Scientific Computing WS 2017/2018

Lecture 5

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de
With material from "Introduction to High-Performance Scientific Computing" by Victor Eijkhout (http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

Recap from last time

Floating point limits

- symmetry wrt. 0 because of sign bit
- smallest positive normalized number: $d_{0}=1, d_{i}=0, i=1 \ldots t-1$ $x_{\text {min }}=\beta^{L}$
- smallest positive denormalized number: $d_{i}=0, i=0 \ldots t-2, d_{t-1}=1$ $x_{\text {min }}=\beta^{1-t} \beta^{L}$
- largest positive normalized number: $d_{i}=\beta-1,0 \ldots t-1$ $x_{\max }=\beta\left(1-\beta^{1-t}\right) \beta^{U}$

Machine precision

- Exact value x
- Approximation \tilde{x}
- Then: $\left|\frac{\tilde{x}-x}{x}\right|<\epsilon$ is the best accuracy estimate we can get, where
- $\epsilon=\beta^{1-t}$ (truncation)
- $\epsilon=\frac{1}{2} \beta^{1-t}$ (rounding)
- Also: ϵ is the smallest representable number such that $1+\epsilon>1$.
- Relative errors show up in partiular when
- subtracting two close numbers
- adding smaller numbers to larger ones

Matrix + Vector norms

- Vector norms: let $x=\left(x_{i}\right) \in \mathbb{R}^{n}$
- $\|x\|_{1}=\sum_{i}={ }^{n}\left|x_{i}\right|$: sum norm, l_{1}-norm
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$: Euclidean norm, l_{2}-norm
- $\|x\|_{\infty}=\max _{i=1 \ldots n}\left|x_{i}\right|:$ maximum norm, l_{∞}-norm
- Matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
- Representation of linear operator $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $\mathcal{A}: x \mapsto y=A x$ with

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Induced matrix norm:

$$
\begin{aligned}
\|A\|_{\nu} & =\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}} \\
& =\max _{x \in \mathbb{R}^{n},\|x\|_{\nu}=1} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}}
\end{aligned}
$$

Matrix norms

- $\|A\|_{1}=\max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|$ maximum of column sums
- $\|A\|_{\infty}=\max _{i=1 \ldots n} \sum_{j=1}^{n=1}\left|a_{i j}\right|$ maximum of row sums
- $\|A\|_{2}=\sqrt{\lambda_{\max }}$ with $\lambda_{\max }$: largest eigenvalue of $A^{T} A$.

Matrix condition number and error propagation

Problem: solve $A x=b$, where b is inexact.

$$
A(x+\Delta x)=b+\Delta b
$$

Since $A x=b$, we get $A \Delta x=\Delta b$. From this,

$$
\begin{gathered}
\left\{\begin{aligned}
\Delta x=A^{-1} \Delta b \\
A x=b
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
\|A\| \cdot\|x\| & \geq\|b\| \\
\|\Delta x\| & \leq\left\|A^{-1}\right\| \cdot\|\Delta b\|
\end{aligned}\right. \\
\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
\end{gathered}
$$

where $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A.

Approaches to linear system solution

Solve $A x=b$
Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- Only approximate
- Cheaper in space and (possibly) time
- Convergence not guaranteed
numcxx is a small $C++$ library developed for and during this course which implements the concepts introduced
- Shared smart pointers vs. references
- 1D/2D Array class
- Matrix class with LAPACK interface
- Expression templates
- Interface to triangulations
- Sparse matrices + UMFPACK interface
- Iterative solvers
- Python interface
- TArray1: templated 1D array class DArray1: 1D double array class
- TArray2: templated 2D array class DArray2: 2D double array class
- TMatrix: templated dense matrix class

DMatrix: double dense matrix class

- TSolverLapackLU: LU factorization based on LAPACK DSolverLapackLU

Obtaining and compiling the examples

- Copy files, creating subdirectory part2
- the . denotes the current directory
\$ ls /net/wir/numxx/examples/10-numcxx-basicx/*.cxx
\$ cp -r /net/wir/examples/10-numcxx-basicx/numcxx-expressions.cxx
- Compile sources (for each of the .cxx files) (integrates with codeblocks)
\$ numcxx-build -o example numcxx-expressions.cxx
\$./example

CMake

What is behind numcxx-build?

