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Floating point representation

> Scientific notation of floating point numbers: e.g. x = 6.022 - 10%
> Representation formula:

x ==+ Z dB7'°
i=0

> B €N, > 2: base
> di € N,0 < d; < 3: mantissa digits
> e € Z: exponent

> Representation on computer:

t—1
x=x) dfpe
i=0

B=2

t: mantissa length, e.g. t = 53 for IEEE double

L<e<U, eg. —1022 < e <1023 (10 bits) for IEEE double
do # 0 = normalized numbers, unique representation
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Floating point limits

» symmetry wrt. 0 because of sign bit
> smallest positive normalized number: dp =1,di=0,i=1...t—1
Xemin = B*
> smallest positive denormalized number: d; =0,i=0...t—2,d;-1 =1
— gl-tg
Xmin = 377"
> largest positive normalized number: d; =3 —1,0...t—1

Xmax = B(1 = B74)BY

Machine precision

» Exact value x

> Approximation X

> Then: \;:X\ < e is the best accuracy estimate we can get, where

> e= Bt (truncation)

> = 1p1"t (rounding)
> Also: € is the smallest representable number such that 1 +¢ > 1.
> Relative errors show up in partiular when

> subtracting two close numbers
> adding smaller numbers to larger ones

Matrix + Vector norms

» Vector norms: let x = (x;) € R”

> ||x]l1 = Zi |xi|: sum norm, h-norm

> ||x]]2 = \/Zn lxl?: Euclidean norm, -norm

> ||x||co = max;= |xi|: maximum norm, loo-norm
» Matrix A = (a;) € R" x R"

> Representation of linear operator A : R” — R” defined by A : x — y = Ax
with

n

Yi= E ajjXj

j=1
> Induced matrix norm:
Ax
Al = AX]lv
x€R"x#0 ||x|]v
[1AX]l»

X
xern[Ix[l,=1 ||x||v

Matrix norms

ajj| maximum of column sums
2171 |aj| maximum of row sums

> [|All2 = VAmax With Amax: largest eigenvalue of ATA.

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + Ax) = b+ Ab.

Since Ax = b, we get AAx = Ab. From this,

Ax =ATAb | [ IAN- x| 2 Il
Ax =b [lAx]] < [IA7H] - [|Ab]|

Ab
S“(A)HHbHH

[1Ax]]

=
(1]

where #(A) = ||A|| - ||A~|| is the condition number of A.

Approaches to linear system solution

Solve Ax = b
Direct methods:
> Deterministic

» Exact up to machine precision

» Expensive (in time and space)
Iterative methods:

» Only approximate
> Cheaper in space and (possibly) time

» Convergence not guaranteed




Really bad example of direct method

Cramer's rule
write |A| for determinant, then

an an ... a1 b aypn ... am
an - by ... an .

xi=|. . /AL (i=1...n)
an bn ... am

O(n!) operations...

Gaussian elimination

> Essentially the only feasible direct solution method

» Solve Ax = b with square matrix A.

Gauss 1
6 -2 2 16
12 -8 6)|x=| 26
3 -13 3 —19
Step 1
6 -2 2 16
0 4 —2|x=| -6
0o —-12 2 -27
Step 2

Gauss 2

Solve upper triangular system

9
—4x3 = —9 :>><3:Z
—4xp —2x3 = —6 :>74xz:2—21 :>X2:72§1
21 18 31 -31
6x1 —2x2 + 2x3 = 2 ¢6x1—27T7T—7T éxl—fﬁ

Gaussian elimination expressed in matrix operations: LU factorization

6 -2 2 16 10
LiAx = <0 4 72>x: <—6> =Lb, L= <72 1
0 —12 2 —27 -3 0
6 —2 2 16 10 0
LoliAx = (o 4 —2> x= <—6> =Llib, L= (0 1 0>
0 -0 -4 -9 0 -3 1

100

> Let L:L;‘L;lz(z 1 0], U=LLA Then A=LU
131
2

> Inplace operation. Diagonal elements of L are always 1, so no need to store
them = work on storage space for A and overwrite it.

Problem example

Consider

with solution x = (1,1)"

Ordinary elimination:

€ 1 _ 1
G aln)=Gh)

2—% 1—x
:>)<2:171 =X = —

If € < €mach, then 2 —1/e = —1/e and 1 — 1/e = —1/¢, so

1—x
X2 = =1,=x=—
17% ’ €

=0

Partial Pivoting

> Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”
> This prevents near zero divisions and increases stability

(=060 (%)

. _1-2¢
2T 1 e

If € very small:

=1, x1=2—-x=1

» Factorization: PA = LU, where P is a permutation matrix which can be
encoded usin an integer vector

Gaussian elimination and LU factorization

v

Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

v

Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

Standard routines from LAPACK: dgetrf, (factorization) dgetrs (solve)
used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use them. Unless there is special need, they should be used.

