
~
Numerical Linear Algebra

Scientific Computing Winter 2016/2017
Part II

With material from Y. Saad "Iterative Methods for Sparse Linear Systems", R. S.
Varga "Matrix Iterative Analysis", J. Shewchuk: "An Introduction to the

Conjugate Gradient Method Without the Agonizing Pain"
Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc
1 / 121

Floating point representation

I Scientific notation of floating point numbers: e.g. x = 6.022 · 1023
I Representation formula:

x = ±
∞∑

i=0

diβ
−iβe

I β ∈ N, β ≥ 2: base
I di ∈ N, 0 ≤ di ≤ β: mantissa digits
I e ∈ Z : exponent

I Representation on computer:

x = ±
t−1∑

i=0

diβ
−iβe

I β = 2
I t: mantissa length, e.g. t = 53 for IEEE double
I L ≤ e ≤ U, e.g. −1022 ≤ e ≤ 1023 (10 bits) for IEEE double
I d0 6= 0 ⇒ normalized numbers, unique representation

2 / 121

Floating point limits

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

3 / 121

Machine precision

I Exact value x
I Approximation x̃
I Then: | x̃−x

x | < ε is the best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1 + ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

4 / 121

Matrix + Vector norms

I Vector norms: let x = (xi) ∈ Rn

I ||x ||1 =
∑

i =n |xi |: sum norm, l1-norm
I ||x ||2 =

√∑n
i=1 x2

i : Euclidean norm, l2-norm
I ||x ||∞ = maxi=1...n |xi |: maximum norm, l∞-norm

I Matrix A = (aij) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =

n∑

j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν =1

||Ax ||ν
||x ||ν

5 / 121

Matrix norms

I ||A||1 = maxj=1...n
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxi=1...n

∑n
j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of ATA.

6 / 121

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + ∆x) = b + ∆b.

Since Ax = b, we get A∆x = ∆b. From this,

{
∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A)

||∆b||
||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

7 / 121

Approaches to linear system solution

Solve Ax = b

Direct methods:

I Deterministic
I Exact up to machine precision
I Expensive (in time and space)

Iterative methods:

I Only approximate
I Cheaper in space and (possibly) time
I Convergence not guaranteed

8 / 121

Really bad example of direct method

Cramer’s rule
write |A| for determinant, then

xi =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣
/|A| (i = 1 . . . n)

O(n!) operations...

9 / 121

Gaussian elimination

I Essentially the only feasible direct solution method
I Solve Ax = b with square matrix A.

10 / 121

Gauss 1

(6 −2 2
12 −8 6
3 −13 3

)
x =

(16
26
−19

)

Step 1

(6 −2 2
0 4 −2
0 −12 2

)
x =

(16
−6
−27

)

Step 2

(6 −2 2
0 4 −2
0 −0 −4

)
x =

(16
−6
−9

)

11 / 121

Gauss 2

Solve upper triangular system

(6 −2 2
0 4 −2
0 0 −4

)
x =

(16
−6
−9

)

−4x3 = −9 ⇒ x3 =
9
4

−4x2 − 2x3 = −6 ⇒ −4x2 =
21
2 ⇒ x2 = −21

8
6x1 − 2x2 + 2x3 = 2 ⇒ 6x1 = 2− 21

4 −
18
4 = −31

4 ⇒ x1 = −−3124

12 / 121

Gaussian elimination expressed in matrix operations: LU factorization

L1Ax =

(6 −2 2
0 4 −2
0 −12 2

)
x =

(16
−6
−27

)
= L1b, L1 =

(1 0 0
−2 1 0
− 1

2 0 1

)

L2L1Ax =

(6 −2 2
0 4 −2
0 −0 −4

)
x =

(16
−6
−9

)
= L2L1b, L2 =

(1 0 0
0 1 0
0 −3 1

)

I Let L = L−11 L−12 =

(1 0 0
2 1 0
1
2 3 1

)
, U = L2L1A. Then A = LU

I Inplace operation. Diagonal elements of L are always 1, so no need to store
them ⇒ work on storage space for A and overwrite it.

13 / 121

Problem example

Consider (
ε 1
1 1

)
x =

(
1 + ε
2

)

with solution x = (1, 1)t

Ordinary elimination:
(
ε 1
0 (1− 1

ε
)

)
x =

(
1

2− 1
ε

)

⇒ x2 =
2− 1

ε

1− 1
ε

⇒ x1 =
1− x2
ε

If ε < εmach, then 2− 1/ε = −1/ε and 1− 1/ε = −1/ε, so

x2 =
2− 1

ε

1− 1
ε

= 1,⇒ x1 =
1− x2
ε

= 0

14 / 121

Partial Pivoting

I Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”

I This prevents near zero divisions and increases stability

(
1 1
ε 1

)
x =

(
2
1

)
⇒
(
1 1
0 1− ε

)
x =

(
2

1− 2ε

)

If ε very small:
x2 =

1− 2ε
1− ε = 1, x1 = 2− x2 = 1

I Factorization: PA = LU, where P is a permutation matrix which can be
encoded usin an integer vector

15 / 121

Gaussian elimination and LU factorization

I Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

I Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

I Standard routines from LAPACK: dgetrf, (factorization) dgetrs (solve)
used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use them. Unless there is special need, they should be used.