- CMake - the current best way to build code
- Describe project in a file called CMakeLists.txt

```
cmake_minimum_required(VERSION 2.8.12)
PROJECT(example C CXX)
find_package(NUMCXX REQUIRED)
include_directories("${NUMCXX_INCLUDE_DIRS}")
link_libraries("${NUMCXX_LIBRARIES}")
add_executable(example example.cxx)
```

- Set up project (only once)
\$ mkdir builddir
\$ cd buildir
\$ cmake ..
\$ cd ..
- build code
\$ cmake --build builddir
- run code
\$./builddir/example

Let's have some naming conventions

- lowercase letters: scalar values
- i,j,k,l,m,n standalone or as prefixes: integers, indices
- others: floating point
- Upper_case_letters: class objects/references

```
std::vector<double> X(n);
numcxx::DArray1<double> Y(n);
```

- pUpper_case_letters: smart pointers to objects

```
auto pX=std::make_shared<std::vector<double>> (n);
auto pY=numcxx::TArray1<double>::create(n);
auto pZ=numcxx::TArray1<double>::create({1,2,3,4});
// getting references from smart pointers
auto &X=*pX;
auto &Y=*pY;
auto &Z=*pZ;
auto W=std::make_shared<std::vector<double>>({1,2,3,4}); // doesn't work...
```


C++ code using vectors, C++-style with smart pointers

File

```
/net/wir/numcxx/examples/00-cxx-basics/05-cxx-style-sharedptr.cxx
```

```
#include <cstdio>
#include <vector>
#include <memory>
void initialize(std::vector<double> &x)
{ for (int i=0;i<x.size();i++) x[i]= 1.0/(double)(1+n-i);}
double sum_elements(std::vector<double> & x)
{ double sum=0;
    for (int i=0;i<x.size();i++)sum+=x[i];
    return sum;
}
int main()
{ const int n=12345678;
    // call constructor and wrap pointer into smart pointer
    auto x=std::make_shared<std::vector<double>>(n);
    initialize(*x);
    double s=sum_elements(*x);
    printf("sum=%e\n",s);
    // smartpointer calls destructor if reference count reaches zero
}
```

- Heap memory management controlled by smart pointer lifetime
- If method or function does not store the object, pass by reference $\Rightarrow \mathrm{API}$ stays the same as for previous case.

$C++$ code using numcxx with references

File /net/wir/examples/10-numcxx-basicx/numcxx-ref.cxx

```
#include <cstdio>
#include <numcxx/numcxx.hxx>
void initialize(numcxx::DArray1 &X)
{ const int n=X.size();
    for (int i=0;i<n;i++) X[i]= 1.0/(double)(1+n-i);
}
double sum_elements(numcxx::DArray1 & X)
{ double sum=0;
    for (int i=0;i<X.size();i++)sum+=X[i];
    return sum;
}
int main()
{ const int n=12345678;
    numcxx::TArray1<double> X(n);
    initialize(X);
    double s=sum_elements(X);
    printf("sum=%e\n",s);
}
```


C ++ code using numcxx with smart pointers

File /net/wir/examples/10-numcxx-basics/numcxx-sharedptr.cxx

```
#include <cstdio>
#include <memory>
#include <numcxx/numcxx.hxx>
void initialize(numcxx::DArray1 &X)
{ const int n=X.size();
    for (int i=0;i<n;i++) X[i]= 1.0/(double)(1+n-i);
}
double sum_elements(numcxx::DArray1 & X)
{ double sum=0;
    for (int i=0;i<X.size();i++)sum+=X[i];
    return sum;
}
int main()
{ const int n=12345678;
    // call constructor and wrap pointer into smart pointer
    auto pX=numcxx::TArray1<double>::create(n);
    initialize(*pX);
    double s=sum_elements(*pX);
    printf("sum=%e\n",s);
}
```