v

v

Complexity of LU-Factorization: O(n®), some theoretically better algorithms
are known with e.g. O(n*7%)




Cholesky factorization

» A= LLT" for symmetric, positive definite matrices

Matrices from PDE: a first example

» “Drosophila”: Poisson boundary value problem in rectangular domain

Given:

» Domain Q = (0, X) x (0, Y) C R? with boundary I' = 0%, outer normal n
> Right hand side f : Q — R

"Conductivity" A

Boundary value v : I — R

vvyvy

Transfer coefficient a
Search function u : Q — R such that

—V-AVu=f inQ
—AVu-n+a(u—v)=0 onl

» Example: heat conduction:

> u: temperature

> f: volume heat source

> X: heat conduction coefficient
> v: Ambient temperature

> o Heat transfer coefficient

The finite volume idea

» Assume  is a polygon
» Subdivide the domain Q into a finite number of control volumes :

Q= UkeN Wi
such that

> wy are open (not containing their boundary) convex domains
> wi Nwy =0 if wie # wy
> oK = Wk N @ are either empty, points or straight lines

> we will write |o| for the length

> if |oi| > 0 we say that wy, w; are neigbours

> neigbours of wi: Ny = {/ € N : |ow| > 0}

» To each control volume wy assign a collocation point: x, € @, such that

> admissibility condition: if / € N} then the line x,x; is orthogonal to o
> if wy is situated at the boundary, i.e. v, = Owi N IR # O, then x, € 9Q

Discretization ansatz

» Given control volume wy, integrate equation over control volume

o:/ (=V-AVu — ) dw
wk

:7‘/ >\VU'ﬂkd’Y*/ fdw (Gauss)
Buox w

72/ )\VU‘nk/d’}’f/ )\Vu«nd'yf/ fdw
ki Tk Wk

LEN V7

|
2 Y T e ) + la(ue — i) = [l e
len M

> Here,
> e = u(xg)
> vk = v(xk)
> fi = f(xk)
» N = |N/| equations (one for each control volume)
> N = || unknowns (one in each collocation point = control volume)

1D finite volume grid

hk—1,k Rk k41
e —— ‘ -
Tgp—1 Tk—1,k Tk Tl k+1 T+1
Jwre|
» Q=10,X]
» Collocation points:

O=x1<x2 < - <Xpo1 < X=X
Control volumes:

v

w1 = (x1, (xa + x2)/2)
w2 = ((x +x)/2, (x2 + x3)/2)

wn—1 = ((xn—2 + xn-1)/2, (xn—1 + xn)/2)
wn = ((xnv—1+ xn)/2, xn)

> Maximum number of neighbours: 2

Discretization matrix (1D)
Assume A =1, hy = h and we count collocation points from 1...N. For

k=2...N—1, wg = h, and

o 1

E l(“k —u) = Z(—uk—1+ 2uk — Uks1)
hiy h

LEN,

The linear system then is (only nonzero entries marked):

o+t -3 n th+awn
1 2 1 u hf;
h h h 2 2
-1 2 1 u hf;
h h h 3 3
1 2 1
-5 5 un—2 hfy—2
1 2 1
“h AT un-1 R hfy-1
- 5ta un sfv+ av,

General tridiagonal matrix

b1 a

u fi

a b [} us f
a bs . u| | f

Cn—1 ! .

a by un fa

Gaussian elimination for tridiagonal systems
> TDMA (tridiagonal matrix algorithm)
> “Thomas algorithm” (Llewellyn H. Thomas, 1949 (7))
> “Progonka method” (Gelfand, Lokutsievski, 1952, published 1960)
aiui—1 + biui+ cuip1 =f, a1 =0, ey =0
For i =1...n—1, assume there are coefficients «;, 8; such that
uj = ajpliz + Bir1.

Then, we can express uj_1 and u; via ujy1:
(aicivis1 + civigr + bi)ujz1 + aiiBiz1 + aifi + ¢iffiyi — i =0

This is true independently of u if

aiajaiy1 + Gyl + bi =0
aiaifiy1 + aifi+cfisi—fi =0

orfori=1...n—1:




Progonka algorithm
Forward sweep:

b
ay = 7:
B = fi
2 =g
fori=2...n—1
Qjr1 =
Bit1
Backward sweep:
fo— anBn
Up = ————
anQtp + Cn

forn—1...1:

U = a1l + Bit1

Progonka algorithm - properties

> n unknowns, one forward sweep, one backward sweep = O(n) operations
vs. O(n®) for algorithm using full matrix

» No pivoting = stability issues

> Stability for diagonally dominant matrices (|b;| > |a;i| + |ci|)
> Stability for symmetric positive definite matrices

2D finite volume grid

Red circles: discretization nodes

Thin lines: original “grid"”

Thick lines: boundaries of control volumes

Each discretization point has not more then 4 neighbours
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Sparse matrices

v

Regardless of number of unknowns n, the number of non-zero entries per
row remains limited by n,

If we find a scheme which allows to store only the non-zero matrix entries,
we would need nn, = O(n) storage locations instead of n?

