Scientific Computing WS 2017/2018

Lecture 7

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

numacxx

numcxx is a small C++ library developed for and during this course which
implements the concepts introduced

Shared smart pointers vs. references
1D/2D Array class

Matrix class with LAPACK interface
Expression templates

Interface to triangulations

Sparse matrices + UMFPACK interface
Iterative solvers

Python interface

vVVYyVvVvVyVvVyVvYVvYyy

numcxx availability

» UNIX pool installation in /net/wir/numcxx

> Code home page
https://www.wias-berlin.de/people/fuhrmann/numcxx.html

» Documentation incl. installation instructions

> Zip files with code for download

https://www.wias-berlin.de/people/fuhrmann/numcxx.html

numcxx classes

> TArrayl: templated 1D array class
DArrayil: 1D double array class
> TArray2: templated 2D array class
DArray2: 2D double array class
> TMatrix: templated dense matrix class
DMatrix: double dense matrix class
» TSolverLapackLU: LU factorization based on LAPACK
DSolverLapackLU

CRS again

1. 0. 0.
3. 4. 0.
A=|[6. 0. 7.
0. 0. 10.
0. 0. 0
AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 030130234234
IA: 0240 11 12

» some package APIs provide the possibility to specify array offset
> index shift is not very expensive compared to the rest of the work

o o

—
o

numcxx Sparse matrix class

numcxx: : TSparseMatrix<T>
» Class characterized by IA/JA/AA arrays
» How to create these arrays ?

» Common way (e.g. Eigen) : from a list triples i, , a;j. In practice, this can
be expensive because in FEM assembly we will have many triplets repeating
with the same /,j but different aj;

» Remedy:

> Internally create and update an intermediate datas structure which maintains
a list of already available entries

> Hide this behind the facade A(i,j) = x

Lecture 7 Slide 7

Sparse direct solvers: influence of reordering

> Sparsity patterns for original matrix with three different orderings of
unknowns unknowns:

Original Reverse Cuthill-McKee Min Degree
0 0 >
Foes .
8; o
2 0 &, F
40 40
o .
60 60 L
0 50 0 50
nz= 180 nz = 180

https://de.mathworks.com

> Sparsity patterns for corresponding LU factorizations unknowns:

Original RDeverse Cuthill-McKee o Min Degree
-
. A
20 20 200, e
0
g
40 40 40
v
e B2
60 60 60
0 50 0 50 0 50
nz = 1022 nz = 968 nz = 636

https://de.mathworks.com

Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering

> Decrease amount of non-zero elements generated by fill-in by re-ordering of
the matrix

> Several, graph theory based heuristic algorithms exist
2. Symbolic factorization

> If pivoting is ignored, the indices of the non-zero elements are calculated and
stored

> Most expensive step wrt. computation time
3. Numerical factorization
> Calculation of the numerical values of the nonzero entries
> Not very expensive, once the symbolic factors are available
4. Upper/lower triangular system solution
> Fairly quick in comparison to the other steps

» Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

» With pivoting, steps 2 and 3 have to be performed together

> Instead of pivoting, iterative refinement may be used in order to maintain
accuracy of the solution

Sparse direct solvers: Complexity

» Complexity estimates depend on storage scheme, reordering etc.

> Sparse matrix - vector multiplication has complexity O(N)

> Some estimates can be given for from graph theory for discretizations of

heat eqauation with N = n unknowns on close to cubic grids in space
dimension d

> sparse LU factorization:

d work storage
1 O(N)[O(n) O(N) [O(n)
2 O(N2)| O(n®) O(NlogN) | O(n?log n)
3 O(N?)| O(n) O(N3) | O(n*)
> triangular solve: work dominated by storage complexity
d work
1 O(N) | O(n)
2 O(NlogN) | O(n?log n)
3 O(N3) | O(n%)

Source: J. Poulson, PhD thesis,http://hdl.handle.net/2152/ETD-UT-2012-12-6622

Simple iteration with preconditioning

Idea: All=b =

= iterative scheme

U1 = uk — M7 (Aug — b) (k=0,1...)

. Choose initial value wup, tolerance ¢, set k =0
. Calculate residuum ri, = Aux — b
. Test convergence: if ||rk|| < e set u = w, finish

. Calculate update: solve Mvy = ry

g s~ W N =

. Update solution: wuxy1 = ux — vk, set k =i+ 1, repeat with step 2.

