Scientific Computing WS 2017/2018

Lecture 10

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Corrigendum: there is an Perron-Frobenius theorem for general matrices

Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector \mathbf{x} is

- positive $(x>0)$ if all entries of x are positive
- nonnegative $(x \geq 0)$ if all entries of x are nonnegative

Definition: A real $n \times n$ matrix A is

- positive $(A>0)$ if all entries of A are positive
- nonnegative $(A \geq 0)$ if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let $A \geq 0$ be an irreducible $n \times n$ matrix. Then
(i) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$.
(ii) To $\rho(A)$ there corresponds a positive eigenvector $\mathbf{x}>0$.
(iii) $\rho(A)$ increases when any entry of A increases.
(iv) $\rho(A)$ is a simple eigenvalue of A.

Proof: See Varga.

Regular splittings

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- We have $I-M^{-1} A=M^{-1} N$.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.

Proof: Let $G=M^{-1} N$. Then $A=M(I-G)$, therefore $I-G$ is nonsingular.

In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-G)^{-1} G
$$

By Perron-Frobenius (for general matrices), $\rho(G)$ is an eigenvalue with a nonnegative eigenvector \mathbf{x}. Thus,

$$
0 \leq A^{-1} N \mathbf{x}=\frac{\rho(G)}{1-\rho(G)} \mathbf{x}
$$

Therefore $0 \leq \rho(G) \leq 1$.
As $I-G$ is nonsingular, $\rho(G)<1$.

Perron-Frobenius for general nonnegative matrices

Each $n \times n$ matrix can be brought to the normal form

$$
P A P^{T}=\left(\begin{array}{cccc}
R_{11} & R_{12} & \ldots & R_{1 m} \\
0 & R_{22} & \ldots & R_{2 m} \\
\vdots & & \ddots & \\
0 & 0 & \ldots & R_{m m}
\end{array}\right)
$$

where for $j=1 \ldots m$, either $R_{j j}$ irreducible or $R_{j j}=(0)$.
Theorem(Varga, Th. 2.20) Let $A \geq 0$ be an $n \times n$ matrix. Then
(i) A has a nonnegative eigenvalue equal to its spectral radius $\rho(A)$. This eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular
(ii) To $\rho(A)$ there corresponds a nonzero eigenvector $\mathbf{x} \geq 0$.
(iii) $\rho(A)$ does not decrease when any entry of A increases.

Proof: See Varga; $\sigma(A)=\bigcup_{j=1}^{m} \sigma\left(R_{j j}\right)$, apply irreducible Perron-Frobenius to $R_{j j}$.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete LU factors L, U, remainder R :

$$
A=L U-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let $A, B n \times n$ matrices such that
(i) $A \leq B$
(ii) $b_{i j} \leq 0$ for $i \neq j$.

Then, if A is an M-Matrix, so is B.
Proof: For the diagonal parts, one has $D_{B} \geq D_{A}>0$, $D_{A}-A \geq D_{B}-B \geq 0$ Therefore

$$
I-D_{A}^{-1} A \geq D_{A}^{-1}\left(D_{B}-B\right) \geq D_{B}^{-1}\left(D_{B}-B\right)=I-D_{B}^{-1} B=: G \geq 0
$$

Perron-Frobenius $\Rightarrow \rho(G)=\rho\left(I-D_{B}^{-1} B\right) \leq \rho\left(I-D_{A}^{-1} A\right)<1$
$\Rightarrow I-G$ is nonsingular. From the proof of the M-matrix criterion,
$D_{B}^{-1} B=(I-G)^{-1}=\sum_{k=0}^{\infty} G^{k} \geq 0$. As $D_{B}>0$, we get $B \geq 0$.