The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once:
martrix-vector multiplication uses O(n) instead of O(n?) operartions

In the special case of tridiagonal matrices, progonka gives an algorithm
which allows to solve the nonlinear system with O(n) operations

v

v

v

Sparse matrix questions

v

What is a good format for sparse matrices?

v

Is there a way to implement Gaussian elimination for general sparse
matrices which allows for linear system solution with O(n) operation

v

Is there a way to implement Gaussian elimination with pivoting for general
sparse matrices which allows for linear system solution with O(n)
operations?

v

Is there any algorithm for sparse linear system solution with O(n)
operations?

Coordinate (triplet) format

» store all nonzero elements along with their row and column indices
> one real, two integer arrays, length = nnz= number of nonzero elements

Lo 0 2 0
3.4 0. 5 0
A=|6 0. 7. 8 9
0. 0. 10. 1L 0
0. 0. o0 12
AA [12.9. 7.5 1. 2. 11. 3. 6. 4 8 10.]
JR 5 3 3 2 1 1 4 2 3 2 3 4]
IC 5 5 3 4 1 4 4 1 1 2 4 3|

Y.Saad, Iterative Methods, p.92

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

> real array AA, length nnz, containing all nonzero elements row by row

> integer array JA, length nnz, containing the column indices of the elements
of AA

>

integer array IA, length n+1, containing the start indizes of each row in the
arrays IA and JA and IA(n+1)=nnz+1

1. 0. 0.
3. 4. 0.

RS

0. 0. 10. 1

8. 9. 10. 11 12.]
45 3 45|

3. 4 5 6. 7.
1 2 4 1 3

1A 6 10 12 13

Y.Saad, Iterative Methods, p.93

%)

> Used in most sparse matrix packages

The big schism

» Worse than catholics vs. protestants or shia vs. sunni. ..
» Should array indices count from zero or from one 7

» Fortran, Matlab, Julia count from one

» C/C++, python count from zero

> | am siding with the one fraction

» but | am tolerant, so for this course ...

> |t matters when passing index arrays to sparse matrix packages

MAN, YOURE BEING INCONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FRom ZERD.

“WHO ARE You? How DID_
YOU GET IN MY HOUSE?
/

DIFFERENT TASKs CAU FOR VAT, WHAT?

DIFFERENT CONVENTIONS. TO

QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE

EXPERT DONAD KNUTH, SAID WHEN | ASKED
Him ABOUT IT.

} P

http:/ /xked.com/1739/




CRS again

. 100 11. 12,

» some package APIs provide the possibility to specify array offset
» index shift is not very expensive compared to the rest of the work

Sparse direct solvers

> Sparse direct solvers implement Gaussian elimination with different pivoting
strategies
» UMFPACK
Pardiso (omp + MPI parallel)
SuperLU
MUMPS (MPI parallel)
Pastix

yVYVvVy

> Quite efficient for 1D/2D problems
> They suffer from fill-in: = huge memory usage for 3D

Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering
> The amount of non-zero elements generated by fill-in can be decreases by
re-ordering of the matrix
> Several, graph theory based heuristic algorithms exist

2. Symbolic factorization
> If pivoting is ignored, the indices of the non-zero elements are calculated and
stored
> Most expensive step wrt. computation time
3. Numerical factorization
> Calculation of the numerical values of the nonzero entries
> Not very expensive, once the symbolic factors are available
4. Upper/lower triangular system solution
> Fairly quick in comparison to the other steps
> Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids
> With pivoting, steps 2 and 3 have to be performed together
» Instead of pivoting, iterative refinement may be used in order to maintain

accuracy of the solution

Interfacing UMFPACK from C++ (numcxx)

(shortened version of the code)

#include <suitesparse/umfpack.h>

// Caleulate LU factorization
template<> inline void TSolverUMFPACK<double>::update()
{

pMatrix->flush(); // Update matriz, adding newly created elements
int n=pMatrix->shape(0);
double *control=nullptr;

//Calculate symbolic factorization only if matriz patter

//has changed

if (pMatrix->pattern_changed())

{
umfpack_di_symbolic (n, n, pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
&Symbolic, 0, 0);

b3

unfpack_di_numeric (pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Symbolic, &Numeric, control, 0) ;

pMatrix->pattern_changed(false) ;
}

// Solve LU factorized system
template<> inline void TSolverUMFPACK<double>::solve( TArray<T> & Sol, const TArray<T> & Rhs)
{

umfpack_di_solve (UMFPACK_At,pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),

Sol.data(), Rhs.data(),
Numeric, control, 0 ) ;

36 /121

How to use ?