Solution of linear systems of equations

Approaches to linear system solution

Let A : $n \times n$ matrix, $b \in \mathbb{R}^{n}$.
Solve $A x=b$

- Direct methods:
- Exact
- up to machine precision
- condition number
- Expensive (in time and space)
- where does this matter ?
- Iterative methods:
- Only approximate
- with good convergence and proper accuracy control, results are not worse than for direct methods
- May be cheaper in space and (possibly) time
- Convergence guarantee is problem dependent and can be tricky

Complexity: "big O notation"

- Let $f, g: \mathbb{V} \rightarrow \mathbb{R}^{+}$be some functions, where $\mathbb{V}=\mathbb{N}$ or $\mathbb{V}=\mathbb{R}$.

We write

$$
f(x)=O(g(x)) \quad(x \rightarrow \infty)
$$

if there exist a constant $C>0$ and $x_{0} \in \mathbb{V}$ such that

$$
\forall x>x_{0}, \quad|f(x)| \leq C|g(x)|
$$

- Often, one skips the part " $(x \rightarrow \infty)$ "
- Examples:
- Addition of two vectors: $O(n)$
- Matrix-vector multiplication (for matrix where all entries are assumed to be nonzero): $O\left(n^{2}\right)$

Really bad example of direct method

Solve $A x=b$ by Cramer's rule

$$
x_{i}=\left|\begin{array}{cccccccc}
a_{11} & a_{12} & \ldots & a_{1 i-1} & b_{1} & a_{1 i+1} & \ldots & a_{1 n} \\
a_{21} & & \ldots & & b_{2} & & \ldots & a_{2 n} \\
\vdots & & & & \vdots & & & \vdots \\
a_{n 1} & & \ldots & & b_{n} & & \ldots & a_{n n}
\end{array}\right| /|A| \quad(i=1 \ldots n)
$$

This takes $O(n!)$ operations...

Gaussian elimination

- Essentially the only feasible direct solution method
- Solve $A x=b$ with square matrix A.
- While formally, the algorithm is always the same, its implementation depends on
- data structure to store matrix
- possibility to ignore zero entries for matrices with many zeroes
- sorting of elements

Gaussian elemination: pass 1

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
12 & -8 & 6 \\
3 & -13 & 3
\end{array}\right) x=\left(\begin{array}{c}
16 \\
26 \\
-19
\end{array}\right)
$$

Step 1: equation $2 \leftarrow$ equation $_{2}-2$ equation $_{1}$ equation $_{3} \leftarrow$ equation $_{3}-\frac{1}{2}$ equation $_{1}$

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & -4 & 2 \\
0 & -12 & 2
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-27
\end{array}\right)
$$

Step 2: equation $3 \leftarrow$ equation $_{3}-3$ equation $_{2}$

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & -4 & 2 \\
0 & -0 & -4
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right)
$$

Gaussian elimination: pass 2

Solve upper triangular system

$$
\begin{aligned}
& \left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & -4 & 2 \\
0 & 0 & -4
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right) \\
& -4 x_{3}=-9 \\
& -4 x_{2}+2 x_{3}=-6 \quad \Rightarrow-4 x_{2}=-\frac{21}{2} \quad \Rightarrow x_{2}=\frac{21}{8} \\
& 6 x_{1}-2 x_{2}+2 x_{3}=2 \quad \Rightarrow 6 x_{1}=2+\frac{21}{4}-\frac{18}{4}=\frac{11}{4} \quad \Rightarrow x_{1}=\frac{11}{4}
\end{aligned}
$$

LU factorization

Pass 1 expressed in matrix operation

$$
\begin{aligned}
& L_{1} A x=\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & -4 & 2 \\
0 & -12 & 2
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-27
\end{array}\right)=L_{1} b, \quad L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right) \\
& L_{2} L_{1} A x=\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & -4 & 2 \\
0 & -0 & -4
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right)=L_{2} L_{1} b, \quad L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right) \\
& \text { Let } L=L_{1}^{-1} L_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{2} & 3 & 1
\end{array}\right), U=L_{2} L_{1} A . \text { Then } A=L U
\end{aligned}
$$

- Inplace operation. Diagonal elements of L are always 1 , so no need to store them \Rightarrow work on storage space for A and overwrite it.