I Complexity of LU-Factorization: O(n3), some theoretically better algorithms
are known with e.g. O(n2.736)

16 / 121

Cholesky factorization

I A = LLT for symmetric, positive definite matrices

17 / 121

Matrices from PDE: a first example
I “Drosophila”: Poisson boundary value problem in rectangular domain

Given:

I Domain Ω = (0,X)× (0,Y) ⊂ R2 with boundary Γ = ∂Ω, outer normal n
I Right hand side f : Ω→ R
I "Conductivity" λ
I Boundary value v : Γ→ R
I Transfer coefficient α

Search function u : Ω→ R such that

−∇ · λ∇u = f inΩ

−λ∇u · n + α(u − v) = 0 onΓ

I Example: heat conduction:
I u: temperature
I f : volume heat source
I λ: heat conduction coefficient
I v : Ambient temperature
I α: Heat transfer coefficient

18 / 121

The finite volume idea

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k
such that

I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines

I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neigbours
I neigbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such that
I admissibility condition: if l ∈ Nk then the line xkxl is orthogonal to σkl
I if ωk is situated at the boundary, i.e. γk = ∂ωk ∩ ∂Ω 6= ∅, then xk ∈ ∂Ω

xk xl
σklωk

ωlnkl

19 / 121

Discretization ansatz
I Given control volume ωk , integrate equation over control volume

0 =

∫

ωk

(−∇ · λ∇u − f) dω

= −
∫

∂ωk

λ∇u · nkdγ −
∫

ωk

fdω (Gauss)

= −
∑

L∈Nk

∫

σkl

λ∇u · nkldγ −
∫

γk

λ∇u · ndγ −
∫

ωk

fdω

≈
∑

L∈Nk

σkl
hkl

(uk − ul) + |γk |α(uk − vk)− |ωk |fk

I Here,
I uk = u(xk)
I vk = v(xk)
I fk = f (xk)

I N = |N | equations (one for each control volume)
I N = |N | unknowns (one in each collocation point ≡ control volume)

20 / 121

1D finite volume grid

|!k|

hk�1,k hk,k+1

xk�1 xk xk+1xk�1,k xk,k+1

I Ω = [0,X]
I Collocation points:

0 = x1 < x2 < · · · < xn−1 < xn = X
I Control volumes:

ω1 = (x1, (x1 + x2)/2)

ω2 = ((x1 + x2)/2, (x2 + x3)/2)

...
ωN−1 = ((xN−2 + xN−1)/2, (xN−1 + xN)/2)

ωN = ((xN−1 + xN)/2, xN)

I Maximum number of neighbours: 2
21 / 121

Discretization matrix (1D)

Assume λ = 1, hkl = h and we count collocation points from 1 . . .N. For
k = 2 . . .N − 1, ωK = h, and

∑

L∈Nk

σkl
hkl

(uk − ul) =
1
h (−uk−1 + 2uk − uk+1)

The linear system then is (only nonzero entries marked):




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




=




h
2 f1 + αv1

hf2
hf3
...

hfN−2
hfN−1

h
2 fN + αvn




22 / 121

General tridiagonal matrix




b1 c1
a2 b2 c2

a3 b3
. . .

. cn−1
an bn







u1
u2
u3
...
un




=




f1
f2
f3
...
fn




23 / 121

Gaussian elimination for tridiagonal systems
I TDMA (tridiagonal matrix algorithm)
I “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
I “Progonka method” (Gelfand, Lokutsievski, 1952, published 1960)

aiui−1 + biui + ciui+1 = fi , a1 = 0, cN = 0
For i = 1 . . . n − 1, assume there are coefficients αi , βi such that
ui = αi+1ui+1 + βi+1.
Then, we can express ui−1 and ui via ui+1:
(aiαiαi+1 + ciαi+1 + bi)ui+1 + aiαiβi+1 + aiβi + ciβi+1 − fi = 0
This is true independently of u if

{
aiαiαi+1 + ciαi+1 + bi = 0
aiαiβi+1 + aiβi + ciβi+1 − fi = 0

or for i = 1 . . . n − 1:

{
αi+1 = − bi

aiαi +ci

βi+1 = fi−aiβi
aiαi +ci

24 / 121

Progonka algorithm
Forward sweep:

