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Recap: iterative methods



Simple iteration with preconditioning

Idea: All=b =

= iterative scheme

U1 = uk — M7 (Aug — b) (k=0,1...)

. Choose initial value wup, tolerance ¢, set k =0
. Calculate residuum ri, = Aux — b
. Test convergence: if ||rk|| < e set u = w, finish

. Calculate update: solve Mvy = ry

g s~ W N =

. Update solution: wuxy1 = ux — vk, set k =i+ 1, repeat with step 2.




The Jacobi method

> Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part
» Preconditioner: M = D, where D is the main diagonal of A =

1 .
Ukt1,i = Uk — — E ajjuk,j — bi (i=1...n)

aii \
=1...n

» Equivalent to the succesive (row by row) solution of
ajiUk+1,i + E ajjUk,j = b; (f =1... n)
j=L...nj#i

> Already calculated results not taken into account
> Alternative formulation with A= M — N:

Ukl = Dil(E + F)Uk + Dilb
=M Nu,+ M 'b

» Variable ordering does not matter




Convergence

> Let & be the solution of Au = b.
> Let ex = u; — i be the error of the k-th iteration step
Ukl = Uk — I\/I_I(Auk —b)
= =M A)u+M1'b
U1 — O = ux — b — M7 (A — AD)
== M A)(ux — )
== M A (u — b)

resulting in

a1 = (I — M A e

> So when does (/ — M~*A)* converge to zero for k — oo ?




Back to iterative methods

Sufficient condition for convergence: p(/ — M~'A) < 1.




Richardson for 1D heat conduction

» Regard the n x n 1D heat conduction matrix with h = —L- and a = 1
(easier to analyze).
2 1
3 h
_1 2 _1
o h h
_1 2 _1
Ao h h
A = ' T . ' .
_1 2 _1
A
hooh
h o h

» Eigenvalues (tri-diagonal Toeplitz matrix):

A;:%(1+cos(%)) (i=1...n)

Source: A. Béttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

» Express them in h: n+1:%+2:1+—/12h:$

2 ihm .
)\;_E(1+cos<1+2h>) (i=1...n)




Richardson for 1D heat conduction: Jacobi

> The Jacobi preconditioner just multiplies by %, therefore for M~ *A:
2,2
Ap 02—
2(1 + 2h?
NN o/
2(1 + 2h)
> Optimal parameter: o = ﬁ ~1(h—0)

> Good news: this is independent of h resp. n

v

No need for spectral estimate in order to work with optimal parameter

v

Is this true beyond this special case ?




Richardson for 1D heat conduction: Convergence factor

» Condition number + spectral radius

K(M™LA) = K(A) = % 1

_ 2,2
p(lfM_lA):K 1 Th

=1-
Rl 2(1 + 2h)?

» Bad news: p —1 (h—0)
» Typical situation with second order PDEs:
K(A)=O(h™%) (h—0)
p(I—DrA)=1-0(h) (h—0)




Iterative solver complexity |

> Solve linear system iteratively until ||ex|| = ||(/ — M7 A) eo|| < ¢

pkeoge
kinp <Ine—Ine

k> k= ’7|ne0—|ne—‘
Inp
> Assume p < po < 1 independent of h resp. N, A sparse and solution of
Mv = r has complexity O(N).
= Number of iteration steps k, independent of N
= Overall complexity O(N).




Iterative solver complexity Il

\4

v

v

v

v

Assume p=1—h = Inp~ —h°
k= 0(h™?)
d: space dimension, then ha N~ = k = O(N%)

Assume O(N) complexity of one iteration step
= Overall complexity O(N#)

Jacobi: § = 2, something better with at least § =1 7

dim p=1-0(h) p=1-0(h) LUfact. LU solve
1 O(N®) O(\?) O(N) O(N)
2 O(N?) O(N?) O(N?)  O(Nlog N)
3 O(N3) O(N3) O(N?) O(N?%)

In 1D, iteration makes not much sense
In 2D, we can hope for parity

In 3D, beat sparse matrix solvers with p =1 — O(h) ?




Solver complexity: scaling with problem size
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Scaling with problem size.




Solver complexity: scaling with accuracy
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> Accuracy of numerial solutions is proportional to some power of h.

» Amount of operations for to reach a given accuracy.




What could be done ?

» Find a better preconditioner with k(M ~'A) = O(h™') or independent of h

> Find a better iterative scheme:
Assume e.g. p= YE=L Let k= X2 — 1 where X = 2(1;:/’) o(h™).

