Scientific Computing WS 2017/2018

Lecture 7

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de
numcxx is a small $\mathrm{C}++$ library developed for and during this course which implements the concepts introduced

- Shared smart pointers vs. references
- 1D/2D Array class
- Matrix class with LAPACK interface
- Expression templates
- Interface to triangulations
- Sparse matrices + UMFPACK interface
- Iterative solvers
- Python interface

numcxx availability

- UNIX pool installation in /net/wir/numcxx
- Code home page https://www.wias-berlin.de/people/fuhrmann/numcxx.html
- Documentation incl. installation instructions
- Zip files with code for download
- TArray1: templated 1D array class DArray1: 1D double array class
- TArray2: templated 2D array class

DArray2: 2D double array class

- TMatrix: templated dense matrix class DMatrix: double dense matrix class
- TSolverLapackLU: LU factorization based on LAPACK DSolverLapackLU

CRS again

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

```
AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 0
IA: 0 2 4 0 11 12
```

- some package APIs provide the possibility to specify array offset
- index shift is not very expensive compared to the rest of the work

numcxx Sparse matrix class

numcxx: :TSparseMatrix<T>

- Class characterized by IA/JA/AA arrays
- How to create these arrays ?
- Common way (e.g. Eigen) : from a list triples $i, j, a_{i j}$. In practice, this can be expensive because in FEM assembly we will have many triplets repeating with the same i, j but different $a_{i j}$
- Remedy:
- Internally create and update an intermediate datas structure which maintains a list of already available entries
- Hide this behind the facade $A(i, j)=x$

Sparse direct solvers: influence of reordering

- Sparsity patterns for original matrix with three different orderings of unknowns unknowns:

- Sparsity patterns for corresponding LU factorizations unknowns:

https://de.mathworks.com

1. Pre-ordering

- Decrease amount of non-zero elements generated by fill-in by re-ordering of the matrix
- Several, graph theory based heuristic algorithms exist

2. Symbolic factorization

- If pivoting is ignored, the indices of the non-zero elements are calculated and stored
- Most expensive step wrt. computation time

3. Numerical factorization

- Calculation of the numerical values of the nonzero entries
- Not very expensive, once the symbolic factors are available

4. Upper/lower triangular system solution

- Fairly quick in comparison to the other steps
- Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity structure remains unchanged, e.g. time dependent problems on fixed computational grids
- With pivoting, steps 2 and 3 have to be performed together
- Instead of pivoting, iterative refinement may be used in order to maintain accuracy of the solution

Sparse direct solvers: Complexity

- Complexity estimates depend on storage scheme, reordering etc.
- Sparse matrix - vector multiplication has complexity $O(N)$
- Some estimates can be given for from graph theory for discretizations of heat eqauation with $N=n^{d}$ unknowns on close to cubic grids in space dimension d
- sparse LU factorization:

d	work	storage
1	$O(N) \mid O(n)$	$O(N) \mid O(n)$
2	$\left.O\left(N^{\frac{3}{2}}\right) \right\rvert\, O\left(n^{3}\right)$	$O(N \log N) \mid O\left(n^{2} \log n\right)$
3	$O\left(N^{2}\right) \mid O\left(n^{6}\right)$	$\left.O\left(N^{\frac{4}{3}}\right) \right\rvert\, O\left(n^{4}\right)$

- triangular solve: work dominated by storage complexity

d	work
1	$O(N) \mid O(n)$
2	$O(N \log N) \mid O\left(n^{2} \log n\right)$
3	$\left.O\left(N^{\frac{4}{3}}\right) \right\rvert\, O\left(n^{4}\right)$

Source: J. Poulson, PhD thesis,http://hdl.handle.net/2152/ETD-UT-2012-12-6622

Simple iteration with preconditioning

Idea: $A \hat{u}=b \Rightarrow$

$$
\hat{u}=\hat{u}-M^{-1}(A \hat{u}-b)
$$

\Rightarrow iterative scheme

$$
u_{k+1}=u_{k}-M^{-1}\left(A u_{k}-b\right) \quad(k=0,1 \ldots)
$$

1. Choose initial value u_{0}, tolerance ε, set $k=0$
2. Calculate residuum $r_{k}=A u_{k}-b$
3. Test convergence: if $\left\|r_{k}\right\|<\varepsilon$ set $u=u_{k}$, finish
4. Calculate update: solve $M v_{k}=r_{k}$
5. Update solution: $u_{k+1}=u_{k}-v_{k}$, set $k=i+1$, repeat with step 2 .