{
α2 = − b1

c1
β2 = fi

c1

for i = 2 . . . n − 1

{
αi+1 = − bi

aiαi +ci

βi+1 = fi−aiβi
aiαi +ci

Backward sweep:

un =
fn − anβn
anαn + cn

for n − 1 . . . 1:

ui = αi+1ui+1 + βi+1

25 / 121

Progonka algorithm - properties

I n unknowns, one forward sweep, one backward sweep ⇒ O(n) operations
vs. O(n3) for algorithm using full matrix

I No pivoting ⇒ stability issues
I Stability for diagonally dominant matrices (|bi | > |ai |+ |ci |)
I Stability for symmetric positive definite matrices

26 / 121

2D finite volume grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Red circles: discretization nodes
I Thin lines: original “grid”
I Thick lines: boundaries of control volumes
I Each discretization point has not more then 4 neighbours

27 / 121

Sparse matrices

I Regardless of number of unknowns n, the number of non-zero entries per
row remains limited by nr

I If we find a scheme which allows to store only the non-zero matrix entries,
we would need nnr = O(n) storage locations instead of n2

I The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once:
martrix-vector multiplication uses O(n) instead of O(n2) operartions

I In the special case of tridiagonal matrices, progonka gives an algorithm
which allows to solve the nonlinear system with O(n) operations

28 / 121

Sparse matrix questions

I What is a good format for sparse matrices?
I Is there a way to implement Gaussian elimination for general sparse

matrices which allows for linear system solution with O(n) operation
I Is there a way to implement Gaussian elimination with pivoting for general

sparse matrices which allows for linear system solution with O(n)
operations?

I Is there any algorithm for sparse linear system solution with O(n)
operations?

29 / 121

Coordinate (triplet) format

I store all nonzero elements along with their row and column indices
I one real, two integer arrays, length = nnz= number of nonzero elements

Y.Saad, Iterative Methods, p.92

30 / 121

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

I real array AA, length nnz, containing all nonzero elements row by row
I integer array JA, length nnz, containing the column indices of the elements

of AA
I integer array IA, length n+1, containing the start indizes of each row in the

arrays IA and JA and IA(n+1)=nnz+1

Y.Saad, Iterative Methods, p.93

I Used in most sparse matrix packages

31 / 121

The big schism
I Worse than catholics vs. protestants or shia vs. sunni. . .
I Should array indices count from zero or from one ?
I Fortran, Matlab, Julia count from one
I C/C++, python count from zero
I I am siding with the one fraction
I but I am tolerant, so for this course . . .

I It matters when passing index arrays to sparse matrix packages

http://xkcd.com/1739/

32 / 121

CRS again

AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 0 3 0 1 3 0 2 3 4 2 3 4
IA: 0 2 4 0 11 12

I some package APIs provide the possibility to specify array offset
I index shift is not very expensive compared to the rest of the work

33 / 121

Sparse direct solvers

I Sparse direct solvers implement Gaussian elimination with different pivoting
strategies

I UMFPACK
I Pardiso (omp + MPI parallel)
I SuperLU
I MUMPS (MPI parallel)
I Pastix

I Quite efficient for 1D/2D problems
I They suffer from fill-in: ⇒ huge memory usage for 3D

34 / 121

Sparse direct solvers: solution steps (Saad Ch. 3.6)
1. Pre-ordering

I The amount of non-zero elements generated by fill-in can be decreases by
re-ordering of the matrix

I Several, graph theory based heuristic algorithms exist
2. Symbolic factorization

I If pivoting is ignored, the indices of the non-zero elements are calculated and
stored

I Most expensive step wrt. computation time
3. Numerical factorization

I Calculation of the numerical values of the nonzero entries
I Not very expensive, once the symbolic factors are available

4. Upper/lower triangular system solution
I Fairly quick in comparison to the other steps

I Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

I With pivoting, steps 2 and 3 have to be performed together
I Instead of pivoting, iterative refinement may be used in order to maintain

accuracy of the solution
35 / 121

Interfacing UMFPACK from C++ (numcxx)
(shortened version of the code)

#include <suitesparse/umfpack.h>

// Calculate LU factorization
template<> inline void TSolverUMFPACK<double>::update()
{

pMatrix->flush(); // Update matrix, adding newly created elements
int n=pMatrix->shape(0);
double *control=nullptr;

//Calculate symbolic factorization only if matrix patter
//has changed
if (pMatrix->pattern_changed())
{

umfpack_di_symbolic (n, n, pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
&Symbolic, 0, 0);

}

umfpack_di_numeric (pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Symbolic, &Numeric, control, 0) ;

pMatrix->pattern_changed(false);
}

// Solve LU factorized system
template<> inline void TSolverUMFPACK<double>::solve(TArray<T> & Sol, const TArray<T> & Rhs)
{

umfpack_di_solve (UMFPACK_At,pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Sol.data(), Rhs.data(),
Numeric, control, 0) ;

}

36 / 121

How to use ?

