Scientific Computing WS 2017/2018

Lecture 7

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

numcxx

 numcxx is a small C++ library developed for and during this course which implements the concepts introduced

- ▶ Shared smart pointers vs. references
- ▶ 1D/2D Array class
- ► Matrix class with LAPACK interface
- Expression templates
- ▶ Interface to triangulations
- ► Sparse matrices + UMFPACK interface
- Iterative solvers
- Python interface

numcxx availability

- UNIX pool installation in /net/wir/numcxx
- Code home page https://www.wias-berlin.de/people/fuhrmann/numcxx.html
 - ▶ Documentation incl. installation instructions
 - Zip files with code for download

numcxx classes

- ► TArray1: templated 1D array class DArray1: 1D double array class
- ► TArray2: templated 2D array class DArray2: 2D double array class
- ► TMatrix: templated dense matrix class
 DMatrix: double dense matrix class
- TSolverLapackLU: LU factorization based on LAPACK DSolverLapackLU

CRS again

$$A = \begin{pmatrix} 1. & 0. & 0. & 2. & 0. \\ 3. & 4. & 0. & 5. & 0. \\ 6. & 0. & 7. & 8. & 9. \\ 0. & 0. & 10. & 11. & 0. \\ 0. & 0. & 0. & 0. & 12. \end{pmatrix}$$

```
AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. JA: 0 3 0 1 3 0 2 3 4 2 3 4 TA: 0 2 4 0 11 12
```

- some package APIs provide the possibility to specify array offset
- ▶ index shift is not very expensive compared to the rest of the work

numcxx Sparse matrix class

numcxx::TSparseMatrix<T>

- Class characterized by IA/JA/AA arrays
- ▶ How to create these arrays ?
- ▶ Common way (e.g. Eigen): from a list triples i, j, a_{ij} . In practice, this can be expensive because in FEM assembly we will have many triplets repeating with the same i, j but different a_{ij}
- ► Remedy:
 - Internally create and update an intermediate datas structure which maintains a list of already available entries
 - ▶ Hide this behind the facade A(i,j) = x

Sparse direct solvers: influence of reordering

Sparsity patterns for original matrix with three different orderings of unknowns unknowns:

► Sparsity patterns for corresponding LU factorizations unknowns:

Sparse direct solvers: solution steps (Saad Ch. 3.6)

- 1. Pre-ordering
 - Decrease amount of non-zero elements generated by fill-in by re-ordering of the matrix
 - Several, graph theory based heuristic algorithms exist
- 2. Symbolic factorization
 - ▶ If pivoting is ignored, the indices of the non-zero elements are calculated and stored
 - Most expensive step wrt. computation time
- 3 Numerical factorization
 - Calculation of the numerical values of the nonzero entries
 - ▶ Not very expensive, once the symbolic factors are available
- 4. Upper/lower triangular system solution
 - Fairly quick in comparison to the other steps
- Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity structure remains unchanged, e.g. time dependent problems on fixed computational grids
- ▶ With pivoting, steps 2 and 3 have to be performed together
- ▶ Instead of pivoting, *iterative refinement* may be used in order to maintain accuracy of the solution

Sparse direct solvers: Complexity

- ▶ Complexity estimates depend on storage scheme, reordering etc.
- ▶ Sparse matrix vector multiplication has complexity O(N)
- ▶ Some estimates can be given for from graph theory for discretizations of heat eqauation with $N=n^d$ unknowns on close to cubic grids in space dimension d
 - sparse LU factorization:

d	work	storage
1	$O(N) \mid O(n)$	$O(N) \mid O(n)$
2	$O(N^{\frac{3}{2}}) \mid O(n^3)$	$O(N \log N) \mid O(n^2 \log n)$
3	$O(N^2) \mid O(n^6)$	$O(N^{\frac{4}{3}}) \mid O(n^4)$