- Let $A=D-E-F$, where D : main diagonal, E : negative lower triangular part F : negative upper triangular part
- Preconditioner: $M=D$, where D is the main diagonal of $A \Rightarrow$

$$
u_{k+1, i}=u_{k, i}-\frac{1}{a_{i i}}\left(\sum_{j=1 \ldots n} a_{i j} u_{k, j}-b_{i}\right) \quad(i=1 \ldots n)
$$

- Equivalent to the succesive (row by row) solution of

$$
a_{i i} u_{k+1, i}+\sum_{j=1 \ldots n, j \neq i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n)
$$

- Already calculated results not taken into account
- Alternative formulation with $A=M-N$:

$$
\begin{aligned}
u_{k+1} & =D^{-1}(E+F) u_{k}+D^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

- Variable ordering does not matter

The Gauss-Seidel method

- Solve for main diagonal element row by row
- Take already calculated results into account

$$
\begin{aligned}
a_{i i} u_{k+1, i}+\sum_{j<i} a_{i j} u_{k+1, j}+\sum_{j>i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n) \\
(D-E) u_{k+1}-F u_{k}=b
\end{aligned}
$$

- May be it is faster
- Variable order probably matters
- Preconditioners: forward $M=D-E$, backward: $M=D-F$
- Splitting formulation: $A=M-N$ forward: $N=F$, backward: $M=E$
- Forward case:

$$
\begin{aligned}
u_{k+1} & =(D-E)^{-1} F u_{k}+(D-E)^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

Convergence

- Let \hat{u} be the solution of $A u=b$.
- Let $e_{k}=u_{j}-\hat{u}$ be the error of the k-th iteration step

$$
\begin{aligned}
u_{k+1} & =u_{k}-M^{-1}\left(A u_{k}-b\right) \\
& =\left(I-M^{-1} A\right) u_{k}+M^{-1} b \\
u_{k+1}-\hat{u} & =u_{k}-\hat{u}-M^{-1}\left(A u_{k}-A \hat{u}\right) \\
& =\left(I-M^{-1} A\right)\left(u_{k}-\hat{u}\right) \\
& =\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)
\end{aligned}
$$

resulting in

$$
e_{k+1}=\left(I-M^{-1} A\right)^{k} e_{0}
$$

- So when does $\left(I-M^{-1} A\right)^{k}$ converge to zero for $k \rightarrow \infty$?

Spectral radius and convergence

Definition The spectral radius $\rho(A)$ is the largest absolute value of any eigenvalue of $A: \rho(A)=\max _{\lambda \in \sigma(A)}|\lambda|$.
Theorem (Saad, Th. 1.10) $\lim _{k \rightarrow \infty} A^{k}=0 \Leftrightarrow \rho(A)<1$.
Proof, \Rightarrow : Let u_{i} be a unit eigenvector associated with an eigenvalue λ_{i}. Then

$$
\begin{aligned}
A u_{i} & =\lambda_{i} u_{i} \\
A^{2} u_{i} & =\lambda_{i} A_{i} u_{i}=\lambda^{2} u_{i} \\
\vdots & \\
A^{k} u_{i} & =\lambda^{k} u_{i} \\
\text { therefore }\left\|A^{k} u_{i}\right\|_{2} & =\left|\lambda^{k}\right| \\
\text { and } \lim _{k \rightarrow \infty}\left|\lambda^{k}\right| & =0
\end{aligned}
$$

so we must have $\rho(A)<1$

Back to iterative methods

Sufficient condition for convergence: $\rho\left(I-M^{-1} A\right)<1$.