#include <numcxx/numcxx.h>
auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArray1::create(n);
auto pU=numcxx::DArray1::create(n);

auto &M=*pM;
auto &F=*pF;
auto &U=*pU;

F=1.0;
for (int i=0;i<n;i++)
{

M(i,i)=3.0;
if (i>0) M(i,i-1)=-1;
if (i<n-1) M(i,i+1)=-1;

}

auto pUmfpack=numcxx::DSolverUMFPACK::create(pM);
pUmfpack->solve(U,F);

37 / 121

~

Towards iterative methodsx

38 / 121

Elements of iterative methods (Saad Ch.4)

Solve Au = b iteratively

I Preconditioner: a matrix M ≈ A “approximating” the matrix A but with the
property that the system Mv = f is easy to solve

I Iteration scheme: algorithmic sequence using M and A which updates the
solution step by step

39 / 121

Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . .)

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk
5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.

40 / 121

The Jacobi method
I Let A = D − E − F , where D: main diagonal, E : negative lower triangular

part F : negative upper triangular part
I Jacobi: M = D, where D is the main diagonal of A.

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aijuk,j − bi

)
(i = 1 . . . n)

aiiuk+1,i +
∑

j=1...n,j 6=i

aijuk,j = bi (i = 1 . . . n)

I Alternative formulation:

uk+1 = D−1(E + F)uk + D−1b

I Essentially, solve for main diagonal element row by row
I Already calculated results not taken into account
I Variable ordering does not matter

41 / 121

The Gauss-Seidel method
I Solve for main diagonal element row by row
I Take already calculated results into account

aiiuk+1,i +
∑

j<i

aijuk+1,j +
∑

j>i

aijuk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b
uk+1 = (D − E)−1Fuk + (D − E)−1b

I May be it is faster
I Variable order probably matters
I The preconditioner is M = D − E
I Backward Gauss-Seidel: M = D − F
I Splitting formulation: A = M − N, then

uk+1 = M−1Nuk + M−1b

42 / 121

Gauss an Gerling I

http://gdz.sub.uni-goettingen.de/

43 / 121

Gauss an Gerling II

http://gdz.sub.uni-goettingen.de/

44 / 121

SOR and SSOR
I SOR: Successive overrelaxation: solve ωA = ωB and use splitting

ωA = (D − ωE)− (ωF + (1− ωD))

M =
1
ω

(D − ωE)

leading to

(D − ωE)uk+1 = (ωF + (1− ωD)uk + ωb
I SSOR: Symmetric successive overrelaxation

(D − ωE)uk+ 1
2

= (ωF + (1− ωD)uk + ωb

(D − ωF)uk+1 = (ωE + (1− ωD)uk+ 1
2

+ ωb

M =
1

ω(2− ω)
(D − ωE)D−1(D − ωF)

I Gauss-Seidel and symmetric Gauss-Seidel are special cases for ω = 1.
45 / 121

Block methods

I Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

I The blocks on the diagonal should be square matrices, and invertible
I Interesting variant for systems of partial differential equations, where

multiple species interact with each other

46 / 121

Convergence

Let û be the solution of Au = b.

uk+1 = uk −M−1(Auk − b)

= (I −M−1A)uk + M−1b
uk+1 − û = uk − û −M−1(Auk − Aû)

= (I −M−1A)(uk − û)

= (I −M−1A)k (u0 − û)

So when does (I −M−1A)k converge to zero for k →∞ ?

47 / 121

Jordan canonical form of a matrix A

I λi (i = 1 . . . p): eigenvalues of A
I σ(A) = {λ1 . . . λp}: spectrum of A
I µi : algebraic multiplicity of λi :

multiplicity as zero of the characteristic polynomial det(A− λI)
I γi geometric multiplicity of λi : dimension of Ker(A− λI)
I li : index of the eigenvalue: the smallest integer for which

Ker(A− λI)li +1 = Ker(A− λI)li)
I li ≤ µi

Theorem (Saad, Th. 1.8) Matrix A can be transformed to a block diagonal
matrix consisting of p diagonal blocks, each associated with a distinct eigenvalue
λi .

I Each of these diagonal blocks has itself a block diagonal structure
consisting of γi Jordan blocks

I Each of the Jordan blocks is an upper bidiagonal matrix of size not
exceeding li with λi on the diagonal and 1 on the first upper diagonal.

48 / 121

Jordan canonical form of a matrix II

X−1AX = J =




J1
J2

. . .
Jp




Ji =




Ji,1
Ji,2

. . .
Ji,γi




Ji,k =




λi 1
λi 1

. . . 1
λi




Each Ji,k is of size li and corresponds to a different eigenvector of A.