triangular solve: work dominated by storage complexity

Source: J. Poulson, PhD thesis, http://hdl.handle.net/2152/ETD-UT-2012-12-6622

Simple iteration with preconditioning

Idea: $A\hat{u} = b \Rightarrow$

$$\hat{u} = \hat{u} - M^{-1}(A\hat{u} - b)$$

 \Rightarrow iterative scheme

$$u_{k+1} = u_k - M^{-1}(Au_k - b)$$
 $(k = 0, 1...)$

- 1. Choose initial value u_0 , tolerance ε , set k=0
- 2. Calculate residuum $r_k = Au_k b$
- 3. Test convergence: if $||r_k|| < \varepsilon$ set $u = u_k$, finish
- 4. Calculate *update*: solve $Mv_k = r_k$
- 5. Update solution: $u_{k+1} = u_k v_k$, set k = i + 1, repeat with step 2.

The Jacobi method

- ▶ Let A = D E F, where D: main diagonal, E: negative lower triangular part F: negative upper triangular part
- ▶ Preconditioner: M = D, where D is the main diagonal of $A \Rightarrow$

$$u_{k+1,i} = u_{k,i} - \frac{1}{a_{ii}} \left(\sum_{j=1...n} a_{ij} u_{k,j} - b_i \right) \quad (i = 1...n)$$

Equivalent to the succesive (row by row) solution of

$$a_{ii}u_{k+1,i} + \sum_{j=1...n,j\neq i} a_{ij}u_{k,j} = b_i \quad (i = 1...n)$$

- ▶ Already calculated results not taken into account
- ▶ Alternative formulation with A = M N:

$$u_{k+1} = D^{-1}(E+F)u_k + D^{-1}b$$

= $M^{-1}Nu_k + M^{-1}b$

▶ Variable ordering does not matter

The Gauss-Seidel method

- ▶ Solve for main diagonal element row by row
- ► Take already calculated results into account

$$a_{ii}u_{k+1,i} + \sum_{j < i} a_{ij}u_{k+1,j} + \sum_{j > i} a_{ij}u_{k,j} = b_i$$
 $(i = 1 \dots n)$
 $(D - E)u_{k+1} - Fu_k = b$

- ► May be it is faster
- ▶ Variable order probably matters
- ▶ Preconditioners: forward M = D E, backward: M = D F
- ▶ Splitting formulation: A = M N forward: N = F, backward: M = E
- Forward case:

$$u_{k+1} = (D - E)^{-1} F u_k + (D - E)^{-1} b$$

= $M^{-1} N u_k + M^{-1} b$

Convergence

- ▶ Let \hat{u} be the solution of Au = b.
- ▶ Let $e_k = u_j \hat{u}$ be the error of the k-th iteration step

$$u_{k+1} = u_k - M^{-1}(Au_k - b)$$

$$= (I - M^{-1}A)u_k + M^{-1}b$$

$$u_{k+1} - \hat{u} = u_k - \hat{u} - M^{-1}(Au_k - A\hat{u})$$

$$= (I - M^{-1}A)(u_k - \hat{u})$$

$$= (I - M^{-1}A)^k(u_0 - \hat{u})$$

resulting in

$$e_{k+1} = (I - M^{-1}A)^k e_0$$

▶ So when does $(I - M^{-1}A)^k$ converge to zero for $k \to \infty$?

Spectral radius and convergence

Definition The spectral radius $\rho(A)$ is the largest absolute value of any eigenvalue of A: $\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|$.

Theorem (Saad, Th. 1.10)
$$\lim_{k\to\infty} A^k = 0 \Leftrightarrow \rho(A) < 1$$
.

Proof, \Rightarrow : Let u_i be a unit eigenvector associated with an eigenvalue λ_i . Then

$$\begin{aligned} Au_i &= \lambda_i u_i \\ A^2 u_i &= \lambda_i A_i u_i = \lambda^2 u_i \\ &\vdots \\ A^k u_i &= \lambda^k u_i \\ \text{therefore} \quad &||A^k u_i||_2 = |\lambda^k| \\ &\text{and} \quad &\lim_{k \to \infty} |\lambda^k| = 0 \end{aligned}$$

so we must have $\rho(A) < 1$

Back to iterative methods

Sufficient condition for convergence: $\rho(I-M^{-1}A)<1$.