Convergence rate

Assume λ with $|\lambda|=\rho\left(I-M^{-1} A\right)<1$ is the largest eigenvalue and has a single Jordan block of size I. Then the convergence rate is dominated by this Jordan block, and therein by the term with the lowest possible power in λ which due to $E^{\prime}=0$ is

$$
\begin{gathered}
\lambda^{k-I+1}\binom{k}{I-1} E^{I-1} \\
\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|=O\left(\left|\lambda^{k-I+1}\right|\binom{k}{I-1}\right)
\end{gathered}
$$

and the "worst case" convergence factor ρ equals the spectral radius:

$$
\begin{aligned}
\rho & =\lim _{k \rightarrow \infty}\left(\max _{u_{0}} \frac{\left\|\left(I-M^{-1} A\right)^{k}\left(u_{0}-\hat{u}\right)\right\|}{\left\|u_{0}-\hat{u}\right\|}\right)^{\frac{1}{k}} \\
& =\lim _{k \rightarrow \infty}\left\|\left(I-M^{-1} A\right)^{k}\right\|^{\frac{1}{k}} \\
& =\rho\left(I-M^{-1} A\right)
\end{aligned}
$$

Depending on u_{0}, the rate may be faster, though

Richardson iteration, sufficient criterion for convergence

Assume A has positive real eigenvalues $0<\lambda_{\text {min }} \leq \lambda_{i} \leq \lambda_{\text {max }}$, e.g. A symmetric, positive definite (spd),

- Let $\alpha>0, M=\frac{1}{\alpha} I \Rightarrow I-M^{-1} A=I-\alpha A$
- Then for the eigenvalues μ_{i} of $I-\alpha A$ one has:

$$
\begin{aligned}
& 1-\alpha \lambda_{\text {max }} \leq \mu_{i} \leq 1-\alpha \lambda_{\text {min }} \\
& \text { and } \mu_{i}<1 \text { due to } \lambda_{\text {min }}>0
\end{aligned}
$$

- We also need $1-\alpha \lambda_{\max }>-1 \Rightarrow 0<\alpha<\frac{2}{\lambda_{\max }}$.

Theorem. The Richardson iteration converges for any α with $0<\alpha<\frac{2}{\lambda_{\text {max }}}$.
The convergence rate is $\rho=\max \left(\left|1-\alpha \lambda_{\max }\right|,\left|1-\alpha \lambda_{\text {min }}\right|\right)$.

Richardson iteration, choice of optimal parameter

- We know that

$$
\begin{aligned}
& -\left(1-\lambda_{\max } \alpha\right)>-\left(1-\lambda_{\min } \alpha\right) \\
& +\left(1-\lambda_{\min } \alpha\right)>+\left(1-\lambda_{\max } \alpha\right)
\end{aligned}
$$

- Therefore, in reality we have $\rho=\max \left(\left(1-\alpha \lambda_{\max }\right),-\left(1-\alpha \lambda_{\text {min }}\right)\right)$.
- The first curve is monotonically decreasing, the second one increases, so the minimum must be at the intersection

$$
\begin{aligned}
1-\alpha \lambda_{\max } & =-1+\alpha \lambda_{\min } \\
2 & =\alpha\left(\lambda_{\max }+\lambda_{\min }\right)
\end{aligned}
$$

Theorem. The optimal parameter is $\alpha_{o p t}=\frac{2}{\lambda_{\min }+\lambda_{\max }}$. For this parameter, the convergence factor is

$$
\rho_{\text {opt }}=\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}=\frac{\kappa-1}{\kappa+1}
$$

where $\kappa=\kappa(A) \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$ is the spectral condition number of A.

