
Lecture 5 Slide 1

Scientific Computing WS 2017/2018

Lecture 5

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de
With material from “Introduction to High-Performance Scientific Computing” by
Victor Eijkhout (http://pages.tacc.utexas.edu/˜eijkhout/istc/istc.html)

Lecture 5 Slide 2

Recap from last time

Lecture 4 Slide 32

Floating point limits

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

Lecture 5 Slide 3

Lecture 4 Slide 33

Machine precision

I Exact value x
I Approximation x̃
I Then: | x̃−x

x | < ε is the best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1 + ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

Lecture 5 Slide 4

Lecture 4 Slide 34

Matrix + Vector norms

I Vector norms: let x = (xi) ∈ Rn

I ||x ||1 =
∑

i =n |xi |: sum norm, l1-norm
I ||x ||2 =

√∑n
i=1 x2

i : Euclidean norm, l2-norm
I ||x ||∞ = maxi=1...n |xi |: maximum norm, l∞-norm

I Matrix A = (aij) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =
n∑

j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν =1

||Ax ||ν
||x ||ν

Lecture 5 Slide 5

Lecture 4 Slide 35

Matrix norms

I ||A||1 = maxj=1...n
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxi=1...n

∑n
j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of AT A.

Lecture 5 Slide 6

Lecture 4 Slide 36

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + ∆x) = b + ∆b.

Since Ax = b, we get A∆x = ∆b. From this,

{
∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A) ||∆b||

||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

Lecture 5 Slide 7

Lecture 4 Slide 37

Approaches to linear system solution

Solve Ax = b
Direct methods:

I Deterministic
I Exact up to machine precision
I Expensive (in time and space)

Iterative methods:
I Only approximate
I Cheaper in space and (possibly) time
I Convergence not guaranteed

Lecture 5 Slide 8

Lecture 5 Slide 9

numcxx

numcxx is a small C++ library developed for and during this course which
implements the concepts introduced

I Shared smart pointers vs. references
I 1D/2D Array class
I Matrix class with LAPACK interface
I Expression templates
I Interface to triangulations
I Sparse matrices + UMFPACK interface
I Iterative solvers
I Python interface

Lecture 5 Slide 10

numcxx classes

I TArray1: templated 1D array class
DArray1: 1D double array class

I TArray2: templated 2D array class
DArray2: 2D double array class

I TMatrix: templated dense matrix class
DMatrix: double dense matrix class

I TSolverLapackLU: LU factorization based on LAPACK
DSolverLapackLU

Lecture 5 Slide 11

Obtaining and compiling the examples

I Copy files, creating subdirectory part2
I the . denotes the current directory

$ ls /net/wir/numxx/examples/10-numcxx-basicx/*.cxx
$ cp -r /net/wir/examples/10-numcxx-basicx/numcxx-expressions.cxx .

I Compile sources (for each of the .cxx files) (integrates with codeblocks)
$ numcxx-build -o example numcxx-expressions.cxx
$./example

Lecture 5 Slide 12

CMake

What is behind numcxx-build?
I CMake - the current best way to build code
I Describe project in a file called CMakeLists.txt

cmake_minimum_required(VERSION 2.8.12)
PROJECT(example C CXX)
find_package(NUMCXX REQUIRED)
include_directories("${NUMCXX_INCLUDE_DIRS}")
link_libraries("${NUMCXX_LIBRARIES}")
add_executable(example example.cxx)

I Set up project (only once)
$ mkdir builddir
$ cd buildir
$ cmake ..
$ cd ..

I build code
$ cmake --build builddir

I run code
$./builddir/example

Lecture 5 Slide 13

Let’s have some naming conventions

I lowercase letters: scalar values
I i,j,k,l,m,n standalone or as prefixes: integers, indices
I others: floating point

I Upper case letters: class objects/references

std::vector<double> X(n);
numcxx::DArray1<double> Y(n);

I pUpper case letters: smart pointers to objects
auto pX=std::make_shared<std::vector<double>>(n);
auto pY=numcxx::TArray1<double>::create(n);
auto pZ=numcxx::TArray1<double>::create({1,2,3,4});

// getting references from smart pointers
auto &X=*pX;
auto &Y=*pY;
auto &Z=*pZ;

auto W=std::make_shared<std::vector<double>>({1,2,3,4}); // doesn’t work...