Convergence rate

Assume λ with $|\lambda|=\rho(I-M^{-1}A)<1$ is the largest eigenvalue and has a single Jordan block of size I. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^I=0$ is

$$\lambda^{k-l+1} \binom{k}{l-1} E^{l-1}$$

$$||(I - M^{-1}A)^k (u_0 - \hat{u})|| = O\left(|\lambda^{k-l+1}| \binom{k}{l-1}\right)$$

and the "worst case" convergence factor ρ equals the spectral radius:

$$\rho = \lim_{k \to \infty} \left(\max_{u_0} \frac{||(I - M^{-1}A)^k (u_0 - \hat{u})||}{||u_0 - \hat{u}||} \right)^{\frac{1}{k}}$$

$$= \lim_{k \to \infty} ||(I - M^{-1}A)^k||^{\frac{1}{k}}$$

$$= \rho(I - M^{-1}A)$$

Depending on u_0 , the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues $0 < \lambda_{min} \le \lambda_i \le \lambda_{max}$, e.g. A symmetric, positive definite (spd),

- ▶ Let $\alpha > 0$, $M = \frac{1}{\alpha}I \Rightarrow I M^{-1}A = I \alpha A$
- ▶ Then for the eigenvalues μ_i of $I \alpha A$ one has:

$$1 - \alpha \lambda_{\it max} \le \mu_i \le 1 - \alpha \lambda_{\it min}$$
 and $\mu_i < 1$ due to $\lambda_{\it min} > 0$

▶ We also need
$$1 - \alpha \lambda_{max} > -1 \Rightarrow 0 < \alpha < \frac{2}{\lambda_{max}}$$
.

Theorem. The Richardson iteration converges for any α with $0 < \alpha < \frac{2}{\lambda_{max}}$.

The convergence rate is $\rho = \max(|1 - \alpha \lambda_{max}|, |1 - \alpha \lambda_{min}|)$.

Richardson iteration, choice of optimal parameter

We know that

$$-(1 - \lambda_{max}\alpha) > -(1 - \lambda_{min}\alpha)$$

 $+(1 - \lambda_{min}\alpha) > +(1 - \lambda_{max}\alpha)$

- ▶ Therefore, in reality we have $\rho = \max((1 \alpha \lambda_{max}), -(1 \alpha \lambda_{min}))$.
- ► The first curve is monotonically decreasing, the second one increases, so the minimum must be at the intersection

$$1 - \alpha \lambda_{max} = -1 + \alpha \lambda_{min}$$
$$2 = \alpha (\lambda_{max} + \lambda_{min})$$

Theorem. The optimal parameter is $\alpha_{opt}=\frac{2}{\lambda_{min}+\lambda_{max}}.$ For this parameter, the convergence factor is

$$ho_{opt} = rac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}} = rac{\kappa - 1}{\kappa + 1}$$

where $\kappa = \kappa(A) \frac{\lambda_{max}}{\lambda_{min}}$ is the spectral condition number of A.

Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate

$$0<\gamma_{\mathit{min}}(\mathit{Mu},\mathit{u})\leq (\mathit{Au},\mathit{u})\leq \gamma_{\mathit{max}}(\mathit{Mu},\mathit{u})$$

Then for the eigenvalues λ_i of $M^{-1}A$ we have

$$\gamma_{min} \le \lambda_{min} \le \lambda_i \le \lambda_{max} \le \gamma_{max}$$

and
$$\kappa(M^{-1}A) \leq \frac{\gamma_{max}}{\gamma_{min}}$$

Proof. Let the inner product $(\cdot, \cdot)_M$ be defined via $(u, v)_M = (Mu, v)$. In this inner product, $C = M^{-1}A$ is self-adjoint:

$$(Cu, v)_M = (MM^{-1}Au, v) = (Au, v) = (M^{-1}Mu, Av) = (Mu, M^{-1}Av)$$

= $(u, M^{-1}A)_M = (u, Cv)_M$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot,\cdot)_M$ scalar product