49 / 121

Spectral radius and convergence

I ρ(A) = maxλ∈σ(A) |λ|: spectral radius

Theorem (Saad, Th. 1.10) limk→∞ Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λiui

A2ui = λiAiui = λ2ui

...
Akui = λkui

therefore ||Akui ||2 = |λk |
and lim

k→∞
|λk | = 0

so we must have ρ(A) < 1

50 / 121

Spectral radius and convergence II
Proof, ⇐: Jordan form X−1AX = J . Then X−1AkX = Jk .
Sufficient to regard Jordan block Ji = λi I + Ei where |λi | < 1 and E li

i = 0.
Let k ≥ li . Then

Jk
i =

li−1∑

j=0

(
k
j

)
λk−jE j

i

||Ji ||k ≤
li−1∑

j=0

(
k
j

)
|λ|k−j ||Ei ||j

One has
(
k
j

)
= k!

j!(k−j)!
=
∑j

i=0

[
j
i

]
k i

j! is a polynomial

where for k > 0, the Stirling numbers of the first kind are given by[0
0
]

= 1,
[j
0
]

=
[0

j
]

= 0,
[j+1

i
]

= j
[j

i
]

+
[j

i−1
]
.

Thus,
(
k
j

)
|λ|k−j → 0 (k →∞).

51 / 121

Corollary from proof

Theorem (Saad, Th. 1.12)

lim
k→∞

||Ak || 1k = ρ(A)

52 / 121

Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.

53 / 121

Convergence rate
Assume λ with |λ| = ρ(I −M−1A) is the largest eigenvalue and has a single
Jordan block. Then the convergence rate is dominated by this Jordan block, and
therein by the term

λk−p+1
(

k
p − 1

)
E p−1

||(I −M−1A)k (u0 − û)|| = O
(
|λk−p+1|

(
k

p − 1

))

and the “worst case” convergence factor ρ equals the spectral radius:

ρ = lim
k→∞

(
max

u0

||(I −M−1A)k (u0 − û)||
||u0 − û||

) 1
k

= lim
k→∞

||(I −M−1A)k || 1k

= ρ(I −M−1A)

Depending on u0, the rate may be faster, though
54 / 121

Richardson iteration

M = 1
α
, I −M−1A = I − αA. Assume for the eigenvalues of A:

λmin ≤ λi ≤ λmax .

Then for the eigenvalues µi of I − αA one has 1− αλmax ≤ λi ≤ 1− αλmin.

If λmin < 0 and λmax < 0, at least one µi > 1.

So, assume λmin > 0. Then we must have

1− αλmax > −1, 1− αλmin < 1 ⇒
0 < α < 2

λmax
.

ρ = max(|1− αλmax |, |1− αλmin|)
αopt = 2

λmin+λmax

ρopt = λmax−λmin
λmax +λmin

55 / 121

Regular splittings

A = M − N is a regular splitting if - M is nonsingular - M−1, N are nonnegative,
i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.

When does it converge ?

56 / 121

Theory of nonnegative matrices

57 / 121

Properties of ≤ for matrices

58 / 121

Irreducible matrices

A is irreducible if there is no permutation matrix P such that PAPT is upper
block triangular.

59 / 121

Perron-Frobenius Theorem

Theorem (Saad Th.1.25) Let A be a real n × n nonnegative irreducible martrix.
Then:

I The spectral radius ρ(A) is a simple eigenvalue of A.
I There exists an eigenvector u associated wit ρ(A) which has positive

elements

60 / 121

Comparison of products of nonnegative matrices

61 / 121

Comparison of powers of nonnegative matrices

62 / 121

Comparison of spectral radii of nonnegative matrices

63 / 121

Nonnegative matrices in iterations

64 / 121

M-Matrices

I This matrix property plays an important role for discrtized PDEs:
I convergence of iterative methods
I nonnegativity of discrete solutions (e.g concentrations)
I prevention of unphysical oscillations

65 / 121

Equivalent definition

66 / 121

Equivalent definition

67 / 121

Comparison criterion

68 / 121

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have $I-Mˆ{-1}A= M−1N.

When does it converge ?