Lecture 4 Slide 20

C++ code using vectors, C++-style with smart pointers

File
/net/wir/numcxx/examples/00-cxx-basics/05-cxx-style-sharedptr.cxx

#include <cstdio>
#include <vector>
#include <memory>
void initialize(std::vector<double> &x)
{ for (int i=0;i<x.size();i++) x[i]= 1.0/(double)(1+n-i);}
double sum_elements(std::vector<double> & x)
{ double sum=0;

for (int i=0;i<x.size();i++)sum+=x[i];
return sum;

}
int main()
{ const int n=12345678;

// call constructor and wrap pointer into smart pointer
auto x=std::make_shared<std::vector<double>>(n);
initialize(*x);
double s=sum_elements(*x);
printf("sum=%e\n",s);
// smartpointer calls destructor if reference count reaches zero

}

I Heap memory management controlled by smart pointer lifetime
I If method or function does not store the object, pass by reference ⇒ API

stays the same as for previous case.

Lecture 5 Slide 14

Lecture 5 Slide 15

C++ code using numcxx with references

File /net/wir/examples/10-numcxx-basicx/numcxx-ref.cxx

#include <cstdio>
#include <numcxx/numcxx.hxx>
void initialize(numcxx::DArray1 &X)
{ const int n=X.size();

for (int i=0;i<n;i++) X[i]= 1.0/(double)(1+n-i);
}
double sum_elements(numcxx::DArray1 & X)
{ double sum=0;

for (int i=0;i<X.size();i++)sum+=X[i];
return sum;

}
int main()
{ const int n=12345678;

numcxx::TArray1<double> X(n);
initialize(X);
double s=sum_elements(X);
printf("sum=%e\n",s);

}

Lecture 5 Slide 16

C++ code using numcxx with smart pointers

File /net/wir/examples/10-numcxx-basics/numcxx-sharedptr.cxx

#include <cstdio>
#include <memory>
#include <numcxx/numcxx.hxx>
void initialize(numcxx::DArray1 &X)
{ const int n=X.size();

for (int i=0;i<n;i++) X[i]= 1.0/(double)(1+n-i);
}
double sum_elements(numcxx::DArray1 & X)
{ double sum=0;

for (int i=0;i<X.size();i++)sum+=X[i];
return sum;

}
int main()
{ const int n=12345678;

// call constructor and wrap pointer into smart pointer
auto pX=numcxx::TArray1<double>::create(n);
initialize(*pX);
double s=sum_elements(*pX);
printf("sum=%e\n",s);

}

Lecture 5 Slide 17

Solution of linear systems of equations

Lecture 5 Slide 18

Approaches to linear system solution

Let A: n × n matrix, b ∈ Rn.
Solve Ax = b

I Direct methods:
I Exact

I up to machine precision
I condition number

I Expensive (in time and space)
I where does this matter ?

I Iterative methods:
I Only approximate

I with good convergence and proper accuracy control, results are not worse than for
direct methods

I May be cheaper in space and (possibly) time
I Convergence guarantee is problem dependent and can be tricky

Lecture 5 Slide 19

Complexity: ”big O notation”

I Let f , g : V→ R+ be some functions, where V = N or V = R.
We write

f (x) = O(g(x)) (x →∞)
if there exist a constant C > 0 and x0 ∈ V such that

∀x > x0, |f (x)| ≤ C |g(x)|

I Often, one skips the part ”(x →∞)”
I Examples:

I Addition of two vectors: O(n)
I Matrix-vector multiplication (for matrix where all entries are assumed to be

nonzero): O(n2)

Lecture 5 Slide 20

Really bad example of direct method

Solve Ax = b by Cramer’s rule

xi =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣
/|A| (i = 1 . . . n)

This takes O(n!) operations...

Lecture 5 Slide 21

Gaussian elimination

I Essentially the only feasible direct solution method
I Solve Ax = b with square matrix A.
I While formally, the algorithm is always the same, its implementation

depends on
I data structure to store matrix
I possibility to ignore zero entries for matrices with many zeroes
I sorting of elements

Lecture 5 Slide 22

Gaussian elemination: pass 1

(6 −2 2
12 −8 6
3 −13 3

)
x =

(16
26
−19

)

Step 1: equation2 ← equation2 − 2 equation1
equation3 ← equation3 − 1

2 equation1

(6 −2 2
0 −4 2
0 −12 2

)
x =

(16
−6
−27

)

Step 2: equation3 ← equation3 − 3 equation2

(6 −2 2
0 −4 2
0 −0 −4

)
x =

(16
−6
−9

)

Lecture 5 Slide 23

Gaussian elimination: pass 2

Solve upper triangular system

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)