VE+1®
e 1Jr\/x —1-1
V2141
71+\/X71—17\/X2—171
- VXT—1+41
R
VXT-1+1
:1_%
x( 1- L+ )
=1-0(h)

> Here, we would have § = 1. Together with a good preconditioner ...




Eigenvalue analysis for more general matrices

» For 1D heat conduction we used a very special regular structure of
the matrix which allowed exact eigenvalue calculations

» Generalizations to tensor product is possible

» Generalization to varying coefficients, unstructured grids ...
=- what can be done for general matrices ?



The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n > 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix.

Let
= > layl
Jj=l...n
J#i
If X is an eigenvalue of A then there exists r, 1 < r < n such that
|)\ - arr| S /\r
Proof Assume A is eigenvalue, x a corresponding eigenvector, normalized
such that max;—1._,|x| = |x,| = 1. From Ax = Ax it follows that
— ai)x; = Z ajjx;
Jj=l...n
J#i
N—arl=1 D apgl < D lagllxl < Y lagl=A
j=1l...n j=1l...n j=1l...n
A J#r A



Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

re U {nev:ip—ail <A}

i=1...n
Corollary:
p(A) < max S Jagl = [|All
j=1
p(A) Sjﬂax,,z |a| = |Allx
=
Proof

n

—ail SN = ful SN+ el =) layl
=1

Furthermore, o(A) = o(AT).



Gershgorin circles: example

19 1.8 3.4
A=|04 18 04| M =12=2)X=3A =52,A =08 )3 =0.15
0.05 0.1 2.3




Gershgorin circles: heat example |

B=(I-DA) =

1
We have b,',‘ :0, /\,‘ = {]2-7
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1= estimate |A;| <1



Gershgorin circles: heat example |l

Im

0

4

0

6

n=11, h=0.1

N ihm
P cos 14 2h

) (i=1...n)

Re



Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

T_ (Al A
PAP' = ( 0 Ay

A is irreducible if it is not reducible.
Directed matrix graph:

» Nodes: N' = {N;}i=1..n

» Directed edges: & = {ka, # 0}

Theorem (Varga, Th. 1.17): A is irreducible < the matrix graph is
connected, i.e. for each ordered pair (N;, N;) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i,/ there is a sequence of nonzero matrix entries
Aikyy Akykoy+ -5 Ak,j-



Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue )\ is a boundary point of the union of all the disks

Aed |J {neC:lp—ail <A}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. fori=1...n,

A —ai| =N



Taussky theorem proof

Proof Assume ) is eigenvalue, x a corresponding eigenvector, normalized
such that max;—1._, |x;| = |x,] = 1. From Ax = Ax it follows that

Aol < 3l byl < B fal = (+)

j=1...n
J#r Hfr

Boundary point = |A — a,| = A

Due to irreducibility there is at least one such p. For this p, equation (x)
is valid (with p in place of r) = |A — app| = A,

Due to irreducibility, this is true for all p=1...n. O



Consequences for heat example from Taussky

B=1-D1A
1

We had b; =0, A; = {2’ = estimate |\;] < 1

1 i=2...n-1

Assume |)\;| = 1. Then J; lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both circles
with radius % and 1 around 0.

Contradiction = |\;| < 1, p(B) < 1!



Diagonally dominant matrices
Definition
> A is diagonally dominant if
(i) fori=1...n lai| > Y |ay]
j=l...n
J#i
> A is strictly diagonally dominant (sdd) if
(i) fori=1...n, |ai| > Z En
j=1l...n
A
» Ais irreducibly diagonally dominant (idd) if
(i) A'is irreducible
(ii) A is diagonally dominant —

fori=1...n, |ai| > > |ay|
j=l...n
J#i
(iii) for at least one r, 1 < r < n, |ay| > Z |a]

j=1l...n
i#r



A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, a; > 0 for i = 1...n, then all real parts of the eigenvalues
of A are positive:

ReXi >0, i=1...n



A very practical nonsingularity criterion, proof
Proof:

» Assume A sdd. Then the union of the Gershgorin disks does not
contain 0 and A = 0 cannot be an eigenvalue.

As for the real parts, the union of the disks is

U fheC:lu—ail <A}

i=1...n
and Rep must be larger than zero if u should be contained.

> Assume A idd. Then, if 0 is an eigenvalue, it sits on the boundary of
one of the Gershgorin disks. By the Taussky theorem, we have
|ai| = A; forall i=1...n. Thisis a contradiction as by definition
there is at least one i such that |a;| > A;

Assume a; > 0, real. All real parts of the eigenvalues must be > 0.
Therefore, if a real part is 0, it lies on the boundary of one disk. So
by Taussky it must be contained at the same time in the boundary of
all the disks and the imaginary axis. This contradicts the fact that
there is at least one disk which does not touch the imaginary axis.
0J



Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.