The Jacobi method

> Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part
» Preconditioner: M = D, where D is the main diagonal of A =

1 .
Ukt1,i = Uk — — E ajjuk,j — bi (i=1...n)

aii \
=1...n

» Equivalent to the succesive (row by row) solution of
ajiUk+1,i + E ajjUk,j = b; (f =1... n)
j=L...nj#i

> Already calculated results not taken into account
> Alternative formulation with A= M — N:

Ukl = Dil(E + F)Uk + Dilb
=M Nu,+ M 'b

» Variable ordering does not matter

The Gauss-Seidel method

> Solve for main diagonal element row by row
> Take already calculated results into account

QjiUk+1,i + E ajjUky1,j + E ajuk,j = bi (i=1...

j<i J>i
(D — E)uk41 — Fuk=b

May be it is faster

Variable order probably matters

Preconditioners: forward M = D — E, backward: M =D — F
Splitting formulation: A= M — N

forward: N = F, backward: M = E

» Forward case:

vvyVvyy

Ues1 = (D — E) 'Fup+ (D —E) b
=M 'Nuy+ M7 b

Convergence

> Let & be the solution of Au = b.
> Let ex = u; — i be the error of the k-th iteration step
Ukl = Uk — I\/I_I(Auk —b)
= =M A)u+M1'b
U1 — O = ux — b — M7 (A — AD)
== M A)(ux —)
== M A (u — b)

resulting in

a1 = (I — M A e

> So when does (/ — M~*A)* converge to zero for k — oo ?

Spectral radius and convergence

Definition The spectral radius p(A) is the largest absolute value of any
eigenvalue of A: p(A) = maxyeo(a) |A-

Theorem (Saad, Th. 1.10) klim A =0 p(A) < 1.
— 00
Proof, =-: Let u; be a unit eigenvector associated with an eigenvalue A;. Then

AU,' =)\,‘U;
AQU,' =)\,‘A,‘U,‘ =)\ZU,'

Akui =)\kUi
therefore ||A*u||> = [\¥|

and lim |\ =0
k— o0

so we must have p(A) < 1

Back to iterative methods

Sufficient condition for convergence: p(/ — M~'A) < 1.

Convergence rate

Assume X with |A| = p(/ — M~'A) < 1 is the largest eigenvalue and has a single
Jordan block of size /. Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in A which due to

E'=0is
)\k—H—l </fl> El—l

(1 = M~ A)*(uo —)| = O <W*’“I (l - 1>)

and the “worst case” convergence factor p equals the spectral radius:

- (maxul—mlA)k(uo—a)H)i

k—oo \ 1 [|uo —]|

lim ||/ — M~ A)||*
k— o0
= p(l - M'A)

Depending on up, the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues 0 < Amin < A\i < Amax, €.8. A symmetric,
positive definite (spd),

»leta>0 M=2I=/-M'A=/-aA

> Then for the eigenvalues p; of /| — @A one has:
1-— Oé)\max S i S 1- aAmin
and p; < 1 due to Amin >0

» We also need lfa/\max>71:>0<a<ﬁ.

Theorem. The Richardson iteration converges for any o with 0 < a <

Amax *

The convergence rate is p = max (|1 — aAmax|, |1 — aAmin])-

Richardson iteration, choice of optimal parameter

» We know that

—(1 = Apax@) > —(1 — Aminc)
+(1 - >\min04) > +(1 - Amaxa)

> Therefore, in reality we have p = max ((1 — aAmax), —(1 — @Amin)).

> The first curve is monotonically decreasing, the second one increases, so the
minimum must be at the intersection

1-— Oi)\max =-1 + OC)\min
2= a(Amax + >\min)

2

Theorem. The optimal parameter is aop: = B v—
mintXmax

For this parameter, the convergence factor is
>\max -)\min _ K—1
Amax + Amin K+1

Popt =

where x = r(A)322 is the spectral condition number of A. O

Spectral equivalence
Theorem. M, A spd. Assume the spectral equivalence estimate

0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)
Then for the eigenvalues \; of M~1A we have
Ymin < Amin < Ai < Amax < Ymax
and K(M™1A) < Jmax

Proof. Let the inner product (-,)m be defined via (u, v)u = (Mu, v). In this
inner product, C = M~ A is self-adjoint:

(Cu,v)m = (MM Au, v) = (Au,v) = (M~ Mu, Av) = (Mu, M~ Av)
= (u, M A = (u, Cv)um

Minimum and maximum eigenvalues can be obtained as Ritz values in the (-,)um
scalar product

N (Cu,u)m mi (Au, u)

Amin = i = min
o0 (v, v)m o (Mu,u) — 7
A
Amax = mMax (Cu, u)m = max (Au, u)

u#0 (U, U)m w20 (Mu,u) — Ymax

Matrix preconditioned Richardson iteration

M, A spd.

