Scientific Computing WS 2017/2018
Lecture 5

Jiirgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

With material from “Introduction to High-Performance Scientific Computing” by
Victor Eijkhout (http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

Recap from last time

Floating point limits

> symmetry wrt. 0 because of sign bit

> smallest positive normalized number: dy = 1,di=0,i=1...t—1

Xmin = BL
> smallest positive denormalized number: d; =0,i =0...t—2,d;-1 =1
_ pl—tpl
Xmin = ﬁ ﬂ

> largest positive normalized number: di =5 —1,0...t—1

Xmax = /8(1 - Bl_t)ﬁu

Machine precision

» Exact value x

» Approximation X

v

Then: |¥2%| < ¢ is the best accuracy estimate we can get, where

X

> ¢ = 17t (truncation)
> €= 181"t (rounding)

> Also: € is the smallest representable number such that 1+ ¢ > 1.

> Relative errors show up in partiular when

> subtracting two close numbers
> adding smaller numbers to larger ones

Matrix + Vector norms

> Vector norms: let x = (x;) € R”
> x| = Zi =" |x;|: sum norm, /i-norm
> |Ix|]l2 = />, x?: Euclidean norm, -norm
> ||x]|oo = Maxj=1...n |X;|: maximum norm, /sc-norm
> Matrix A= (a;) € R" xR"
> Representation of linear operator A : R" — R" defined by A : x — y = Ax
with

n

yi= E ajjX;

j=1
> Induced matrix norm:
[|Ax]
[|All, = -
x€RMx#0 ||x||
[1Ax[]

T xernixll=1 [Ix]|y

Matrix norms

> ||Allr = maxj=1..» Y _;, |a;| maximum of column sums
n

> [|Allco = Maxi=1...n Zj:l |aj| maximum of row sums

> ||All2 = VAmax With Amax: largest eigenvalue of ATA.

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + Ax) = b+ Ab.

Since Ax = b, we get AAx = Ab. From this,

Ax =A""Ab | [[IA]- 1]l 2 |I6ll
Ax =b 1Ax|] < [|A77(] - [[Ab]|

[|Ax]|
[Ix]

Ab
S”(A)Hnbn”

where k(A) = ||A|| - ||A}|| is the condition number of A.

=

Approaches to linear system solution

Solve Ax = b
Direct methods:

> Deterministic

» Exact up to machine precision

» Expensive (in time and space)
Iterative methods:

> Only approximate

> Cheaper in space and (possibly) time

» Convergence not guaranteed

numacxx

numcxx is a small C4++ library developed for and during this course which
implements the concepts introduced

» Shared smart pointers vs. references
1D/2D Array class

Matrix class with LAPACK interface
Expression templates

Interface to triangulations

Sparse matrices + UMFPACK interface
Iterative solvers

Python interface

vyVVYyVYVYVvVYyYyYy

numcxx classes

» TArrayl: templated 1D array class
DArrayi: 1D double array class
» TArray2: templated 2D array class
DArray2: 2D double array class
» TMatrix: templated dense matrix class
DMatrix: double dense matrix class
» TSolverLapackLU: LU factorization based on LAPACK
DSolverLapackLU

Obtaining and compiling the examples

» Copy files, creating subdirectory part2
> the . denotes the current directory

$ 1s /net/wir/numxx/examples/10-numcxx-basicx/*.cxx
$ cp -r /net/wir/examples/10-numcxx-basicx/numcxx-expressions.cxx .
» Compile sources (for each of the .cxx files) (integrates with codeblocks)

$ numcxx-build -o example numcxx-expressions.cxx
$./example

CMake

What is behind numcxx-build?

v

CMake - the current best way to build code

» Describe project in a file called CMakeLists.txt

cmake_minimum_required (VERSION 2.8.12)
PROJECT (example C CXX)

find_package (NUMCXX REQUIRED)
include_directories ("${NUMCXX_INCLUDE_DIRS}")
link_libraries("${NUMCXX_LIBRARIES}")
add_executable(example example.cxx)

> Set up project (only once)

$ mkdir builddir

$ cd buildir

$ cmake ..