LU factorization

Solve $A x=b$

- Pass 1: factorize $A=L U$ such that L, U are lower/upper triangular
- Pass 2: obtain $x=U^{-1} L^{-1} b$ by solution of lower/upper triangular systems
- 1. solve $L \tilde{x}=b$
- 2. solve $U x=\tilde{x}$
- We never calculate A^{-1} as this would be more expensive

Problem example

- Consider $\left(\begin{array}{ll}\epsilon & 1 \\ 1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1+\epsilon}{1}$
- Solution: $\binom{x_{1}}{x_{2}}=\binom{1}{1}$
- Machine arithmetic: Let $\epsilon \ll 1$ such that $1+\epsilon=1$.
- Equation system in machine arithmetic:
$1 \cdot \epsilon+1 \cdot 1=1+\epsilon$
$1 \cdot 1+1 \cdot 1=2$
- Still fulfilled!

Problem example II: Gaussian elimination

- Ordinary elimination: equation ${ }_{2} \leftarrow$ equation $_{2}-\frac{1}{\epsilon}$ equation $_{1}$

$$
\left(\begin{array}{cc}
\epsilon & 1 \\
0 & 1-\frac{1}{\epsilon}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1+\epsilon}{2-\frac{1+\epsilon}{\epsilon}}
$$

- In exact arithmetic:

$$
\Rightarrow x_{2}=\frac{1-\frac{1}{\epsilon}}{1-\frac{1}{\epsilon}}=1 \Rightarrow x_{1}=\frac{1+\epsilon-x_{2}}{\epsilon}=1
$$

- In floating point arithmetic: $1+\epsilon=1,1-\frac{1}{\epsilon}=-\frac{1}{\epsilon}, 2-\frac{1}{\epsilon}=-\frac{1}{\epsilon}$:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\epsilon & 1 \\
0 & -\frac{1}{\epsilon}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{-\frac{1}{\epsilon}} \\
& \Rightarrow x_{2}=1 \Rightarrow \epsilon x_{1}+1=1 \Rightarrow x_{1}=0
\end{aligned}
$$

Problem example III: Partial Pivoting

- Before elimination step, look at the element with largest absolute value in current column and put the corresponding row "on top" as the "pivot"
- This prevents near zero divisions and increases stability

$$
\left(\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2}{1+\epsilon} \Rightarrow\left(\begin{array}{cc}
1 & 1 \\
0 & 1-\epsilon
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{2}{1-\epsilon}
$$

- Independent of ϵ :

$$
x_{2}=\frac{1-1 \epsilon}{1-\epsilon}=1, \quad x_{1}=2-x_{2}=1
$$

- Instead of A, factorize $P A: P A=L U$, where P is a permutation matrix which can be encoded using an integer vector

Gaussian elimination and LU factorization

- Full pivoting: in addition to row exchanges, perform column exchanges to ensure even larger pivots. Seldomly used in practice.
- Gaussian elimination with partial pivoting is the "working horse" for direct solution methods
- Complexity of LU-Factorization: $O\left(N^{3}\right)$, some theoretically better algorithms are known with e.g. $O\left(N^{2.736}\right)$
- Complexity of triangular solve: $O\left(N^{2}\right)$ \Rightarrow overall complexity of linear system solution is $O\left(N^{3}\right)$