» Scaled Richardson iteration with preconditoner M

Ukr1 = Uk — aM_l(Auk —b)

v

Spectral equivalence estimate

0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)

> = Ymin S Ai S Ymax

2

» = optimal parameter « = —=—
P P Ymax+Ymin

K(M~1A)—1

» Convergence rate with optimal parameter: p < WMETATL

» This is one possible way for convergence analysis which at once gives
convergence rates

» But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

> Regard the n x n 1D heat conduction matrix with h = -
(easier to analyze).
2 _1
h h
_1 2 _1
hooh Th
h o h h
_1 2 1
PR
A h
1 2
h o h

» Eigenvalues (tri-diagonal Toeplitz matrix):

)\;:%(l—l—cos(%)) (i=1...n)

Source: A. Béttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

» Express them in h: n+1:%+2=1+—h2h =

2 ihm .
)\;—E<1+cos(1+2h)) (i=1...n)

Richardson for 1D heat conduction: spectral bounds

» For i=1...n, the argument of cos is in (0, 7)
> cos is monotonically decreasing in (0,7), so we get Amax for i =1 and Apmin
for i=n= b

h
» Therefore:

A —g(1+cos< h))Ng 2—i
max = "™1v2n)) T h 2(1 + 2h)?
~ 2
“h

2 1+h 2 h
M= 2 (14 cos (n) (2 = W)
)

Here, we used the Taylor expansion
2
=+ 0% (6-0)

2

cos(0) =1—

cos(m—6) = -1+ %2 +0(8") (6—0)

1+h __ 1+42h h h

and

1+2h — 1+2h 1+2h — 1- 1+2h

Richardson for 1D heat conduction: Jacobi

» The Jacobi preconditioner just multiplies by g therefore for M~ A:
242
Ap 02— T
2(1 + 2h)?
242
m“h
2(1+ 2h)
» Optimal parameter: « = m ~1(h—0)

v

Good news: this is independent of h resp. n

v

No need for spectral estimate in order to work with optimal parameter

v

Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

» Condition number + spectral radius

_ 4(1+2h)?

T w2k
k-1 w2 h?

K(M™'A) = k(A) 1

p(l - M1A)

wEl T (i 2np

» Bad news: p -1 (h—0)
> Typical situation with second order PDEs:
k(A)=O(h™?) (h—0)
p(I—D'A)=1—-0(h) (h—0)

Iterative solver complexity |

> Solve linear system iteratively until ||ex|| = ||(/ — M7 A)¥eo|| < €

pkeoge
kinp<Ine—Ineg

I —1
k>k‘,:{”e?np“ﬂ

> Assume p < po < 1 independent of h resp. N, A sparse and solution of
Mv = r has complexity O(N).
= Number of iteration steps k, independent of N
= Overall complexity O(N).

Iterative solver complexity Il

Assume p=1—h° = Inp~ —h°
k= 0(h=°)

d: space dimension, then ha N™d = k = O(N%)

Assume O(N) complexity of one iteration step

= Overall complexity O(Nd%s)

Jacobi: § = 2, something better with at least § =1 ?

dm p=1-0(h) p=1-0(h) LU solve
1 O(N?) O(N?) O(N)
2 O(N?) O(N?) O(N log N)
3 O(N3) O(N3) O(N3)

In 1D, iteration makes not much sense

In 2D, we can hope for parity

In 3D, beat sparse matrix solvers with p =1 — O(h) ?

Solver complexity: scaling with problem size

Operations

100

101

Complexity scaling for 1D problems o Complexity scaling for 2D problems
—
— = = o(h*)
W00 1-0m)
|| — et
« o LUfact
102 LU solve
E— B—
L — . -
£ 10"
£ Lo ransreed
& 10
Avwess) — p=1-0(h*) 10 pr
— p=1-0(n) 100
— peal
o o LUfact 10
LU solve
200000 800000 1000000 10 200000 400000 600000 800000 1001

400000 600000
N

Complexity scaling for 3D problems

— p=1-0(h?)

— p=1-0(h)
— p<<l

© o LUfact
LU solve

Operations

Scaling with problem

000 1000000

size.

000

Solver complexity: scaling with accuracy

10 Complexity scaling for 1D problems 10 Complexity scaling for 2D problems
107 — p=1-0(") 107 — p=1-0(")
1o — p=1-0(h) o — p=1-0(h)
— pe<t — <<t
10" o o LUfact 10" o o LUfact
100 LU solve 100 LU solve
2 104 2 104
107 107
810 810
)
10° 10° e OO
10° 10°
10* - 10*
- traa . T
102 . s 10 I
10° s 10°
10 107 107 107 10° 10 107 107 107
n n

Complexity scaling for 3D problems

10%2 L..n® — p=1-0(")
. — p=1-0(h)
. — pe<l
0% . e o LUfact
10 b . LU solve

Operations

> Accuracy of numerial solutions is proportional to some power of h.

» Amount of operations for to reach a given accuracy.

What could be done ?

» Find a better preconditioner with x(M~'A) = O(h™!) or independent of h

» Find a better iteratlve scheme:
Assume e.g. p= Y=L et k = X2 — 1 where X = 2(1+2h = 0(h™).

\F+1

p=14 VXZ-1-1
VX2—1+41

:1+\/ﬁ—1—m—1

VX2 —1+1

S R
VXZ—1+1
x(1_%%)

=1- 0(h)

> Here, we would have 6 = 1. Together with a good preconditioner ...