$cd ..
> build code

$ cmake --build builddir
> run code

$./builddir/example

Let's have some naming conventions

> lowercase letters: scalar values
> i,j,k,1,m,n standalone or as prefixes: integers, indices
> others: floating point

> Upper_case_letters: class objects/references

std: :vector<double> X(n);
numcxx: :DArrayl<double> Y(n);

» pUpper_case_letters: smart pointers to objects

auto pX=std::make_shared<std::vector<double>>(n);
auto pY=numcxx::TArrayl<double>::create(n);
auto pZ=numcxx::TArrayl<double>::create({1,2,3,4});

// getting references from smart pointers
auto &X=*pX;
auto &Y=*pY;
auto &Z=*pZ;

auto W=std::make_shared<std::vector<double>>({1,2,3,4}); // doesn’t work...

C++ code using vectors, C4++-style with smart pointers

File
/net/wir/numcxx/examples/00-cxx-basics/05-cxx-style-sharedptr.cxx

#include <cstdio>
#include <vector>
#include <memory>
void initialize(std::vector<double> &x)
{ for (int i=0;i<x.size();i++) x[i]l= 1.0/(double) (1+n-i);}
double sum_elements(std::vector<double> & x)
{ double sum=0;
for (int i=0;i<x.size();i++)sum+=x[i];
return sum;

int main()
{ const int n=12345678;
// call constructor and wrap pointer into smart pointer
auto x=std::make_shared<std::vector<double>>(n);
initialize (*x);
double s=sum_elements (*x);
printf ("sum=Y%e\n",s);
// smartpointer calls destructor if reference count reaches zero

> Heap memory management controlled by smart pointer lifetime
> |f method or function does not store the object, pass by reference = API
stays the same as for previous case.

C++ code using numcxx with references

File /net/wir/examples/10-numcxx-basicx/numcxx-ref.cxx

#include <cstdio>

#include <numcxx/numcxx.hxx>

void initialize(numcxx::DArrayl &X)

{ const int n=X.size();
for (int i=0;i<n;i++) X[i]= 1.0/(double) (1+n-i);

}

double sum_elements (numcxx::DArrayl & X)

{ double sum=0;
for (int i=0;i<X.size();i++)sum+=X[i];
return sum;

}

int main()

{ const int n=12345678;
numcxx: : TArrayi<double> X(n);
initialize(X);
double s=sum_elements(X);
printf ("sum=Y%e\n",s);

C++ code using numexx with smart pointers

File /net/wir/examples/10-numcxx-basics/numcxx-sharedptr.cxx

#include <cstdio>
#include <memory>
#include <numcxx/numcxx.hxx>
void initialize(numcxx::DArrayl &X)
{ const int n=X.size();
for (int i=0;i<n;i++) X[il= 1.0/(double) (1+n-i);
}
double sum_elements (numcxx: :DArrayl & X)
{ double sum=0;
for (int i=0;i<X.size();i++)sum+=X[i];
return sum;
}
int main()
{ const int n=12345678;
// call constructor and wrap pointer into smart pointer
auto pX=numcxx::TArrayl<double>::create(n);
initialize (*pX);
double s=sum_elements (*pX) ;
printf ("sum=%e\n",s) ;

Solution of linear systems of equations

Approaches to linear system solution

Let A: n x n matrix, b € R".
Solve Ax = b

> Direct methods:
> Exact
> up to machine precision
» condition number
> Expensive (in time and space)
> where does this matter ?
> lterative methods:
> Only approximate
> with good convergence and proper accuracy control, results are not worse than for
direct methods
> May be cheaper in space and (possibly) time
> Convergence guarantee is problem dependent and can be tricky

Complexity: "big O notation”

> Let f,g: V — R" be some functions, where V=N or V = R.

We write
f(x) = O(g(x)) (x = o0)

if there exist a constant C > 0 and xp € V such that

Vx> x0, [f(X)] < Clg(x)|

» Often, one skips the part "(x — c0)”
> Examples:
> Addition of two vectors: O(n)

> Matrix-vector multiplication (for matrix where all entries are assumed to be
nonzero): O(n?)

Really bad example of direct method

Solve Ax = b by Cramer's rule

ann a2 ... ai-1 bt a4 ... am
ani e b2 e azn

xi = . . /A (=1,
anl RN bn e dnn

This takes O(n!) operations...

Gaussian elimination

» Essentially the only feasible direct solution method

» Solve Ax = b with square matrix A.