−4x3 = −9 ⇒ x3 = 9
4

−4x2 + 2x3 = −6 ⇒ −4x2 = −21
2 ⇒ x2 = 21

8
6x1 − 2x2 + 2x3 = 2 ⇒ 6x1 = 2 + 21

4 −
18
4 = 11

4 ⇒ x1 = 11
4

Lecture 5 Slide 24

LU factorization

Pass 1 expressed in matrix operation

L1Ax =

(6 −2 2
0 −4 2
0 −12 2

)
x =

(16
−6
−27

)
= L1b, L1 =

(1 0 0
−2 1 0
− 1

2 0 1

)

L2L1Ax =

(6 −2 2
0 −4 2
0 −0 −4

)
x =

(16
−6
−9

)
= L2L1b, L2 =

(1 0 0
0 1 0
0 −3 1

)

I Let L = L−1
1 L−1

2 =

(1 0 0
2 1 0
1
2 3 1

)
, U = L2L1A. Then A = LU

I Inplace operation. Diagonal elements of L are always 1, so no need to store
them ⇒ work on storage space for A and overwrite it.

Lecture 5 Slide 25

LU factorization

Solve Ax = b
I Pass 1: factorize A = LU such that L,U are lower/upper triangular
I Pass 2: obtain x = U−1L−1b by solution of lower/upper triangular systems

I 1. solve Lx̃ = b
I 2. solve Ux = x̃

I We never calculate A−1 as this would be more expensive

Lecture 5 Slide 26

Problem example

I Consider
(
ε 1
1 1

)(
x1
x2

)
=
(

1 + ε
1

)

I Solution:
(

x1
x2

)
=
(

1
1

)

I Machine arithmetic: Let ε << 1 such that 1 + ε = 1.
I Equation system in machine arithmetic:

1 · ε+ 1 · 1 = 1 + ε

1 · 1 + 1 · 1 = 2
I Still fulfilled!

Lecture 5 Slide 27

Problem example II: Gaussian elimination

I Ordinary elimination: equation2 ← equation2 − 1
ε

equation1(
ε 1
0 1− 1

ε

)(
x1
x2

)
=
(

1 + ε
2− 1+ε

ε

)

I In exact arithmetic:

⇒ x2 =
1− 1

ε

1− 1
ε

= 1⇒ x1 = 1 + ε− x2
ε

= 1

I In floating point arithmetic: 1 + ε = 1, 1− 1
ε

= − 1
ε
, 2− 1

ε
= − 1

ε
:(

ε 1
0 − 1

ε

)(
x1
x2

)
=
(

1
− 1
ε

)

⇒ x2 = 1 ⇒ εx1 + 1 = 1 ⇒ x1 = 0

Lecture 5 Slide 28

Problem example III: Partial Pivoting

I Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”

I This prevents near zero divisions and increases stability
(

1 1
ε 1

)(
x1
x2

)
=
(

2
1 + ε

)
⇒
(

1 1
0 1− ε

)(
x1
x2

)
=
(

2
1− ε

)

I Independent of ε:

x2 = 1− 1ε
1− ε = 1, x1 = 2− x2 = 1

I Instead of A, factorize PA: PA = LU, where P is a permutation matrix
which can be encoded using an integer vector

Lecture 5 Slide 29

Gaussian elimination and LU factorization

I Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

I Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

I Complexity of LU-Factorization: O(N3), some theoretically better
algorithms are known with e.g. O(N2.736)

I Complexity of triangular solve: O(N2)
⇒ overall complexity of linear system solution is O(N3)

Lecture 5 Slide 30

Cholesky factorization

I A = LLT for symmetric, positive definite matrices

Lecture 5 Slide 31

BLAS, LAPACK

I BLAS: Basic Linear Algebra Subprograms http://www.netlib.org/blas/

I Level 1 - vector-vector: y← αx + y
I Level 2 - matrix-vector: y← αAx + βy
I Level 3 - matrix-matrix: C ← αAB + βC

I LAPACK: Linear Algebra PACKage http://www.netlib.org/lapack/
I Linear system solution, eigenvalue calculation etc.
I dgetrf: LU factorization
I dgetrs: LU solve

I Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use these routines. Unless there is special need, they should
be used.