#include <numcxx/mumcxx.h>
auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArrayl::create(n);
auto pU=numcxx::DArrayl::create(n);

auto &M=xpl;
auto &F=+pF;
auto &U=+pU;

F=1.0;
for (int i=0;i<n;i++)

M(i,1)=3.0;
if (1>0) M(i,i-1)=-1;
if (i<n-1) M(i,i+1)=

5

auto pUmfpack=numcxx: :DSolverUMFPACK: : create (pM) ;
pUnfpack->solve (U,F) ;

Towards iterative methodsx

Elements of iterative methods (Saad Ch.4)

Solve Au = b iteratively

> Preconditioner: a matrix M ~ A “approximating” the matrix A but with the
property that the system Mv = f is easy to solve

> Iteration scheme: algorithmic sequence using M and A which updates the
solution step by step

Simple iteration with preconditioning

Idea: All=b =

=
Il
=

— M~ (A — b)

= iterative scheme

U1 = ug — M7 A — b) (k=0,1...)

Choose initial value wp, tolerance ¢, set k =0
Calculate residuum r, = Aux — b

Test convergence: if ||| < € set u = u, finish
Calculate update: solve Mvy = ry

AT

Update solution: wuxi1 = ux — vk, set k =i+ 1, repeat with step 2.




The Jacobi method

> Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part

> Jacobi: M = D, where D is the main diagonal of A.

Uk41,i =

QiiUk+1,i + Z ajjugj = b (i=1...n)

J=1..n,j#i
> Alternative formulation:

Ugp1 = Dil(E+ F)ue + D 'b

> Essentially, solve for main diagonal element row by row
Already calculated results not taken into account
» Variable ordering does not matter

v

The Gauss-Seidel method

> Solve for main diagonal element row by row
> Take already calculated results into account

ai;qu,mLZa,yukHJ+Za,juk,j =b; (i=1...n)
j<i i>i
(D — E)uksr — Fuk = b

i1 = (D= E)'Fuc+ (D - E)'b

May be it is faster

Variable order probably matters

The preconditioner is M =D — E
Backward Gauss-Seidel: M =D — F
Splitting formulation: A= M — N, then

yvyVvYyVvyy

U1 = M~ Nux + M~ b

Gauss an Gerling |

o JE— [R— .
1)1 | 1= o
2] P Y P —
L — L

Da jode gemeinschatiiche Anderung aller Richtungen enlbt i, 30
lange e nur die rolaive Lage gil, s fndere ch alle vier wn 05855
Mein Brief ist mu spit s Post gekommen und mir zusckgebracht. Teh wd st
esbreche ihn dsber wiodss, um noch die prsktische Anveisung wr Flimination
beisufigen. Freilich gibt os dabel vilfacho Kleino Localvorthil, i sih
Dur ex w leraen lusen,
Ieh nebme Iie Messungen suf Osber-Reisig mum Beimiel ')
Toh mache suerst

Gauss an G, Gotingen, 26, Decermber 1823,

[Richtang sack) 1 = 0, Vertaderung beisulogen. Sio komnen sich duvan leicht Sheragen, wem Sie
chber aus 1.3

1107 o Bequentlichkei

i siche s vor, well 1.3 mebr Gewicht hat als 1.2);

und awax nach dicsom Schema e sigener Anvendung und wenn dic Glieder

aumn s sableicher sind, frenne ieh wabl die poitiven und negusiven Glider) (wobei
2o e T ten in Binheiten der i«

R e aiond P dic Constanten in Finheiten der driten Docimalstale sogesets ind ]

ab = 108 a4 1804 ca 42900 da —20610
endlich sus ac a0 he boass b a0 &b frser
20 1] 4 ad £25010  1d 18w el —0%4  de +ames.
2| s= sa0 | 4= rawar e
| "  sind o
s laalem s | 2l

Unn oun indirect 7 climinien, bemerko ich, dass, wean 3 dor Gabssen
8,6, glich 0 gesetat werden, i viewte & gudesten Werth bekonumt,

dafir gowillt winl Natilich mus jode Gutiso aus ihrer cigenen
Gleichung, alio d sus der vieren, bestimm werden. Ich etz also d = — 201

http://gdz.sub.uni-goettingen.de/
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Gauss an Gerling Il

R —— 201

haben. Das indirecte Verfubren Test vich halb im Schlafe susfibren, oder
man kaun wiksend desselben an wndere Dinge denken.

