiCGstab can show rather erratic convergence behavior
I For GMRES one has to keep the full Krylov subspace, which is not

possible in practice ⇒ restart strategy.
I From my experience, BiCGstab is a good first guess