69 / 121

Convergence of iterations based on regular splittings

70 / 121

Convergence of iterations based on regular splittings II

71 / 121

Regular splittings: example

I Jacobi
I Gauss-Seidel

72 / 121

Further methods for establishing convergence

I Theory for diagonally dominant matrices
I Theory for symmetric, positive definite matrices

73 / 121

Iterative methods so far

I main thread (“Roter Faden”):
I Simple iterative methods converge if the spectral radius of the iteration

matrix is less than one
I If a matrix has the M-Property (positve main diagonal entries, nonpositive off

diagonal entries, nonsingular, inverse nonnegative), then methods based
regular splittings converge

I But: how can we see that a matrix has the M-Property?
I This theory is useful in other contexts as well
I Main source: Varga, “Matrix Iterative Analysis”

74 / 121

The Gershgorin Circle Theorem
(everywhere, we assume n ≥ 2)
Theorem Let A be an n × n (complex) matrix. Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there is r , 1 ≤ r ≤ n such that

|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized such
that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii)xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�

75 / 121

Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by the
Gershgorin cicles

λ ∈
⋃

i=1...n

{µ ∈ C : |µ− |aii || ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑

j=1

|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑

i=1

|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =

n∑

j=1

|aij |

Furthermore, σ(A) = σ(AT). � 76 / 121

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =

(
A11 A12
0 A22

)

A is irreducible if it is not reducible.

Directed matrix graph:

I Nodes: N = {Ni}i=1...n

I Directed edges: E = { ~NkNl |akl 6= 0}

A is irreducible ⇔ the matrix graph is connected, i.e. for each ordered pair
Ni ,Nj there is a path consisting of directed edges, connecting them.

Equivalently, for each i , j there is a sequence of nonzero matrix entries
aik1 , ak1k2 , . . . , akr j .

77 / 121

Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue λ is a boundary
point of the union of all the disks

λ ∈ ∂
⋃

i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi

78 / 121

Taussky theorem proof

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized such
that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

|λ− arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (∗)

Boundary point ⇒ |λ− arr | = Λr

⇒ For all l 6= r with ar,p 6= 0, |xp| = 1.

Due to irreducibility there is at least one such p. For this p, equation (∗) is valid
⇒ |λ− app| = Λp

Due to irreducibility, this is true for all p = 1 . . . n �

79 / 121

Diagonally dominant matrices
Definition

I A is diagonally dominant if for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if for i = 1 . . . n,

|aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if A is irreducible, for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

and for at least one r , 1 ≤ r ≤ n,

|arr | >
∑

j=1...n
j 6=r

|arj |

80 / 121

A very practical nonsingularity criterion
Theorem: Let A be strictly diagonally dominant or irreducibly diagonally
dominant. Then A is nonsingular.

If in addition, if aii > 0 for i = 1 . . . n, then all real parts of the eigenvalues of A
are positive:

Reλi > 0, i = 1 . . . n

Proof:

Assume A strictly diagonally dominant. Then the union of the Gershgorin disks
does not contain 0 and λ = 0 cannot be an eigenvalue.

As for the real parts, the union of the disks is

⋃

i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

and Reµ must be larger than zero if it should be contained.

81 / 121

A very practical nonsingularity criterion II

Assume A irreducibly diagonally dominant. Then, if 0 is an eigenvalue, by the
Taussky theorem, we have |aii | = Λi for all i = 1 . . . n. This is a contradiction as
by definition there is at least one i such that |aii | > Λi

Obviously, all real parts of the eigenvalues must be ≥ 0. Therefore, if a real part
is 0, it lies on the boundary of one disk. So by Taussky it must be contained in
the boundary of all the disks and the imaginary axis. But there is at least one
disk which does not touch the imaginary axis. �

82 / 121

Corollary

Theorem: If A is symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they
must be positive, so A is positive definite. �.

83 / 121

Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij) = I − D−1A. Then

bij =

{
0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑

j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij
aii
| =

Λi
|aii |

< 1

Therefore, ρ(|B|) < 1.

84 / 121

Theorem on Jacobi matrix II
If A is idd, then for i = 1 . . . n,

∑

j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij
aii
| =

Λi
|aii |
≤ 1

∑

j=1...n

|brj | =
Λr
|arr |

< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1 By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks

|λ| = 1 ≤ Λi
|aii |
≤ 1

it must lie on the boundary of this union, and by Taussky one has for all i

|λ| = 1 ≤ Λi
|aii |

= 1

which contradicts the idd condition. �
85 / 121

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0 and
aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method converges.

Proof In this case, |B| = B. �.

86 / 121

Main Practical M-Matrix Criterion

Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j . Then
A is an M-Matrix, i.e. A is nonsingular and A−1 ≥ 0.
Proof: Let B = ρ(I − D−1A). Then ρ(B) < 1, therefore I − B is nonsingular.

We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk)

(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk)

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =

∞∑

k=0

Bk

As B ≥ 0, we have (I−B)−1 = A−1D ≥ 0. As D > 0 we must have A−1 ≥ 0. �

87 / 121

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.

88 / 121

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a regular
splitting. Then ρ(M−1N) < 1.

Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is nonsingular.

In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius, there ρ(G) is an eigenalue with a nonnegative eigenvector
x . Thus,

0 ≤ A−1Nx =
ρ(G)

1− ρ(G)
x

Therefore 0 ≤ ρ(G) ≤ 1. As I − G is nonsingular, ρ(G) < 1 �.