20 e —

und wabstituive dicsen Werth, Die absclaten Thelle werlen duan: 45232,
4352, 1074, +46; dan Dbrige blibt. daslbe,

Jetat e ich b wn die Reihe kommen, finde b = 93, substcuiro und
fnde die abwoluten Theile: + 4006, —4, 1525, — 506, So faheo ich fort,
bis nichts mebr au conigi Von dieser guaten. Rechmung schreibo ich
e i der Wirkichkelt bloss folgendes Schomu

(im0 (b= pua]a Gu an Somrcacmn. Gitéingn, 22 December 1837
FRT . .
sl g | Lo o Bt Die Einheit in meinems Coordinstenverseichnisse it 443,307585 [Poriser]
b | Fions | o | i = o T Liicas de Toguritin s0 Baoton af Toben
Tl I TR TR TS N o

Insofern ich e Rechaung nur auf das nichsto 2000° [der] Socunde

! Toawischen grimdct sich das absolute nar auf Thre Basis, oder viekmchr
fibe, sehe ich, das jetat wichs meby su comigien ist. leh somale daher

auf dic von Cunoc i angegebene Etfernung. awischen Homburg und Hohen-
Bom, log = 4,141 1930, wofix ich also gonommen habe: 44310013, Sallte
anch der Defnitivhestimaung Threr Stangen Thre Basi, und damit dio obige

cer2 d=——mm

Angabe der Eatfornung Homburg-Tiohenhorn, cine Verinderung efleden, s0
werden in demselben Verhaltmise auch lle meine Coondinaten m veria-

T Fiz 201

dern sin.
und fige die Comectio communis 56 bei, wodureh wird In der Form der Behandlung ist in wiebtiges Moment, dass von jedem
e > s ampm dmeu Bechuchtungeplats cin Tablews safgestell wird, sl Arimuthe

slso die Werthe [der Hichtangen,
nur susoakmseise, wn diosen oder jomen Zeifel  10wn,  den Orginal-
protocollen zecurit. ... st dor Standpunkt von dem Zielpunkt verscheden,
o seducine ich keinesmeges die Doobachimngen suf lewters (Centrirung!, da
e ohne diese Reduction sbenso bequem gebreacht werden knaen fissofern
nemlich von vilen Schitien untergeordneter Puskte e Rede e, die nicht
wieder Seandpunkte sind).

Die Bildung cinee colchen Tbleass berabt sun wieder auf meheern

Fast Joden Abend mache fch cine nee Auflage des Tableaus, wo fmmer
Licht machsuhelfen it Bei der Eiaformigkeic des Messungageochihs gt dics
immer cine angenchmo Unterhaltung: mao siehy daon such immer gleih, o
etwas aweifelbates cingeschlchen ist, was nos

Teh cmapfeble Thncn disson Modus 20z Nachshmung. Selweslich werden Sio jo
wieder diseet climiniren, wenigacens nicht, wean, Sio mehy als 2 Unbekazate "

http://gdz.sub.uni-goettingen.de/
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SOR and SSOR

> SOR: Successive overrelaxation: solve wA = wB and use splitting
wA = (D — wE) — (wF + (1 —wD))
1
M= =(D—-wE
5(D—wE)
leading to
(D — wE)uks1 = (wF + (1 —wD)ux + wb

> SSOR: Symmetric successive overrelaxation

(D— wE)uk‘% = (wF + (1 —wD)uk +wb
(D — wF)uk1 = (WE + (1 — wD)uH% +wb

M= (D —wE)D™Y(D — wF)

_1
w(2 —w)

» Gauss-Seidel and symmetric Gauss-Seidel are special cases for w = 1.

Block methods

> Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

> The blocks on the diagonal should be square matrices, and invertible

> Interesting variant for systems of partial differential equations, where
multiple species interact with each other

Convergence

Let & be the solution of Au = b.

Uks1 = Ug — Mfl(Auk —b)

(1= M A)yu + M~ 'b
g — b — M7 (Au, — AB)
= (I — M "A)(uk — @)

= (=M A (uo — 1)

Uk+1 — U

So when does (I — M~ A)* converge to zero for k — oo ?

Jordan canonical form of a matrix A

v

Ai (i=1...p): eigenvalues of A

o(A) = {A1...\p}: spectrum of A

pi: algebraic multiplicity of A;:

multiplicity as zero of the characteristic polynomial det(A — /)
~i geometric multiplicity of A;: dimension of Ker(A — \/)

Ii: index of the eigenvalue: the smallest integer for which
Ker(A — )" = Ker(A— M)

> < i

vy

vy

Theorem (Saad, Th. 1.8) Matrix A can be transformed to a block diagonal
matrix consisting of p diagonal blocks, each associated with a distinct eigenvalue
A

» Each of these diagonal blocks has itself a block diagonal structure
consisting of v; Jordan blocks

» Each of the Jordan blocks is an upper bidiagonal matrix of size not
exceeding ; with \; on the diagonal and 1 on the first upper diagonal.