M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix A_{1} obtained from the first step of Gaussian elimination is an M-matrix.
Proof: One has $a_{i j}^{1}=a_{i j}-\frac{a_{i 1} a_{1 j}}{a_{11}}$,
$a_{i j}, a_{i 1}, a_{1 j} \leq 0, a_{11}>0$
$\Rightarrow a_{i j}^{1} \leq 0$ for $i \neq j$
$A=L_{1} A_{1}$ with $L_{1}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ \frac{-a_{12}}{a_{11}} & 1 & \ldots & 0 \\ \vdots & & \ddots & 0 \\ \frac{-a l n}{a_{11}} & 0 & \ldots & 1\end{array}\right)$ nonsingular, nonnegative
$\Rightarrow A_{1}$ nonsingular

Let $e_{1} \ldots e_{n}$ be the unit vectors. Then $A_{1}^{-1} e_{1}=\frac{1}{a_{1} 1} e_{1} \geq 0$. For $j>1$, $A_{1}^{-1} e_{j}=A^{-1} L^{-1} e_{j}=A^{-1} e_{j} \geq 0$.
$\Rightarrow A_{1}^{-1} \geq 0$

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization with a given nonzero pattern

$$
A=L U-R
$$

is stable. Moreover, $A=L U-R$ is a regular splitting.

Stability of ILU decomposition II

Proof

Let $\tilde{A}_{1}=A_{1}+R_{1}=L_{1} A+R_{1}$ where R_{1} is a nonnegative matrix which occurs from dropping some off diagonal entries from A_{1}. Thus, $\tilde{A}_{1} \geq A_{1}$ and \tilde{A}_{1} is an M-matrix. We can repeat this recursively

$$
\begin{aligned}
\tilde{A}_{k}=A_{k}+R_{k} & =L_{k} A_{k-1}+R_{k} \\
& =L_{k} L_{k-1} A_{k-2}+L_{k} R_{k-1}+R_{k} \\
& =L_{k} L_{k-1} \cdot \ldots \cdot L_{1} A+L_{k} L_{k-1} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{k}
\end{aligned}
$$

Let $L=\left(L_{n-1} \cdot \ldots \cdot L_{1}\right)^{-1}, U=\tilde{A}_{n-1}$. Then $U=L^{-1} A+S$ with
$S=L_{n-1} L_{n-2} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{n-1}=L_{n-1} L_{n-2} \cdot \cdots \cdot L_{2}\left(R_{1}+R_{2}+\ldots R_{n-1}\right)$
Let $R=R_{1}+R_{2}+\ldots R_{n-1}$, then $A=L U-R$ where $U^{-1} L^{-1}, R$ are nonnegative.

$\operatorname{ILU}(0)$

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for(int i=0;i<n;i++)
    d(i)=a(i,i)
for(int i=0;i<n;i++)
{
    d(i)=1.0/d(i)
    for (int j=i+1;j<n;j++)
    d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}
```


$\operatorname{ILU}(0)$

Solve $M u=v$

```
for(int i=0;i<n;i++)
{
    double x=0.0;
    for (int j=0;j<i;i++)
        x=x+a(i,j)*u(j)
    u(i)=d(i)*(v(i)-x)
}
for(int i=n-1;i>=0;i--)
{
    double x=0.0
    for(int j=i+1;j<n;j++)
            x=x+a(i,j)*u(j)
    u(i)=u(i)-d(i)*x
}
```


ILU(0)

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Preconditioners

- Leave this topic for a while now
- Hopefully, we well be able to discuss
- Multigrid: gives $O(n)$ complexity in optimal situations
- Domain decomposition: Structurally well suited for large scale parallelization

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.
Proof: Let $G=M^{-1} N$. Then $A=M(I-G)$, therefore $I-G$ is nonsingular.

In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-G)^{-1} G
$$

By Perron-Frobenius (for general nonnegative matrices), $\rho(G)$ is an eigenvalue with an eigenvector $\mathrm{x} \geq 0$. Thus,

$$
0 \leq A^{-1} N \mathbf{x}=\frac{\rho(G)}{1-\rho(G)} \mathbf{x}
$$

Therefore $0 \leq \rho(G) \leq 1$.
As $I-G$ is nonsingular, $\rho(G)<1$.

Recap (ILU + proof

ILU(0)

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for(int i=0;i<n;i++)
    d(i)=a(i,i)
for(int i=0;i<n;i++)
{
    d(i)=1.0/d(i)
    for (int j=i+1;j<n;j++)
    d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}
```


ILU(0)