89 / 121

Convergence rate

Corollary: ρ(M−1N) = τ
1+τ

where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G)

�

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular splittings. If
N2 ≥ N1 ≥ 0, then 1 > ρ(M−12 N2) ≥ ρ(M−11 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1, τ
1+τ

is strictly increasing.

90 / 121

Application

Let A be an M-Matrix. Assume A = D − E − F .

I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F nonnegative
⇒ convergence

I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has
non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence

I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.

91 / 121

Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check for if matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.

92 / 121

Example: 1D finite volume matrix:

We assume α > 0.




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




=




h
2 f1 + αv1

hf2
hf3
...

hfN−2
hfN−1

h
2 fN + αvn




I idd
I main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the
Jacobi iterative method to solve it.

Moreover, due to A−1 ≥ 0, for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.

93 / 121

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R:

A = LU − R

I Problem: with complete LU factorization procedure, for any nonsingular
matrix, the method is stable, i.e. zero pivots never occur. Is this true for the
incomplete LU Factorization as well ?

94 / 121

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute
the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.

95 / 121

ILU(0)

I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:

for i=1...n do
d(i)=a(i,i)

end

for i=1...n do
d(i)=1.0/d(i)
for j=i+1 ... n do

d(j)=d(j)-a(i,j)*d(i)*a(j,i)
end

end

96 / 121

ILU(0)

Solve Mu = v

for i=1...n do
x=0
for j=1 ... i-1 do

x=x+a(i,j)*u(j)
end
u(i)=d(i)*(v(i)-x)

end

for i=n...1 do
x=0
for j=i+1...n do

x=x+a(i,j)*u(j)
end
u(i)=u(i)-d(i)*x

97 / 121

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

98 / 121

Preconditioners

I Leave this topic for a while now
I Hopefully, we well be able to discuss

I Multigrid: gives O(n) complexity in optimal situations
I Domain decomposition: Structurally well suited for large scale parallelization

99 / 121

~

More general iteration schemes

100 / 121

Generalization of iteration schemes

I Simple iterations converge slowly
I For most practical purposes, Krylov subspace methods are used.
I We will introduce one special case and give hints on practically useful more

general cases
I Material after J. Shewchuk: !An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain“

101 / 121

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vTAu =

n∑

i=1

n∑

j=1

aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.

For a given vector b, regard the function

f (u) =
1
2a(u, u)− bTu

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
102 / 121

Method of steepest descent

I Given some vector ui look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui).
I So look for ui+1 in the direction of −f ′(ui) = ri = b − Aui such that it

minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen from

0 =
d
dα f (ui + αri) = f ′(ui + αri) · ri

= (b − A(ui + αri), ri)
= (b − Aui , ri)− α(Ari , ri)
= (ri , ri)− α(Ari , ri)

α =
(ri , ri)

(Ari , ri)

103 / 121

Method of steepest descent: iteration scheme

ri = b − Aui

αi =
(ri , ri)

(Ari , ri)
ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û. Let ||u||A = (Au, u)
1
2 be the energy

norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

104 / 121

Conjugate directions

For steepest descent, there is no guarantee that a search direction di = ri = Aei
is not used several times. If all search directions would be orthogonal, or, indeed,
A-orthogonal, one could control this situation.

So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j.

I Look for ui+1 in the direction of di such that it minimizes f in this direction,
i.e. set ui+1 = ui + αdi with α choosen from

0 =
d
dα f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)

= (b − Aui , di)− α(Adi , di)

= (ri , di)− α(Adi , di)

α =
(ri , di)

(Adi , di)

105 / 121

Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the search
directions:

e0 =

n−1∑

i=0

δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =

n−1∑

i=0

δj (Adj , dk)

(Ae0, dk) = δk (Adk , dk)

δk =
(Ae0, dk)

(Adk , dk)
=

(Ae0 +
∑

i<k αidi , dk)

(Adk , dk)
=

(Aek , dk
(Adk , dk)

=
(rk , dk)

(Adk , dk)

= −αk

106 / 121

Conjugate directions III

Then,

ei = e0 +

i−1∑

j=0

αjdj

= −
n−1∑

j=0

αjdj +

i−1∑

j=0

αjdj

= −
n−1∑

j=i

αjdj

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps.

But by what magic we can obtain these di?

107 / 121

Conjugate directions V

Furthermore, we have

ui+1 = ui + αidi

ei+1 = ei + αidi

Aei+1 = Aei + αiAdi

ri+1 = ri − αiAdi

108 / 121

Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0
I Define

di = vi +

i−1∑

k=0

βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +

i−1∑

k=0

βik (Adk , dj)

0 = (Avi , dj) + βij (Adj , dj)

βij = − (Avi , dj)

(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory

109 / 121

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri – the
residuals built up during the conjugate direction process.

Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .

From ri = ri−1 − αi−1Adi−1 we obtain

Ki = Ki−1 ∪ span{Adi−1}
This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}
= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

110 / 121

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting
vi = ri and using j < i) βij = − (Ari ,dj)

(Adj ,dj)
= − (Adj ,ri)

(Adj ,dj)
.

Then, for j < i :

rj+1 = rj − αjAdj

(rj+1, ri) = (rj , ri)− αj (Adj , ri)
αj (Adj , ri) = (rj , ri)− (rj+1, ri)

(Adj , ri) =





− 1
αj

(rj+1, ri), j + 1 = i
1
αj

(rj , ri), j = i
0, else

=





− 1
αi−1

(ri , ri), j + 1 = i
1
αi

(ri , ri), j = i
0, else

βij =

{
1

αi−1
(ri ,ri)

(Adi−1,di−1)
, j + 1 = i

0, else

111 / 121

Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri):

di = ri +

i−1∑

k=0

βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or search
directions. In the sequel, set βi := βi,i−1.
We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)

= (ri−1, ri−1)

βi =
1

αi−1

(ri , ri)
(Adi−1, di−1)

=
(ri , ri)

(di−1, ri−1)

=
(ri , ri)

(ri−1, ri−1)
112 / 121

Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi =
(ri , ri)

(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 =
(ri+1, ri+1)

(ri , ri)
di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.
Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i

||e0||A

where κ = λmax (A)
λmin(A)

is the spectral condition number. 113 / 121

Preconditioning

We discussed all these nice preconditioners - GS, Jacobi, ILU, may be there are
more of them. Are they of any help here ?

Let M be spd. We can try to solve M−1Au = M−1b instead of the original
system.

But in general, M−1A is neither symmetric, nor definite. But there is a trick:

Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):

Assume M−1Au = λu. We have

(E−1AE−T)(ETu) = (ETE−T)E−1Au = ETM−1Au = λETu

⇔ ETu is an eigenvector of E−1AE−T with eigenvalue λ.

Good preconditioner: M ≈ A in the sense that κ(M−1A) << κ(A).

114 / 121

Preconditioned CG I
Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ETu

d̃0 = r̃0 = E−1b − E−1AE−Tu0

αi =
(r̃i , r̃i)

(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 =
(r̃i+1, r̃i+1)

(r̃i , r̃i)
d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E
115 / 121

Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ETdi , we get the equivalent algorithm

r0 = b − Au0
d0 = M−1r0

αi =
(M−1ri , ri)

(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 =
(M−1ri+1, ri+1)

(ri , ri)
di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

116 / 121

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than the real
residual

ri+1 = b − Aui+1

117 / 121

C++ implementation
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;

Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r = b - A*x;
if (normb == 0.0) normb = 1;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = 0;
return 0;

}
for (int i = 1; i <= max_iter; i++) {

z = M.solve(r);
rho(0) = dot(r, z);
if (i == 1)

p = z;
else {

beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;

}
q = A*p;
alpha(0) = rho(0) / dot(p, q);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = i;
return 0;

}
rho_1(0) = rho(0);

}
tol = resid; return 1;

} 118 / 121

C++ implementation II

I Available from http://www.netlib.org/templates/cpp//cg.h
I Slightly adapted for numcxx
I Available in numxx in the namespace netlib.

119 / 121

Unsymmetric problems
I By definition, CG is only applicable to symmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − Ax0 r̂0 = b̂ − x̂0AT

p0 = r0 p̂0 = r̂0

αi =
(r̂i , ri)

(p̂i ,Api)

xi+1 = xi + αipi x̂i+1 = x̂i + αi p̂i

ri+1 = ri − αiApi r̂i+1 = r̂i − αi p̂iAT

βi =
(r̂i+1, ri+1)

(r̂i , ri)
pi+1 = ri+1 + βipi p̂i+1 = r̂i+1 + βi p̂i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̂i ,Apj) = (r̂i , rj) = 0 for i 6= j.

120 / 121

Unsymmetric problems II

I BiCG is very unstable an additionally needs the transposed matrix vector
product, it is seldomly used in practice

I There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.

I Main practical approaches to fix the situation:
I “Stabilize” BiCG → BiCGstab
I tweak CG → Conjugate gradients squared (CGS)
I Error minimization in Krylov subspace → Generalized Minimum Residual

(GMRES)
I Both CGS and BiCGstab can show rather erratic convergence behavior
I For GMRES one has to keep the full Krylov subspace, which is not possible

in practice ⇒ restart strategy.
I From my experience, BiCGstab is a good first guess

121 / 121

