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Recap: iterative methods
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Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . . )

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.
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The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aij uk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aii uk+1,i +
∑

j=1...n,j 6=i

aij uk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F )uk + D−1b
= M−1Nuk + M−1b

I Variable ordering does not matter
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Convergence

I Let û be the solution of Au = b.
I Let ek = uj − û be the error of the k-th iteration step

uk+1 = uk −M−1(Auk − b)
= (I −M−1A)uk + M−1b

uk+1 − û = uk − û −M−1(Auk − Aû)
= (I −M−1A)(uk − û)
= (I −M−1A)k (u0 − û)

resulting in

ek+1 = (I −M−1A)k e0

I So when does (I −M−1A)k converge to zero for k →∞ ?
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Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.
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Richardson for 1D heat conduction
I Regard the n × n 1D heat conduction matrix with h = 1

n−1 and α = 1
h

(easier to analyze).

A =



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


I Eigenvalues (tri-diagonal Toeplitz matrix):

λi = 2
h

(
1 + cos

( iπ
n + 1

))
(i = 1 . . . n)

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

I Express them in h: n + 1 = 1
h + 2 = 1+2h

h ⇒

λi = 2
h

(
1 + cos

( ihπ
1 + 2h

))
(i = 1 . . . n)
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Richardson for 1D heat conduction: Jacobi

I The Jacobi preconditioner just multiplies by h
2 , therefore for M−1A:

λmax ≈ 2− π2h2

2(1 + 2h)2

λmin ≈ π2h2

2(1 + 2h)2

I Optimal parameter: α = 2
λmax +λmin

≈ 1 (h→ 0)
I Good news: this is independent of h resp. n
I No need for spectral estimate in order to work with optimal parameter
I Is this true beyond this special case ?

Lecture 8 Slide 8



Lecture 7 Slide 25

Richardson for 1D heat conduction: Convergence factor

I Condition number + spectral radius

κ(M−1A) = κ(A) = 4(1 + 2h)2

π2h2 − 1

ρ(I −M−1A) = κ− 1
κ+ 1 = 1− π2h2

2(1 + 2h)2

I Bad news: ρ→ 1 (h→ 0)
I Typical situation with second order PDEs:

κ(A) = O(h−2) (h→ 0)
ρ(I − D−1A) = 1− O(h2) (h→ 0)
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Iterative solver complexity I

I Solve linear system iteratively until ||ek || = ||(I −M−1A)ke0|| ≤ ε

ρke0 ≤ ε
k ln ρ < ln ε− ln e0

k ≥ kρ =
⌈

ln e0 − ln ε
ln ρ

⌉

I Assume ρ < ρ0 < 1 independent of h resp. N, A sparse and solution of
Mv = r has complexity O(N).
⇒ Number of iteration steps kρ independent of N
⇒ Overall complexity O(N).
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Iterative solver complexity II

I Assume ρ = 1− hδ ⇒ ln ρ ≈ −hδ

I k = O(h−δ)

I d : space dimension, then h ≈ N− 1
d ⇒ k = O(N δ

d )
I Assume O(N) complexity of one iteration step
⇒ Overall complexity O(N d+δ

d )
I Jacobi: δ = 2, something better with at least δ = 1 ?

dim ρ = 1− O(h2) ρ = 1− O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)
2 O(N2) O(N 3

2 ) O(N 3
2 ) O(N log N)

3 O(N 5
3 ) O(N 4

3 ) O(N2) O(N 4
3 )

I In 1D, iteration makes not much sense
I In 2D, we can hope for parity
I In 3D, beat sparse matrix solvers with ρ = 1− O(h) ?

Lecture 8 Slide 11



Lecture 7 Slide 28

Solver complexity: scaling with problem size
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Complexity scaling for 2D problems
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Complexity scaling for 3D problems
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Scaling with problem size.
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Solver complexity: scaling with accuracy
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Complexity scaling for 2D problems
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Complexity scaling for 3D problems
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I Accuracy of numerial solutions is proportional to some power of h.
I Amount of operations for to reach a given accuracy.
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What could be done ?

I Find a better preconditioner with κ(M−1A) = O(h−1) or independent of h
I Find a better iterative scheme:

Assume e.g. ρ =
√

κ−1√
κ+1 . Let κ = X 2 − 1 where X = 2(1+2h)

πh = O(h−1).

ρ = 1 +
√

X 2 − 1− 1√
X 2 − 1 + 1

− 1

= 1 +
√

X 2 − 1− 1−
√

X 2 − 1− 1√
X 2 − 1 + 1

= 1− 1√
X 2 − 1 + 1

= 1− 1
X
(√

1− 1
X2 + 1

X

)

= 1− O(h)

I Here, we would have δ = 1. Together with a good preconditioner . . .
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Eigenvalue analysis for more general matrices

I For 1D heat conduction we used a very special regular structure of
the matrix which allowed exact eigenvalue calculations

I Generalizations to tensor product is possible
I Generalization to varying coefficients, unstructured grids . . .
⇒ what can be done for general matrices ?
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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)
(everywhere, we assume n ≥ 2)
Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there exists r , 1 ≤ r ≤ n such that
|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii )xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�
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Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ− aii | ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑

j=1
|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑

i=1
|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT ). �
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Gershgorin circles: example