Solve $M u=v$

```
for(int i=0;i<n;i++)
{
    double x=0.0;
    for (int j=0;j<i;i++)
        x=x+a(i,j)*u(j)
    u(i)=d(i)*(v(i)-x)
}
for(int i=n-1;i>=0;i--)
{
        doubl x=0.0
        for(int j=i+1;j<n;j++)
            x=x+a(i,j)*u(j)
        u(i)=u(i)-d(i)*x
}
```

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form $a: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{T} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent

- Given some vector u_{i}, look for a new iterate u_{i+1}.
- The direction of steepest descend is given by $-f^{\prime}\left(u_{i}\right)$.
- So look for u_{i+1} in the direction of $-f^{\prime}\left(u_{i}\right)=r_{i}=b-A u_{i}$ such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha r_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha r_{i}\right)=f^{\prime}\left(u_{i}+\alpha r_{i}\right) \cdot r_{i} \\
& =\left(b-A\left(u_{i}+\alpha r_{i}\right), r_{i}\right) \\
& =\left(b-A u_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
& =\left(r_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
\alpha & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)}
\end{aligned}
$$

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$
Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.
Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- Simple Richardson iteration $u_{k+1}=u_{k}-\alpha\left(A u_{k}-f\right)$ needs good eigenvalue estimate to be optimal with $\alpha=\frac{2}{\lambda_{\max }+\lambda_{\text {min }}}$
- In this case, asymptotic convergence rate is $\rho=\frac{\kappa-1}{\kappa+1}$
- Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.
So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

Conjugate directions II

$e_{0}=u_{0}-\hat{u}$ (such that $A e_{0}=-r_{0}$) can be represented in the basis of the search directions:

$$
e_{0}=\sum_{i=0}^{n-1} \delta_{j} d_{j}
$$

Projecting onto d_{k} in the A scalar product gives

$$
\begin{aligned}
\left(A e_{0}, d_{k}\right) & =\sum_{i=0}^{n-1} \delta_{j}\left(A d_{j}, d_{k}\right) \\
& =\delta_{k}\left(A d_{k}, d_{k}\right) \\
\delta_{k} & =\frac{\left(A e_{0}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{0}+\sum_{i<k} \alpha_{i} d_{i}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =\frac{\left(r_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =-\alpha_{k}
\end{aligned}
$$

Conjugate directions III

Then,

$$
\begin{aligned}
e_{i} & =e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j} \\
& =-\sum_{j=i}^{n-1} \alpha_{j} d_{j}
\end{aligned}
$$

So, the iteration consists in component-wise suppression of the error, and it must converge after n steps. Let $k \leq i$. A-projection on d_{k} gives

$$
\left(A e_{i}, d_{k}\right)=-\sum_{j=i}^{n-1} \alpha_{j}\left(A d_{j}, d_{k}\right)=0
$$

Therefore, $r_{i}=A e_{i}$ is orthogonal to $d_{0} \ldots d_{i-1}$.

Conjugate directions IV

Looking at the error norm $\left\|e_{i}\right\|_{A}$, the method yields the element with the minimum energy norm from all elements of the affine space $e_{0}+\mathcal{K}_{i}$ where $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0}, d_{1} \ldots d_{i-1}\right\}$

$$
\begin{aligned}
\left(A e_{i}, e_{i}\right) & =\left(\sum_{j=i}^{n-1} \delta_{j} d_{j}, \sum_{j=i}^{n-1} \delta_{j} d_{j}\right)=\sum_{j=i}^{n-1} \sum_{k=i}^{n-1} \delta_{j} \delta_{k}\left(d_{j}, d_{k}\right) \\
& =\sum_{j=i}^{n-1} \delta_{j}^{2}\left(d_{j}, d_{j}\right)=\min _{e \in e_{0}+\mathcal{K}_{i}}\|e\|_{A}
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
e_{i+1} & =e_{i}+\alpha_{i} d_{i} \\
A e_{i+1} & =A e_{i}+\alpha_{i} A d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i}
\end{aligned}
$$

By what magic we can obtain these d_{i} ?