Jordan canonical form of a matrix Il

S
1 5
X TAX=J=
Jp
Jia
g Ji2
S
A1
A1
Jik =
1
Ai

Each J; x is of size /; and corresponds to a different eigenvector of A.

Spectral radius and convergence

> p(A) = maxyeo(a) |A|: spectral radius

Theorem (Saad, Th. 1.10) im0 A = 0 & p(A) < 1.

Proof, =: Let u; be a unit eigenvector associated with an eigenvalue \;. Then

Au; = \juj
Alup = NAiu = N

Ay = Ny
therefore HAkusz = |/\k|

and  lim M=o

so we must have p(A) < 1

Spectral radius and convergence Il

Proof, «<: Jordan form X 'AX = J. Then X 'AkX = J*.
Sufficient to regard Jordan block J; = \;l + E; where || < 1 and E/" =0.
Let k > ;. Then

i1
JH=> (f) NIE

j=0
i1 P
<> (J) NNEN
j=0
One has L I o ) is a polynomial
j ) T A = 2aizo (| poly
where for k > 0, the Stirling numbers of the first kind are given by

e SR e L T T

Thus, (j‘) A =0 (k = o).

Corollary from proof

Theorem (Saad, Th. 1.12)

lim [|A“||% = p(4)
k—o00

Back to iterative methods

Sufficient condition for convergence: p(/ — M~'A) < 1.

Convergence rate
Assume X with |\| = p(/ — M~'A) is the largest eigenvalue and has a single
Jordan block. Then the convergence rate is dominated by this Jordan block, and

therein by the term
Ak—ptl k g1
p—1

(1 = M~ AY (o — )] = O (\W“\ (,,f 1))

and the "worst case” convergence factor p equals the spectral radius:

= lim
—o0

= lim ||(1 = M7 A)| ¥
k— o0

max —~
w [[uo — @]

S

< H(/—M*A)k(uo—a)uf

= pl1— M1A)

Depending on ug, the rate may be faster, though

Richardson iteration

M= % I— M 'A=1—-aA. Assume for the eigenvalues of A:
Amin < Ai < Amax-

Then for the eigenvalues p; of | — @A one has 1 — admax < Aj < 1 — admin.

If Amin < 0 and Amax < 0, at least one p; > 1.
So, assume Amin > 0. Then we must have
1—odmax > -1, 1—admin <1 =

2
0<oa< .

p = max(|1 — aAmax|, |1 — @Amin|)

-2
Qopt = 3 S

Popt = Amax=min
OPt ™ Nmax+ Amin

Regular splittings

A= M — N is a regular splitting if - M is nonsingular - M~*, N are nonnegative,
i.e. have nonnegative entries

> Regard the iteration w1 = M~ Nug + M~ th.

When does it converge 7




Theory of nonnegative matrices

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are impor-
tant in the study of convergence of iterative methods and arise in many applications
including economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More
generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 Let A and B be two n x m matrices. Then
A<B

if by definition, a;; < bij for 1 <i <n, 1 < j < m. If O denotes the n x m zero
matrix, then A is nonnegative if A > O, and positive if A > O. Similar definitions
hold in which “positive” is replaced by “negative”.

The binary relation “<” imposes only a partial order on R™*™ since two arbitrary
matrices in R”*™ are not necessarily comparable by this relation. For the remain-
der of this section, we now assume that only square matrices are involved. The next
proposition lists a number of rather trivial properties regarding the partial order rela-
tion just defined.
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Properties of < for matrices

Proposition 1.24 The following properties hold.

~

. The relation < for matrices is reflexive (A < A), antisymmetric (if A < B and
B < A, then A = B), and transitive (if A < B and B < C, then A < C).

2. If A and B are nonnegative, then so is their product AB and their sum A+ B.
3. If A is nonnegative, then so is AF.

4. If A < B, then AT < BT,

5. IfO < A< B, then ||Aljy < || By and similarly || Al|oc < || Bl -
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Irreducible matrices

A'is irreducible if there is no permutation matrix P such that PAPT is upper
block triangular.
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Perron-Frobenius Theorem

Theorem (Saad Th.1.25) Let A be a real n x n nonnegative irreducible martrix.
Then:

> The spectral radius p(A) is a simple eigenvalue of A.
> There exists an eigenvector u associated wit p(A) which has positive
elements
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Comparison of products of nonnegative matrices

Proposition 1.26 Let A, B, C' be nonnegative matrices, with A < B. Then

AC < BC and CA<CB.