$$\begin{split} \lambda_{\textit{min}} &= \min_{u \neq 0} \frac{(\textit{Cu}, \textit{u})_{\textit{M}}}{(\textit{u}, \textit{u})_{\textit{M}}} = \min_{u \neq 0} \frac{(\textit{Au}, \textit{u})}{(\textit{Mu}, \textit{u})} \geq \gamma_{\textit{min}} \\ \lambda_{\textit{max}} &= \max_{u \neq 0} \frac{(\textit{Cu}, \textit{u})_{\textit{M}}}{(\textit{u}, \textit{u})_{\textit{M}}} = \max_{u \neq 0} \frac{(\textit{Au}, \textit{u})}{(\textit{Mu}, \textit{u})} \leq \gamma_{\textit{max}} \end{split}$$

Matrix preconditioned Richardson iteration

M, A spd.

Scaled Richardson iteration with preconditoner M

$$u_{k+1} = u_k - \alpha M^{-1} (Au_k - b)$$

Spectral equivalence estimate

$$0 < \gamma_{min}(Mu, u) \le (Au, u) \le \gamma_{max}(Mu, u)$$

- $ightharpoonup \gamma_{min} \leq \lambda_i \leq \gamma_{max}$
- ightharpoonup \Rightarrow optimal parameter $lpha=rac{2}{\gamma_{\max}+\gamma_{\min}}$
- ▶ Convergence rate with optimal parameter: $\rho \leq \frac{\kappa(M^{-1}A)-1}{\kappa(M^{-1}A)+1}$
- This is one possible way for convergence analysis which at once gives convergence rates
- ▶ But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

▶ Regard the $n \times n$ 1D heat conduction matrix with $h = \frac{1}{n-1}$ and $\alpha = \frac{1}{h}$ (easier to analyze).

$$A = \begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & & & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & & \\ & \ddots & \ddots & \ddots & \ddots & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & & -\frac{1}{h} & \frac{2}{h} \end{pmatrix}$$

► Eigenvalues (tri-diagonal Toeplitz matrix):

$$\lambda_i = \frac{2}{h} \left(1 + \cos \left(\frac{i\pi}{n+1} \right) \right) \quad (i = 1 \dots n)$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM, 2005

• Express them in h: $n+1=\frac{1}{h}+2=\frac{1+2h}{h} \Rightarrow$

$$\lambda_i = \frac{2}{h} \left(1 + \cos \left(\frac{ih\pi}{1 + 2h} \right) \right) \quad (i = 1 \dots n)$$

Richardson for 1D heat conduction: spectral bounds

- ▶ For $i = 1 \dots n$, the argument of cos is in $(0, \pi)$
- cos is monotonically decreasing in $(0,\pi)$, so we get λ_{max} for i=1 and λ_{min} for $i=n=\frac{1+h}{h}$
- ► Therefore:

$$\lambda_{max} = \frac{2}{h} \left(1 + \cos\left(\pi \frac{h}{1+2h}\right) \right) \approx \frac{2}{h} \left(2 - \frac{\pi^2 h^2}{2(1+2h)^2} \right)$$
$$\lambda_{min} = \frac{2}{h} \left(1 + \cos\left(\pi \frac{1+h}{1+2h}\right) \right) \approx \frac{2}{h} \left(\frac{\pi^2 h^2}{2(1+2h)^2} \right)$$

Here, we used the Taylor expansion

$$cos(\delta) = 1 - rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0)$$
 $cos(\pi - \delta) = -1 + rac{\delta^2}{2} + O(\delta^4) \quad (\delta o 0)$

and
$$\frac{1+h}{1+2h} = \frac{1+2h}{1+2h} - \frac{h}{1+2h} = 1 - \frac{h}{1+2h}$$

Richardson for 1D heat conduction: Jacobi

▶ The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1}A$:

$$\lambda_{ extit{max}}pprox 2-rac{\pi^2h^2}{2(1+2h)^2} \ \lambda_{ extit{min}}pprox rac{\pi^2h^2}{2(1+2h)^2}$$