Cholesky factorization

- $A=L L^{\top}$ for symmetric, positive definite matrices

BLAS, LAPACK

- BLAS: Basic Linear Algebra Subprograms http://www.netlib.org/blas/
- Level 1 - vector-vector: $\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y}$
- Level 2 - matrix-vector: $\mathbf{y} \leftarrow \alpha A \mathbf{x}+\beta \mathbf{y}$
- Level 3 - matrix-matrix: $C \leftarrow \alpha A B+\beta C$
- LAPACK: Linear Algebra PACKage http://www.netlib.org/lapack/
- Linear system solution, eigenvalue calculation etc.
- dgetrf: LU factorization
- dgetrs: LU solve
- Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++ matrix libraries use these routines. Unless there is special need, they should be used.
- Reference implementations in Fortran, but many more implementations available which carefully work with cache lines etc.

Matrices from PDEs

- So far, we assumed that matrices are stored in a two-dimensional, $n \times n$ array of numbers
- This kind of matrices are also called dense matrices
- As we will see, matrices from PDEs (can) have a number of structural properties one can take advantage of when storing a matrix and solving the linear system

1D heat conduction

- v_{L}, v_{R} : ambient temperatures, α : heat transfer coefficient
- Second order boundary value problem in $\Omega=[0,1]$:

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad \text { in } \Omega \\
-u^{\prime}(0)+\alpha\left(u(0)-v_{L}\right) & =0 \\
u^{\prime}(1)+\alpha\left(u(1)-v_{R}\right) & =0
\end{aligned}
$$

- Let $h=\frac{1}{n-1}, x_{i}=x_{0}+(i-1) h i=1 \ldots n$ be discretization points, let u_{i} approximations for $u\left(x_{i}\right)$ and $f_{i}=f\left(x_{i}\right)$
- Finite difference approximation:

$$
\begin{aligned}
-u^{\prime}(0)+\alpha\left(u(0)-v_{L}\right) & \approx \frac{1}{h}\left(u_{0}-u_{1}\right)+\alpha\left(u_{0}-v_{L}\right) \\
-u^{\prime \prime}\left(x_{i}\right)-f\left(x_{i}\right) & \approx \frac{1}{h^{2}}\left(u_{i+1}-2 u_{i}-u_{i-1}\right)-f_{i} \quad(i=2 \ldots n-1) \\
u^{\prime}(1)+\alpha\left(u(1)-v_{R}\right) & \approx \frac{1}{h}\left(u_{n}-u_{n-1}\right)+\alpha\left(u_{n}-v_{R}\right)
\end{aligned}
$$

1D heat conduction: discretization matrix

- equations $2 \ldots n-1$ multiplied by h
- only nonzero entries written

$$
\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=\left(\begin{array}{c}
\alpha v_{L} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\alpha v_{R}
\end{array}\right)
$$

- Each row contains ≤ 3 elements
- Only $3 n-2$ of n^{2} elements are non-zero

General tridiagonal matrix

$$
\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
a_{2} & b_{2} & c_{2} & & \\
& a_{3} & b_{3} & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
& & & a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right)
$$

- To store matrix, it is sufficient to store only nonzero elements in three one-dimensional arrays for a_{i}, b_{i}, c_{i}, respectively

Gaussian elimination for tridiagonal systems

Gaussian elimination using arrays a, b, c as matrix storage ?
From what we have seen, this question arises in a quite natural way, and historically, the answer has been given several times

- TDMA (tridiagonal matrix algorithm)
- "Thomas algorithm" (Llewellyn H. Thomas, 1949 (?))
- "Progonka method" (from Russian "run through"; Gelfand, Lokutsievski, 1952, published 1960)