Proof. Consider the first inequality only, since the proof for the second is identical.
The result that is claimed translates into

n n
Zaik%j < th%r 1<i,j<n,
k=1 k=1

which is clearly true by the assumptions. [m}
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Comparison of powers of nonnegative matrices

Corollary 1.27 Let A and B be two nonnegative matrices, with A < B. Then

AR < B vk >0 (1.42)

Proof. The proof is by induction. The inequality is clearly true for & = 0. Ass
is true for k. According to the previous proposition, multiplying
from the left by A results in

AR < ABK

Now, it is clear that if B > 0, then also B¥ > 0, by Proposition 1.24] We now
multiply both sides of the inequality A < B by B* to the right, and obtain

(1.43)

ABF < BF1, (1.44)

The inequalities and (L.44) show that A¥+1 < B**1 which completes the
induction proof. [m}
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Comparison of spectral radii of nonnegative matrices

Theorem 1.28 Ler A and B be two square matrices that satisfy the inequalities

O<A<B. (1.45)

Then

p(A) < p(B). (1.46)

Proof. The proof is based on the following equality stated in Theorem|[1.12]
p(X) = lim || XK||/*
koo

for any matrix norm. Choosing the 1—norm, for example, we have from the last
property in Proposition[1.24]

p(A) = Jim [|4%| 1% < lim | BEE = p(B)
k—oo k—oo

which completes the proof. O
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Nonnegative matrices in iterations

Theorem 1.29 Letr B be a nonnegative matrix. Then p(B) < 1 if and only if I — B
is nonsingular and (I — B)~" is nonnegative.

Proof. Define C' = I — B. If it is assumed that p(B) < 1, then by Theorem [L.IT}
C' =1 — B is nonsingular and

cl=(1-B)'= iBé

=0

(1.47)

In addition, since B > 0, all the powers of B as well as their sum in (1.47) are also
nonnegative.

To prove the sufficient condition, assume that C' is nonsingular and that its in-
verse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigen-
vector u associated with p(B), which is an eigenvalue, i.e.,

Bu = p(B)u
or, equivalently, 1
Clu=—"—u
1—p(B)

Since u and C~! are nonnegative, and I — B is nonsingular, this shows that 1 —
p(B) > 0, which is the desired result. [m]
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M-Matrices

Definition 1.30 A matrix is said to be an M-matrix if it satisfies the following four
properties:

1 ai; >0fori=1,...,n
2. a;5<0fori#j, i,j=1,...,n
3. A s nonsingular.

4. A7V >0.

» This matrix property plays an important role for discrtized PDEs:

> convergence of iterative methods
> nonnegativity of discrete solutions (e.g concentrations)
> prevention of unphysical oscillations
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Equivalent definition

Theorem 1.31 Let a matrix A be given such that
1. aj; >0fori=1,...,n.
2. a5 <0fori#j, i,j=1,....,n
Then A is an M-matrix if and only if
3. p(B) <1, where B=1—D71A
Proof. From the above argument, an immediate application of Theorem [1.29]shows
that properties (3) and (4) of the above definition are equivalent to p(B) < 1, where

B =1-Cand C = D 'A. In addition, C is nonsingular iff A is and Ctis
nonnegative iff A is. O
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Equivalent definition

Theorem 1.32 Let a matrix A be given such that
1 ajj<O0fori#j. i,j=1,....n
2. Ais nonsingular.
3. AT >0.

Then
4. a;; > 0fori=1,...,n, e, Aisan M-matrix.
5. p(B) < 1where B=1— D7 'A

Proof. Define C' = A~'. Writing that (AC);; = 1 yields

n
> aer =1
k=1

which gives

@y

n
=1- E i Chi-
k=1

Since a;icr; < 0 for all k, the right-hand side is > 1 and since ¢;; > 0, then a;; > 0.
The second part of the result now follows immediately from an application of the

. 67 /121
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Comparison criterion
Theorem 1.33 Let A, B be two matrices which satisfy

1. A<B.
2. by < Oforalli#j.

Then if A is an M -matrix, so is the matrix B.

Proof. Assume that A is an M-matrix and let Dx denote the diagonal of a matrix
X. The matrix Dp is positive because

Dp > Dy >0.
Consider now the matrix I — D;B‘ Since A < B, then
Dp—A>Dp—-B>0
which, upon multiplying through by I);l, yields
I-D;'A> D3 (Dp— B)> Dg'(Dp— B)=1—-Dg'B>O0.

Since the matrices I — DB and I — D ;' A are nonnegative, Theorems|1.28]and

[L.31)imply that
p(I = Dg'B) < p(I - D*A) < 1.
This establishes the result by using Theorem I.31]once again. O
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Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
» M~1, N are nonnegative, i.e. have nonnegative entries

> Regard the iteration w11 = M~ *Nuy + M~ b,
> We have $I-M"{-1}A= M~*N.

When does it converge 7
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Convergence of iterations based on regular splittings

Theorem 4.4 Let M, N be a regular splitting of a matrix A. Then p(M~*N) < 1 if
and only if A is nonsingular and A" is nonnegative.