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors $v_{0}, v_{1} \ldots v_{n-1}$.
- Set $d_{0}=v_{0}$
- Define

$$
d_{i}=v_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k}
$$

- For $j<i$, A-project onto d_{j} and require orthogonality:

$$
\begin{aligned}
\left(A d_{i}, d_{j}\right) & =\left(A v_{i}, d_{j}\right)+\sum_{k=0}^{i-1} \beta_{i k}\left(A d_{k}, d_{j}\right) \\
0 & =\left(A v_{i}, d_{j}\right)+\beta_{i j}\left(A d_{j}, d_{j}\right) \\
\beta_{i j} & =-\frac{\left(A v_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}
\end{aligned}
$$

- If v_{i} are the coordinate unit vectors, this is Gaussian elimination!
- If v_{i} are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d_{i} from $d_{j}, j<i$, we can choose $v_{i}=r_{i}$, i.e. the residuals built up during the conjugate direction process.
Let $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0} \ldots d_{i-1}\right\}$. Then, $r_{i} \perp \mathcal{K}_{i}$
But d_{i} are built by Gram-Schmidt from the residuals, so we also have $\mathcal{K}_{i}=\operatorname{span}\left\{r_{0} \ldots r_{i-1}\right\}$ and $\left(r_{i}, r_{j}\right)=0$ for $j<i$.

From $r_{i}=r_{i-1}-\alpha_{i-1} A d_{i-1}$ we obtain
$\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup \operatorname{span}\left\{A d_{i-1}\right\}$
This gives two other representations of \mathcal{K}_{i} :

$$
\begin{aligned}
\mathcal{K}_{i} & =\operatorname{span}\left\{d_{0}, A d_{0}, A^{2} d_{0}, \ldots, A^{i-1} d_{0}\right\} \\
& =\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
\end{aligned}
$$

Such type of subspace of \mathbb{R}^{n} is called Krylov subspace, and orthogonalization methods are more often called Krylov subspace methods.

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting $v_{i}=r_{i}$ and using $\left.j<i\right) \beta_{i j}=-\frac{\left(A r_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}=-\frac{\left(A d_{j}, r_{i}\right)}{\left(A d_{j}, d_{j}\right)}$.
Then, for $j \leq i$:

$$
\begin{aligned}
r_{j+1} & =r_{j}-\alpha_{j} A d_{j} \\
\left(r_{j+1}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\alpha_{j}\left(A d_{j}, r_{i}\right) \\
\alpha_{j}\left(A d_{j}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\left(r_{j+1}, r_{i}\right) \\
\left(A d_{j}, r_{i}\right) & =\left\{\begin{array}{ll}
-\frac{1}{\alpha_{j}}\left(r_{j+1}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{j}}\left(r_{j}, r_{i}\right), & j=i \\
0, & \text { else }
\end{array}= \begin{cases}-\frac{1}{\alpha_{i-1}}\left(r_{i}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{i}}\left(r_{i}, r_{i}\right), & j=i \\
0, & \text { else }\end{cases} \right.
\end{aligned}
$$

For $j<i$:

$$
\beta_{i j}= \begin{cases}\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}, & j+1=i \\ 0, & \text { else }\end{cases}
$$

Conjugate gradients III

For Gram-Schmidt we defined (replacing v_{i} by r_{i}):

$$
\begin{aligned}
d_{i} & =r_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k} \\
& =r_{i}+\beta_{i, i-1} d_{i-1}
\end{aligned}
$$

So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual. We don't have to store old residuals or search directions. In the sequel, set $\beta_{i}:=\beta_{i, i-1}$.

We have

$$
\begin{aligned}
d_{i-1} & =r_{i-1}+\beta_{i-1} d_{i-2} \\
\left(d_{i-1}, r_{i-1}\right) & =\left(r_{i-1}, r_{i-1}\right)+\beta_{i-1}\left(d_{i-2}, r_{i-1}\right) \\
& =\left(r_{i-1}, r_{i-1}\right) \\
\beta_{i} & =\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}=\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i-1}, r_{i-1}\right)} \\
& =\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number.

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that $\kappa\left(M^{-1} A\right) \ll \kappa(A)$.
Let E be such that $M=E E^{T}$, e.g. its Cholesky factorization. Then, $\sigma\left(M^{-1} A\right)=\sigma\left(E^{-1} A E^{-T}\right)$:
Assume $M^{-1} A u=\lambda u$. We have

$$
\left(E^{-1} A E^{-T}\right)\left(E^{T} u\right)=\left(E^{T} E^{-T}\right) E^{-1} A u=E^{T} M^{-1} A u=\lambda E^{T} u
$$

$\Leftrightarrow E^{T} u$ is an eigenvector of $E^{-1} A E^{-T}$ with eigenvalue λ.