A =



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 , λ1 = 1, λ2 = 2, λ3 = 3,Λ1 = 5.2,Λ2 = 0.8, λ3 = 0.15
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Gershgorin circles: heat example I

A =


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

B = (I − D−1A) =



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

We have bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1
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Gershgorin circles: heat example II

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Re
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n=11, h=0.1
λi = cos

(
ihπ

1 + 2h

)
(i = 1 . . . n)
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Reducible and irreducible matrices
Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.
Directed matrix graph:

I Nodes: N = {Ni}i=1...n

I Directed edges: E = {−−−→NkNl |akl 6= 0}
Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni ,Nj) there is a path consisting of
directed edges, connecting them.
Equivalently, for each i , j there is a sequence of nonzero matrix entries
aik1 , ak1k2 , . . . , akr j .

�
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Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi
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Taussky theorem proof

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

|λ− arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (∗)

Boundary point ⇒ |λ− arr | = Λr

⇒ For all l 6= r with ar ,p 6= 0, |xp| = 1.
Due to irreducibility there is at least one such p. For this p, equation (∗)
is valid (with p in place of r) ⇒ |λ− app| = Λp

Due to irreducibility, this is true for all p = 1 . . . n. �
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Consequences for heat example from Taussky

B = I − D−1A

We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both circles
with radius 1

2 and 1 around 0.
Contradiction ⇒ |λi | < 1, ρ(B) < 1!
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Diagonally dominant matrices
Definition

I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑

j=1...n
j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.
If in addition, aii > 0 for i = 1 . . . n, then all real parts of the eigenvalues
of A are positive:

Reλi > 0, i = 1 . . . n
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A very practical nonsingularity criterion, proof
Proof:

I Assume A sdd. Then the union of the Gershgorin disks does not
contain 0 and λ = 0 cannot be an eigenvalue.
As for the real parts, the union of the disks is

⋃

i=1...n
{µ ∈ C : |µ− aii | ≤ Λi}

and Reµ must be larger than zero if µ should be contained.
I Assume A idd. Then, if 0 is an eigenvalue, it sits on the boundary of

one of the Gershgorin disks. By the Taussky theorem, we have
|aii | = Λi for all i = 1 . . . n. This is a contradiction as by definition
there is at least one i such that |aii | > Λi

Assume aii > 0, real. All real parts of the eigenvalues must be ≥ 0.
Therefore, if a real part is 0, it lies on the boundary of one disk. So
by Taussky it must be contained at the same time in the boundary of
all the disks and the imaginary axis. This contradicts the fact that
there is at least one disk which does not touch the imaginary axis.

�
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.
Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�
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Heat conduction matrix

A =



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h
− 1

h
2
h − 1

h
− 1

h
1
h + α




I A is idd ⇒ A is nonsingular
I diagA is positive real ⇒ eigenvalues of A have positive real parts
I A is real, symmetric ⇒ A is positive definite
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Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is

I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n× n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.
Proof: See Varga. �
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Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij) = I − D−1A. Then

bij =
{

0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑

j=1...n
|bij | =

∑

j=1...n
j 6=i

|aij
aii
| = Λi
|aii |

< 1

Therefore, ρ(|B|) < 1.
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Theorem on Jacobi matrix II
If A is idd, then for i = 1 . . . n,

∑

j=1...n
|bij | =

∑

j=1...n
j 6=i

|aij
aii
| = Λi
|aii |
≤ 1

∑

j=1...n
|brj | = Λr

|arr |
< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i ,

|λ| = 1 ≤ Λi
|aii |
≤ 1

and it must lie on the boundary of this union. By Taussky then one has for
all i

|λ| = 1 ≤ Λi
|aii |

= 1

which contradicts the idd condition. �
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Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0
and aij ≤ 0 for i 6= j . Then ρ(I − D−1A) < 1, i.e. the Jacobi method
converges.
Proof In this case, |B| = B �.
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Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.
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Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.
Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is
nonsingular.
In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius, ρ(G) is an eigvenalue with a nonnegative eigenvector
x. Thus,

0 ≤ A−1Nx = ρ(G)
1− ρ(G)x

Therefore 0 ≤ ρ(G) ≤ 1.
As I − G is nonsingular, ρ(G) < 1. �
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Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G) �

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular
splittings. If N2 ≥ N1 ≥ 0, then 1 > ρ(M−1

2 N2) ≥ ρ(M−1
1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1, τ
1+τ is strictly increasing.
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M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if
(i) aij ≤ 0 for i 6= j

(ii) A is nonsingular
(iii) A−1 ≥ 0
Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.
Proof: See Varga. �
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Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j .
Then A is an M-Matrix.
Proof:

I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk)

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �
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Application

Let A be an M-Matrix. Assume A = D − E − F .
I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F

nonnegative ⇒ convergence
I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has

non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence
I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.
I More general: Block Jacobi, Block Gauss Seidel etc.
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Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.
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Example: 1D finite volume matrix:

Au =




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




= f =




αv1
hf2
hf3

...
hfN−2
hfN−1
αvn




I idd
I positive main diagonal entries, nonpositive off-diagonal entries
⇒ A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it.
⇒ for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.
≡ heating and positive environment temperatures cannot lead to negative
temperatures in the interior.