Progonka: derivation

- $a_{i} u_{i-1}+b_{i} u_{i}+c_{i} u_{i+1}=f_{i} \quad(i=1 \ldots n) ; a_{1}=0, c_{N}=0$
- For $i=1 \ldots n-1$, assume there are coefficients α_{i}, β_{i} such that $u_{i}=\alpha_{i+1} u_{i+1}+\beta_{i+1}$.
- Then, we can express u_{i-1} and u_{i} via u_{i+1} :
$\left(a_{i} \alpha_{i} \alpha_{i+1}+b_{i} \alpha_{i+1}+c_{i}\right) u_{i+1}+a_{i} \alpha_{i} \beta_{i+1}+a_{i} \beta_{i}+b_{i} \beta_{i+1}-f_{i}=0$
- This is true independently of u if

$$
\begin{cases}a_{i} \alpha_{i} \alpha_{i+1}+b_{i} \alpha_{i+1}+c_{i} & =0 \\ a_{i} \alpha_{i} \beta_{i+1}+a_{i} \beta_{i}+b_{i} \beta_{i+1}-f_{i} & =0\end{cases}
$$

- or for $i=1 \ldots n-1$:

$$
\left\{\begin{array}{l}
\alpha_{i+1}=-\frac{c_{i}}{a_{i} \alpha_{i}+b_{i}} \\
\beta_{i+1}=\frac{t_{i}-a_{i} \beta_{i}}{a_{i} \alpha_{i}+b_{i}}
\end{array}\right.
$$

Progonka: realization

- Forward sweep:

$$
\left\{\begin{array}{l}
\alpha_{2}=-\frac{c_{1}}{b_{1}} \\
\beta_{2}=\frac{f_{i}}{b_{1}}
\end{array}\right.
$$

for $i=2 \ldots n-1$

$$
\left\{\begin{array}{l}
\alpha_{i+1}=-\frac{c_{i}}{a_{i} \alpha_{i}+b_{i}} \\
\beta_{i+1}=\frac{f_{i}-a_{i} \beta_{i}}{a_{i} \alpha_{i}+b_{i}}
\end{array}\right.
$$

- Backward sweep:

$$
u_{n}=\frac{f_{n}-a_{n} \beta_{n}}{a_{n} \alpha_{n}+b_{n}}
$$

for $n-1 \ldots 1$:

$$
u_{i}=\alpha_{i+1} u_{i+1}+\beta_{i+1}
$$

Progonka: properties

- n unknowns, one forward sweep, one backward sweep $\Rightarrow O(n)$ operations vs. $O\left(n^{3}\right)$ for algorithm using full matrix
- No pivoting \Rightarrow stability issues
- Stability for diagonally dominant matrices $\left(\left|b_{i}\right|>\left|a_{i}\right|+\left|c_{i}\right|\right)$
- Stability for symmetric positive definite matrices

2D finite difference grid

- Each discretization point has not more then 4 neighbours
- Matrix can be stored in five diagonals, LU factorization not anymore \equiv "fill-in"
- Certain iterative methods can take advantage of the regular and hierachical structure (multigrid) and are able to solve system in $O(n)$ operations
- Another possibility: fast Fourier transform with $O(n \log n)$ operations

Sparse matrices

- Tridiagonal and five-diagonal matrices can be seen as special cases of sparse matrices
- Generally they occur in finite element, finite difference and finite volume discretizations of PDEs on structured and unstructured grids
- Definition: Regardless of number of unknowns n, the number of non-zero entries per row remains limited by n_{r}
- If we find a scheme which allows to store only the non-zero matrix entries, we would need $n n_{r}=O(n)$ storage locations instead of n^{2}
- The same would be true for the matrix-vector multiplication if we program it in such a way that we use every nonzero element just once: matrix-vector multiplication would use $O(n)$ instead of $O\left(n^{2}\right)$ operations

Sparse matrix questions

- What is a good storage format for sparse matrices?
- Is there a way to implement Gaussian elimination for general sparse matrices which allows for linear system solution with $O(n)$ operation ?
- Is there a way to implement Gaussian elimination with pivoting for general sparse matrices which allows for linear system solution with $O(n)$ operations?
- Is there any algorithm for sparse linear system solution with $O(n)$ operations?