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

$$
E^{-1} A E^{-T} \tilde{x}=E^{-1} b
$$

with $\tilde{u}=E^{T} u$

$$
\begin{aligned}
\tilde{d}_{0} & =\tilde{r}_{0}=E^{-1} b-E^{-1} A E^{-T} u_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)}{\left(E^{-1} A E^{-T} \tilde{d}_{i}, \tilde{d}_{i}\right)} \\
\tilde{u}_{i+1} & =\tilde{u}_{i}+\alpha_{i} \tilde{d}_{i} \\
\tilde{r}_{i+1} & =\tilde{r}_{i}-\alpha_{i} E^{-1} A E^{-T} \tilde{d}_{i} \\
\beta_{i+1} & =\frac{\left(\tilde{r}_{i+1}, \tilde{r}_{i+1}\right)}{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)} \\
\tilde{d}_{i+1} & =\tilde{r}_{i+1}+\beta_{i+1} \tilde{d}_{i}
\end{aligned}
$$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

C++ implementation

```
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,
    const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
    Vector p, z, q;
    Vector alpha(1), beta(1), rho(1), rho_1(1);
    Real normb = norm(b);
    Vector r = b - A*x;
    if (normb == 0.0) normb = 1;
    if ((resid = norm(r) / normb) <= tol) {
        tol = resid;
        max_iter = 0;
        return 0;
    }
    for (int i = 1; i <= max_iter; i++) {
        z = M.solve(r);
        rho(0) = dot (r, z);
        if (i == 1)
            p = z;
        else {
            beta(0) = rho(0) / rho_1(0);
            p = z + beta(0) * p;
        }
        q = A*p;
        alpha(0) = rho(0) / dot(p,q);
        x += alpha(0) * p;
        r -= alpha(0) * q;
        if ((resid = norm(r) / normb) <= tol) {
            tol = resid;
            max_iter = i;
            return 0;
        }
        rho_1(0) = rho(0);
    }
    tol = resid; return 1;
}
```


C ++ implementation II

- Available from http://www.netlib.org/templates/cpp//cg.h
- Slightly adapted for numcxx
- Available in numxx in the namespace netlib.

Unsymmetric problems

- By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_{0}, perform

$$
\begin{aligned}
r_{0} & =b-A x_{0} & \hat{r}_{0} & =\hat{b}-\hat{x}_{0} A^{T} \\
p_{0} & =r_{0} & \hat{p}_{0} & =\hat{r}_{0} \\
\alpha_{i} & =\frac{\left(\hat{r}_{i}, r_{i}\right)}{\left(\hat{p}_{i}, A p_{i}\right)} & & \\
x_{i+1} & =x_{i}+\alpha_{i} p_{i} & \hat{x}_{i+1} & =\hat{x}_{i}+\alpha_{i} \hat{p}_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} & \hat{r}_{i+1} & =\hat{r}_{i}-\alpha_{i} \hat{p}_{i} A^{T} \\
\beta_{i} & =\frac{\left(\hat{r}_{i+1}, r_{i+1}\right)}{\left(\hat{r}_{i}, r_{i}\right)} & & \\
p_{i+1} & =r_{i+1}+\beta_{i} p_{i} & \hat{p}_{i+1} & =\hat{r}_{i+1}+\beta_{i} \hat{p}_{i}
\end{aligned}
$$

The two sequences produced by the algorithm are biorthogonal, i.e., $\left(\hat{p}_{i}, A p_{j}\right)=\left(\hat{r}_{i}, r_{j}\right)=0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable and additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
- "Stabilize" BiCG \rightarrow BiCGstab (H. Van der Vorst, 1992)
- tweak CG \rightarrow "Conjugate gradients squared" (CGS, Sonneveld, 1989)
- Error minimization in Krylov subspace \rightarrow "Generalized Minimum Residual" (GMRES, Saad/Schulz, 1986)
- Both CGS and BiCGstab can show rather erratic convergence behavior
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice \Rightarrow restart strategy.
- From my experience, BiCGstab is a good first guess