» While formally, the algorithm is always the same, its implementation
depends on

> data structure to store matrix
> possibility to ignore zero entries for matrices with many zeroes

> sorting of elements

Gaussian elemination: pass 1

6 -2 2 16
12 -8 6|x=1[26
3 —-13 3 -19

Step 1: equation, < equation, — 2 equation;
equation; < equation; — %equatiom1

6 -2 2 16
0 -4 2|x=[-6
0 -12 2 —27

Step 2: equation; < equation; — 3 equation,

6 -2 2 16
0 -4 2 |x=|-6
0 -0 -4 -9

Gaussian elimination: pass 2

Solve upper triangular system

6 —2 2 16
0 -4 2 |x=[-6
0 0 —4 -9

—4x3 = -9 = X3 =

—4x2 + 2x3 = —6 = —dxp = —— = X2 =

21 18 11
6x1 — 2x2 + 2x3 = 2 :>6X1:2+777:T = X1 =

NI EE:

LU factorization

Pass 1 expressed in matrix operation

6 —2 2 16 1 00
LiAx=10 —4 2]|x=| —6 | =Lib, Li=|-2 0
0 —-12 2 —27 -1 1

6 —2 2 16 1 0 O
LLAx=|10 -4 2 |x=|-6])=LLb L=|0 1 0
0 -0 —4 -9 0 -3 1

o =

1 00
»LetL:L;1L2—1:<2 1 0], U=L2L1A Then A=LU

131

2

> Inplace operation. Diagonal elements of L are always 1, so no need to store
them =- work on storage space for A and overwrite it.

LU factorization

Solve Ax = b
» Pass 1: factorize A = LU such that L, U are lower/upper triangular

» Pass 2: obtain x = U™*L™'b by solution of lower/upper triangular systems

> 1. solve Lx =b
> 2. solve Ux = X

» We never calculate A~! as this would be more expensive

Problem example

. e 1 x1\ _ (l+e
» Consider <1 1) <X2> = (1 >
» Solution: <X1> = <1>
X2 1

» Machine arithmetic: Let ¢ << 1 such that 1 + ¢ =1.
» Equation system in machine arithmetic:

l-et+1-1=1+c¢

1-1+41-1=2
» Still fulfilled!

Problem example |lI: Gaussian elimination

» Ordinary elimination: equation, + equation, — 1 equation,

€ 1 x1\ 1+e€
0 17% X2 - 2*14?

> In exact arithmetic:

1-1 14e—
= Xp = ;I].:>X1: Te X2—1
1-—2 €
> In floating point arithmetic: 1 +¢ =1, 1,%:,%' 21— _

6=

=>x=1=exx+1=1=x=0

Problem example Ill: Partial Pivoting

v

Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”
This prevents near zero divisions and increases stability

()E)-61)=6 1)) -6

Independent of e:

v

\{

X2=1_1€:1, X1:2—X2:1
1—c¢

v

Instead of A, factorize PA: PA = LU, where P is a permutation matrix
which can be encoded using an integer vector

Gaussian elimination and LU factorization

» Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

» Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

» Complexity of LU-Factorization: O(N?), some theoretically better
algorithms are known with e.g. O(N?73%)

» Complexity of triangular solve: O(N?)
= overall complexity of linear system solution is O(N?)

Cholesky factorization

» A= LLT for symmetric, positive definite matrices

BLAS, LAPACK

» BLAS: Basic Linear Algebra Subprograms http://www.netlib.org/blas/

> Level 1 - vector-vector: y < ax +y
> Level 2 - matrix-vector: y < aAx + By
> Level 3 - matrix-matrix: C + aAB + 5C
» LAPACK: Linear Algebra PACKage http://wuw.netlib.org/lapack/
> Linear system solution, eigenvalue calculation etc.
> dgetrf: LU factorization
> dgetrs: LU solve
> Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++

matrix libraries use these routines. Unless there is special need, they should
be used.