Spectral equivalence

Theorem. M, A spd. Assume the spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

Then for the eigenvalues λ_{i} of $M^{-1} A$ we have

$$
\gamma_{\min } \leq \lambda_{\min } \leq \lambda_{i} \leq \lambda_{\max } \leq \gamma_{\max }
$$

and $\kappa\left(M^{-1} A\right) \leq \frac{\gamma_{\text {max }}}{\gamma_{\text {min }}}$
Proof. Let the inner product $(\cdot, \cdot)_{M}$ be defined via $(u, v)_{M}=(M u, v)$. In this inner product, $C=M^{-1} A$ is self-adjoint:

$$
\begin{aligned}
(C u, v)_{M} & =\left(M M^{-1} A u, v\right)=(A u, v)=\left(M^{-1} M u, A v\right)=\left(M u, M^{-1} A v\right) \\
& =\left(u, M^{-1} A\right)_{M}=(u, C v)_{M}
\end{aligned}
$$

Minimum and maximum eigenvalues can be obtained as Ritz values in the $(\cdot, \cdot)_{M}$ scalar product

$$
\begin{aligned}
\lambda_{\min } & =\min _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\min _{u \neq 0} \frac{(A u, u)}{(M u, u)} \geq \gamma_{\min } \\
\lambda_{\max } & =\max _{u \neq 0} \frac{(C u, u)_{M}}{(u, u)_{M}}=\max _{u \neq 0} \frac{(A u, u)}{(M u, u)} \leq \gamma_{\max }
\end{aligned}
$$

Matrix preconditioned Richardson iteration

M, A spd.

- Scaled Richardson iteration with preconditoner M

$$
u_{k+1}=u_{k}-\alpha M^{-1}\left(A u_{k}-b\right)
$$

- Spectral equivalence estimate

$$
0<\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)
$$

- $\Rightarrow \gamma_{\text {min }} \leq \lambda_{i} \leq \gamma_{\text {max }}$
- \Rightarrow optimal parameter $\alpha=\frac{2}{\gamma_{\text {max }}+\gamma_{\text {min }}}$
- Convergence rate with optimal parameter: $\rho \leq \frac{\kappa\left(M^{-1} A\right)-1}{\kappa\left(M^{-1} A\right)+1}$
- This is one possible way for convergence analysis which at once gives convergence rates
- But ... how to obtain a good spectral estimate for a particular problem ?

Richardson for 1D heat conduction

- Regard the $n \times n$ 1D heat conduction matrix with $h=\frac{1}{n-1}$ and $\alpha=\frac{1}{h}$ (easier to analyze).

$$
A=\left(\begin{array}{cccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{2}{h}
\end{array}\right)
$$

- Eigenvalues (tri-diagonal Toeplitz matrix):

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i \pi}{n+1}\right)\right) \quad(i=1 \ldots n)
$$

Source: A. Böttcher, S. Grudsky: Spectral Properties of Banded Toeplitz Matrices. SIAM,2005

- Express them in $h: n+1=\frac{1}{h}+2=\frac{1+2 h}{h} \Rightarrow$

$$
\lambda_{i}=\frac{2}{h}\left(1+\cos \left(\frac{i h \pi}{1+2 h}\right)\right) \quad(i=1 \ldots n)
$$

Richardson for 1D heat conduction: spectral bounds

- For $i=1 \ldots n$, the argument of \cos is in $(0, \pi)$
- cos is monotonically decreasing in $(0, \pi)$, so we get $\lambda_{\max }$ for $i=1$ and $\lambda_{\text {min }}$ for $i=n=\frac{1+h}{h}$
- Therefore:

$$
\begin{aligned}
& \lambda_{\max }=\frac{2}{h}\left(1+\cos \left(\pi \frac{h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right) \\
& \lambda_{\min }=\frac{2}{h}\left(1+\cos \left(\pi \frac{1+h}{1+2 h}\right)\right) \approx \frac{2}{h}\left(\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}\right)
\end{aligned}
$$