- Optimal parameter: $\alpha = \frac{2}{\lambda_{mix} + \lambda_{min}} \approx 1 \ (h \to 0)$
- ▶ Good news: this is independent of *h* resp. *n*
- ▶ No need for spectral estimate in order to work with optimal parameter
- ▶ Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

► Condition number + spectral radius

$$\kappa(M^{-1}A) = \kappa(A) = \frac{4(1+2h)^2}{\pi^2 h^2} - 1$$
$$\rho(I - M^{-1}A) = \frac{\kappa - 1}{\kappa + 1} = 1 - \frac{\pi^2 h^2}{2(1+2h)^2}$$

- ▶ Bad news: $\rho \rightarrow 1$ $(h \rightarrow 0)$
- ▶ Typical situation with second order PDEs:

$$\kappa(A) = O(h^{-2}) \quad (h \to 0)$$
 $\rho(I - D^{-1}A) = 1 - O(h^2) \quad (h \to 0)$

Iterative solver complexity I

▶ Solve linear system iteratively until $||e_k|| = ||(I - M^{-1}A)^k e_0|| \le \epsilon$

$$\rho^{k} e_{0} \leq \epsilon$$

$$k \ln \rho < \ln \epsilon - \ln e_{0}$$

$$k \geq k_{\rho} = \left\lceil \frac{\ln e_{0} - \ln \epsilon}{\ln \rho} \right\rceil$$

- Assume $\rho < \rho_0 < 1$ independent of h resp. N, A sparse and solution of Mv = r has complexity O(N).
 - \Rightarrow Number of iteration steps $k_{
 ho}$ independent of N
 - \Rightarrow Overall complexity O(N).

Iterative solver complexity II

- Assume $ho = 1 h^{\delta} \Rightarrow \ln \rho \approx -h^{\delta}$
- $k = O(h^{-\delta})$
- d: space dimension, then $h \approx N^{-\frac{1}{d}} \Rightarrow k = O(N^{\frac{\delta}{d}})$
- ► Assume O(N) complexity of one iteration step \Rightarrow Overall complexity $O(N^{\frac{d+\delta}{d}})$
- ▶ Jacobi: $\delta = 2$, something better with at least $\delta = 1$?

dim	$\rho = 1 - O(h^2)$	$\rho = 1 - O(h)$	LU fact.	LU solve
1	$O(N^3)$	$O(N^2)$	O(N)	O(N)
2	$O(N^2)$	$O(N^{\frac{3}{2}})$	$O(N^{\frac{3}{2}})$	$O(N \log N)$
3	$O(N^{\frac{5}{3}})$	$O(N^{\frac{4}{3}})$	$O(N^2)$	$O(N^{\frac{4}{3}})$

- ▶ In 1D, iteration makes not much sense
- ▶ In 2D, we can hope for parity
- ▶ In 3D, beat sparse matrix solvers with $\rho = 1 O(h)$?

Solver complexity: scaling with problem size

Scaling with problem size.

Solver complexity: scaling with accuracy

- ▶ Accuracy of numerial solutions is proportional to some power of *h*.
- Amount of operations for to reach a given accuracy.

What could be done?

- ▶ Find a better preconditioner with $\kappa(M^{-1}A) = O(h^{-1})$ or independent of h
- Find a better iterative scheme: Assume e.g. $\rho = \frac{\sqrt{\kappa} 1}{\sqrt{\kappa} + 1}$. Let $\kappa = X^2 1$ where $X = \frac{2(1+2h)}{\pi h} = O(h^{-1})$.

$$\begin{split} \rho &= 1 + \frac{\sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} - 1 \\ &= 1 + \frac{\sqrt{X^2 - 1} - 1 - \sqrt{X^2 - 1} - 1}{\sqrt{X^2 - 1} + 1} \\ &= 1 - \frac{1}{\sqrt{X^2 - 1} + 1} \\ &= 1 - \frac{1}{X\left(\sqrt{1 - \frac{1}{X^2}} + \frac{1}{X}\right)} \\ &= 1 - O(h) \end{split}$$

lacktriangle Here, we would have $\delta=1$. Together with a good preconditioner . . .