» Reference implementations in Fortran, but many more implementations
available which carefully work with cache lines etc.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

Matrices from PDEs

» So far, we assumed that matrices are stored in a two-dimensional, n X n
array of numbers

» This kind of matrices are also called dense matrices

> As we will see, matrices from PDEs (can) have a number of structural
properties one can take advantage of when storing a matrix and solving the
linear system

1D heat conduction

> vi, vg: ambient temperatures, a: heat transfer coefficient
» Second order boundary value problem in Q = [0, 1]:
—u"(x) = f(x) inQ
—u'(0) + a(u(0) — v;) =0
u'(1) + a(u(l) —vg) =0

» Let h= 2=, x; =x0+ (i —1)h i = 1...n be discretization points, let v,

n—1'
approximations for u(x;) and f; = f(x;)

> Finite difference approximation:
’ 1
—u'(0) + au(0) — v) = E(UO —)+ v — v)
1 .
fu”(x,-) —f(x) =~ ﬁ(u,url —2uj — ui—1) — f; (i=2...n-1)
1
u'(1) + a(u(l) — vg) = E(u,, — Up—1) + aup — Vr)

1D heat conduction: discretization matrix

> equations 2...n — 1 multiplied by h

> only nonzero entries written

a—o—% —% u1 vy
1 2 1

R A TR 2 hta
~5 h Th us hfs

1 2 1
—%h z ~ % un-—2 hfn_2
-3 2 -3 un-1 hfy-1
—% %—l—oz uy QVR

» Each row contains < 3 elements

» Only 3n — 2 of n? elements are non-zero

General tridiagonal matrix

b1 C1 U fl
a2 b o U H
as b3 us = f?’

Cn—1)
an bn up f n

» To store matrix, it is sufficient to store only nonzero elements in three
one-dimensional arrays for a;, b;, ¢;, respectively

Gaussian elimination for tridiagonal systems

Gaussian elimination using arrays a, b, ¢ as matrix storage ?7

From what we have seen, this question arises in a quite natural way, and
historically, the answer has been given several times

» TDMA (tridiagonal matrix algorithm)
» “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))

> “Progonka method” (from Russian "run through”; Gelfand, Lokutsievski,

1952, published 1960)

Progonka: derivation

> aiui—1+ biui+cupi=f (i=1...n);a=0 ecv=0

» Fori=1...n—1, assume there are coefficients «;, 5; such that
up = air1livl + Bit1.

» Then, we can express uj—1 and u; via ujt1:
(aiciaiy1 + biaiyr + ci)uiy1 + aiciBiz1 + aiBi + biBiyi — i =0

> This is true independently of u if
aioaip1 + biaiz1 + ¢ =0
aiaifiv1 + aifi + bifia—fi =0

»orfori=1...n—1:

Qit1 = — ajaj+b;

Bi _ fi—aiB;
i+1 ajaj+b;

Progonka: realization

> Forward sweep:

C
%) —
B i
2 by
fori=2...n—1
. —_ S
Al = T
Bi _ fi—aiB;
i+l ajai+bj
» Backward sweep:
_ fo—anfhn
n
ann + by

forn—1...1:

up = ajs1liv1 + By

Progonka: properties

» n unknowns, one forward sweep, one backward sweep
= O(n) operations vs. O(n*) for algorithm using full matrix

» No pivoting = stability issues

> Stability for diagonally dominant matrices (|bi| > |ai| + |ci|)
> Stability for symmetric positive definite matrices

2D finite difference grid

» Each discretization point has not more then 4 neighbours

» Matrix can be stored in five diagonals,
LU factorization not anymore = "fill-in"

> Certain iterative methods can take advantage of the regular and hierachical
structure (multigrid) and are able to solve system in O(n) operations

> Another possibility: fast Fourier transform with O(nlog n) operations

Sparse matrices

» Tridiagonal and five-diagonal matrices can be seen as special cases of sparse
matrices

> Generally they occur in finite element, finite difference and finite volume
discretizations of PDEs on structured and unstructured grids

> Definition: Regardless of number of unknowns n, the number of non-zero
entries per row remains limited by n,

> If we find a scheme which allows to store only the non-zero matrix entries,
we would need nn, = O(n) storage locations instead of n?

> The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once: matrix-vector
multiplication would use O(n) instead of O(n®) operations

Sparse matrix questions

» What is a good storage format for sparse matrices?

> Is there a way to implement Gaussian elimination for general sparse
matrices which allows for linear system solution with O(n) operation ?

> Is there a way to implement Gaussian elimination with pivoting for general
sparse matrices which allows for linear system solution with O(n)
operations?

> Is there any algorithm for sparse linear system solution with O(n)
operations?