Here, we used the Taylor expansion

$$
\begin{aligned}
\cos (\delta) & =1-\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0) \\
\cos (\pi-\delta) & =-1+\frac{\delta^{2}}{2}+O\left(\delta^{4}\right) \quad(\delta \rightarrow 0)
\end{aligned}
$$

and $\frac{1+h}{1+2 h}=\frac{1+2 h}{1+2 h}-\frac{h}{1+2 h}=1-\frac{h}{1+2 h}$

Richardson for 1D heat conduction: Jacobi

- The Jacobi preconditioner just multiplies by $\frac{h}{2}$, therefore for $M^{-1} A$:

$$
\begin{aligned}
& \lambda_{\max } \approx 2-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}} \\
& \lambda_{\min } \approx \frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Optimal parameter: $\alpha=\frac{2}{\lambda_{\max }+\lambda_{\min }} \approx 1(h \rightarrow 0)$
- Good news: this is independent of h resp. n
- No need for spectral estimate in order to work with optimal parameter
- Is this true beyond this special case ?

Richardson for 1D heat conduction: Convergence factor

- Condition number + spectral radius

$$
\begin{aligned}
\kappa\left(M^{-1} A\right)=\kappa(A) & =\frac{4(1+2 h)^{2}}{\pi^{2} h^{2}}-1 \\
\rho\left(I-M^{-1} A\right) & =\frac{\kappa-1}{\kappa+1}=1-\frac{\pi^{2} h^{2}}{2(1+2 h)^{2}}
\end{aligned}
$$

- Bad news: $\rho \rightarrow 1 \quad(h \rightarrow 0)$
- Typical situation with second order PDEs:

$$
\begin{aligned}
\kappa(A) & =O\left(h^{-2}\right) \quad(h \rightarrow 0) \\
\rho\left(I-D^{-1} A\right) & =1-O\left(h^{2}\right) \quad(h \rightarrow 0)
\end{aligned}
$$

Iterative solver complexity I

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- Assume $\rho<\rho_{0}<1$ independent of h resp. N, A sparse and solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$.

Iterative solver complexity II

- Assume $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta}$
- $k=O\left(h^{-\delta}\right)$
- d: space dimension, then $h \approx N^{-\frac{1}{d}} \Rightarrow k=O\left(N^{\frac{\delta}{d}}\right)$
- Assume $O(N)$ complexity of one iteration step \Rightarrow Overall complexity $O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$, something better with at least $\delta=1$?

dim	$\rho=1-O\left(h^{2}\right)$	$\rho=1-O(h)$	LU fact.	LU solve
1	$O\left(N^{3}\right)$	$O\left(N^{2}\right)$	$O(N)$	$O(N)$
2	$O\left(N^{2}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O\left(N^{\frac{3}{2}}\right)$	$O(N \log N)$
3	$O\left(N^{\frac{5}{3}}\right)$	$O\left(N^{\frac{4}{3}}\right)$	$O\left(N^{2}\right)$	$O\left(N^{\frac{4}{3}}\right)$

- In 1D, iteration makes not much sense
- In 2D, we can hope for parity
- In 3D, beat sparse matrix solvers with $\rho=1-O(h)$?

Solver complexity: scaling with problem size

Scaling with problem size.

Solver complexity: scaling with accuracy

- Accuracy of numerial solutions is proportional to some power of h.
- Amount of operations for to reach a given accuracy.

What could be done?

- Find a better preconditioner with $\kappa\left(M^{-1} A\right)=O\left(h^{-1}\right)$ or independent of h
- Find a better iterative scheme:

Assume e.g. $\rho=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$. Let $\kappa=X^{2}-1$ where $X=\frac{2(1+2 h)}{\pi h}=O\left(h^{-1}\right)$.

$$
\begin{aligned}
\rho & =1+\frac{\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1}-1 \\
& =1+\frac{\sqrt{X^{2}-1}-1-\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{X\left(\sqrt{1-\frac{1}{X^{2}}}+\frac{1}{X}\right)} \\
& =1-O(h)
\end{aligned}
$$

- Here, we would have $\delta=1$. Together with a good preconditioner ...