I Reference implementations in Fortran, but many more implementations
available which carefully work with cache lines etc.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

Lecture 5 Slide 32

Matrices from PDEs

I So far, we assumed that matrices are stored in a two-dimensional, n × n
array of numbers

I This kind of matrices are also called dense matrices
I As we will see, matrices from PDEs (can) have a number of structural

properties one can take advantage of when storing a matrix and solving the
linear system

Lecture 5 Slide 33

1D heat conduction

I vL, vR : ambient temperatures, α: heat transfer coefficient
I Second order boundary value problem in Ω = [0, 1]:

−u′′(x) = f (x) inΩ
−u′(0) + α(u(0)− vL) = 0

u′(1) + α(u(1)− vR) = 0

I Let h = 1
n−1 , xi = x0 + (i − 1)h i = 1 . . . n be discretization points, let ui

approximations for u(xi) and fi = f (xi)
I Finite difference approximation:

−u′(0) + α(u(0)− vL) ≈ 1
h (u0 − u1) + α(u0 − vL)

−u′′(xi)− f (xi) ≈ 1
h2 (ui+1 − 2ui − ui−1)− fi (i = 2 . . . n − 1)

u′(1) + α(u(1)− vR) ≈ 1
h (un − un−1) + α(un − vR)

Lecture 5 Slide 34

1D heat conduction: discretization matrix

I equations 2 . . . n − 1 multiplied by h
I only nonzero entries written




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




=




αvL
hf2
hf3
...

hfN−2
hfN−1
αvR




I Each row contains ≤ 3 elements
I Only 3n − 2 of n2 elements are non-zero

Lecture 5 Slide 35

General tridiagonal matrix




b1 c1
a2 b2 c2

a3 b3
. . .

. cn−1
an bn







u1
u2
u3
...

un




=




f1
f2
f3
...
fn




I To store matrix, it is sufficient to store only nonzero elements in three
one-dimensional arrays for ai , bi , ci , respectively

Lecture 5 Slide 36

Gaussian elimination for tridiagonal systems

Gaussian elimination using arrays a, b, c as matrix storage ?
From what we have seen, this question arises in a quite natural way, and
historically, the answer has been given several times

I TDMA (tridiagonal matrix algorithm)
I “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
I “Progonka method” (from Russian ”run through”; Gelfand, Lokutsievski,

1952, published 1960)

Lecture 5 Slide 37

Progonka: derivation

I aiui−1 + biui + ciui+1 = fi (i = 1 . . . n); a1 = 0, cN = 0
I For i = 1 . . . n − 1, assume there are coefficients αi , βi such that

ui = αi+1ui+1 + βi+1.
I Then, we can express ui−1 and ui via ui+1:

(aiαiαi+1 + biαi+1 + ci)ui+1 + aiαiβi+1 + aiβi + biβi+1 − fi = 0
I This is true independently of u if

{
aiαiαi+1 + biαi+1 + ci = 0
aiαiβi+1 + aiβi + biβi+1 − fi = 0

I or for i = 1 . . . n − 1:

{
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

Lecture 5 Slide 38

Progonka: realization
I Forward sweep:

{
α2 = − c1

b1

β2 = fi
b1

for i = 2 . . . n − 1

{
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

I Backward sweep:

un = fn − anβn
anαn + bn

for n − 1 . . . 1:

ui = αi+1ui+1 + βi+1

Lecture 5 Slide 39

Progonka: properties

I n unknowns, one forward sweep, one backward sweep
⇒ O(n) operations vs. O(n3) for algorithm using full matrix

I No pivoting ⇒ stability issues
I Stability for diagonally dominant matrices (|bi | > |ai |+ |ci |)
I Stability for symmetric positive definite matrices

Lecture 5 Slide 40

2D finite difference grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Each discretization point has not more then 4 neighbours
I Matrix can be stored in five diagonals,

LU factorization not anymore ≡ ”fill-in”
I Certain iterative methods can take advantage of the regular and hierachical

structure (multigrid) and are able to solve system in O(n) operations
I Another possibility: fast Fourier transform with O(n log n) operations

Lecture 5 Slide 41

Sparse matrices

I Tridiagonal and five-diagonal matrices can be seen as special cases of sparse
matrices

I Generally they occur in finite element, finite difference and finite volume
discretizations of PDEs on structured and unstructured grids

I Definition: Regardless of number of unknowns n, the number of non-zero
entries per row remains limited by nr

I If we find a scheme which allows to store only the non-zero matrix entries,
we would need nnr = O(n) storage locations instead of n2

I The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once: matrix-vector
multiplication would use O(n) instead of O(n2) operations

Lecture 5 Slide 42

Sparse matrix questions

I What is a good storage format for sparse matrices?
I Is there a way to implement Gaussian elimination for general sparse

matrices which allows for linear system solution with O(n) operation ?
I Is there a way to implement Gaussian elimination with pivoting for general

sparse matrices which allows for linear system solution with O(n)
operations?

I Is there any algorithm for sparse linear system solution with O(n)
operations?