Heat conduction matrix

Q
Sl +
Sl
|
Sl
>

>

>
>IN

>IN -
>I= -

= -

Sl
>

=

>
_|_
Q

» Aisidd = A is nonsingular

» diagA is positive real = eigenvalues of A have positive real parts

> Ais real, symmetric = A is positive definite



Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

> positive (x > 0) if all entries of x are positive
> nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

> positive (A > 0) if all entries of A are positive
> nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n x n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(i) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.

/\/\

(iv) p
Proof: See Varga. O

A) is a simple eigenvalue of A.



Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

p(ll = D7'A) <1

Proof: Let B = (b;) =/— D" 'A. Then

0, i=j
aji’ J

If Aissdd, then fori=1...n,

P 2= 2 o

j=1...n ajj
J#i

Therefore, p(|B]) < 1



Theorem on Jacobi matrix |l
If Aisidd, thenfori=1...n,

> b= Y 12 =

j=1...n j=1...n aji |au|
J#'

Z |bj| = < 1 for at least one r

o m

Therefore, p(|B|) <= 1. Assume p(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i,

and it must lie on the boundary of this union. By Taussky then one has for

all 7

=1

A;
A[=1<
|aiil

which contradicts the idd condition.



Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0
and a;; < 0 for i # j. Then p(/ — D7'A) < 1, i.e. the Jacobi method
converges.

Proof In this case, |B| =B .



Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
» M™L N are nonnegative, i.e. have nonnegative entries

» Regard the iteration uyy 1 = M~ Nuy, + M~1b.
» We have | — M~1A= M~IN.



Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A1>0,andA=M—Nisa
regular splitting. Then p(M~1N) < 1.

Proof: Let G= M~IN. Then A= M(Il — G), therefore | — G is
nonsingular.

In addition
AN = (M(I = MIN)IN = (I = MIN)ITM7IN = (1 - G)'G

By Perron-Frobenius, p(G) is an eigvenalue with a nonnegative eigenvector
x. Thus,

p(G)

0< A lNx=-""7 x
- 1—p(G)

Therefore 0 < p(G) < 1.
As | — G is nonsingular, p(G) < 1. O



Convergence rate comparison

Corollary: p(M~'N) = == where 7 = p(A~'N).

Proof: Rearrange 7 = 15(;3;) O

Corollary: Let A>0, A= M; — Ny and A= M, — N, be regular
splittings. If Np > Ny > 0, then 1 > p(My *Ny) > p(M; 1 Ny).

Proof: m = p(A™'Ny) > p(A™'Ni) = 71, % s strictly increasing.



M-Matrix definition

Definition Let A be an n x n real matrix. A is called M-Matrix if
(i) a; <O0fori##j

(i) A is nonsingular

(i) A7t >0

Corollary: If Ais an M-Matrix, then A= > 0 < A is irreducible.

Proof: See Varga.



Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that a; > 0 and a; < 0 for i # j.
Then A is an M-Matrix.

Proof:
» Let B=1/— D7'A. Then p(B) < 1, therefore | — B is nonsingular.
» We have for k > 0:
| —-B = (1-B)(I+B+ B>+ + B
(I-B) Y -B"Y)Y=(+B+B*+---+ B

The left hand side for k — oo converges to (/ — B)™!, therefore

(I-B)™ ZB"

As B> 0, we have (/| — B)"' = A"1D > 0. As D > 0 we must have
A~ >0. O



Application

Let A be an M-Matrix. Assume A=D — E — F.

>

Jacobi method: M = D is nonsingular, M~* > 0. N=E + F
nonnegative = convergence

Gauss-Seidel: M = D — E is an M-Matrix as A < M and M has
non-positive off-digonal entries. N = F > 0. = convergence
Comparison: Nj > Ngs = Gauss-Seidel converges faster.

More general: Block Jacobi, Block Gauss Seidel etc.



Intermediate Summary

» Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

» Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.



Example: 1D finite volume matrix:

oc+% —% up avy
-+ % E b,
1 2 _1 u hf:
h h h 3 3

1 2 1
~h B & Un-—2 hfn_2
1 2 _1 u hf:
h L L h N—1 N—1
-5 Rt uy vy

> idd

» positive main diagonal entries, nonpositive off-diagonal entries

= A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it.

= for f > 0 and v > 0 it follows that u > 0.
= heating and positive environment temperatures cannot lead to negative
temperatures in the interior.