Proof. Define G = M ' N. From the fact that p(G) < 1, and the relation
A=M(I-G)

it follows that A is nonsingular. The assumptions of Theorem|[1.29)]are satisfied for

the matrix G since G = M~ !N is nonnegative and p(G) < 1. Therefore, (I — G)~*

is nonnegative as is A~ = (I — G)"t M1,

To prove the sufficient condition, assume that A is nonsingular and that its inverse
is nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that
I — @ is nonsingular and in addition,

(M(I—M7N) ' N
(I =M N *MIN
(I-ota.

(4.35)

ATIN

(4.36)

Clearly, G = M~!N is nonnegative by the assumptions, and as a result of the
Perron-Frobenius theorem, there is a nonnegative eigenvector x associated with p(G)
which is an eigenvalue, such that

Gz = p(G)x.
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Convergence of iterations based on regular splittings Il

, it follows that

From this and by virtue of (4

ANe= PO,
e
Since  and A~! N are nonnegative, this shows that
pG) 4
1-p(G)
and this can be true only when 0 < p(G) < 1. Since I — G is nonsingular, then
p(G) # 1, which implies that p(G) < 1. O

This theorem establishes that the iteration (4.34) always converges, if M, N is a
regular splitting and A is an M-matrix.
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Regular splittings: example

> Jacobi
> Gauss-Seidel




Further methods for establishing convergence

> Theory for diagonally dominant matrices
> Theory for symmetric, positive definite matrices

Iterative methods so far

> main thread (“Roter Faden”):

> Simple iterative methods converge if the spectral radius of the iteration
matrix is less than one

> If a matrix has the M-Property (positve main diagonal entries, nonpositive off
diagonal entries, nonsingular, inverse nonnegative), then methods based
regular splittings converge

> But: how can we see that a matrix has the M-Property?

> This theory is useful in other contexts as well
> Main source: Varga, “Matrix lterative Analysis”

The Gershgorin Circle Theorem

(everywhere, we assume n > 2)

Theorem Let A be an n x n (complex) matrix. Let

A=Y lal

j=l...n
J#i

If X 'is an eigenvalue of A then there is r, 1 < r < n such that

A= an| <A

Proof Assume X is eigenvalue, x a corresponding eigenvector, normalized such

that maxi=1...» |x;| = |x;| = 1. From Ax = Ax it follows that
(A —ai)xi = Z aijx;
j=l..n
J#i
N=anl =1 D agl < D lagll < D lagl = A
j=l...n j=l...n j=l...n
A A #r

Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by the
Gershgorin cicles

A€ U {neCrlu—laill <A}

i=l...n
Corollary:
p(A) < max ) [ay] = [|All
Jj=1
P(A) < max > Jag] = [|Allx
i=1
Proof

.
li—ail <A = ul SN+ al =) layl
j=1

Furthermore, o(A) = o(A"). O

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

T_ (Aun Aw
PAP' = ( 0 A22>
Ais irreducible if it is not reducible.
Directed matrix graph:

» Nodes: N = {N;}i=1..n
> Directed edges: £ = {NyNj|ay # 0}

A is irreducible < the matrix graph is connected, i.e. for each ordered pair
Ni, Nj there is a path consisting of directed edges, connecting them.

Equivalently, for each i,/ there is a sequence of nonzero matrix entries

Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue A is a boundary
point of the union of all the disks

AXed U {peC:|u—ail <N}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. for i=1...n,

IX—ail = A

Taussky theorem proof

Proof Assume X is eigenvalue, x a corresponding eigenvector, normalized such
that maxi=1...» |xi| = |x;| = 1. From Ax = Ax it follows that

M=aul< D lagl- Il < Y lagl =A *)
j=l..n j=l...n
A A
Boundary point = |\ — a,| = A,
= For all | # r with a,, #0, |x,| = 1.

Due to irreducibility there is at least one such p. For this p, equation (x) is valid
= A= ap| =Ny

Due to irreducibility, this is true forall p=1...n 0

Diagonally dominant matrices
Definition

» A is diagonally dominant if for i =1...n,

> Ais irreducibly diagonally dominant (idd) if A is irreducible, for i =1...n,

lasl > Y Jayl
j=l...n
#i
and for at least one r, 1 < r < n,

ar| > |ag]
[ar| i
j=l...n

A




A very practical nonsingularity criterion

Theorem: Let A be strictly diagonally dominant or irreducibly diagonally
dominant. Then A is nonsingular.

If in addition, if a; > 0 for i = 1...n, then all real parts of the eigenvalues of A
are positive:

Re\i >0, i=1...n

Proof:

Assume A strictly diagonally dominant. Then the union of the Gershgorin disks
does not contain 0 and A = 0 cannot be an eigenvalue.

As for the real parts, the union of the disks is

U {neC:lp—ail <A}

i=1...n

and Rep must be larger than zero if it should be contained.

A very practical nonsingularity criterion

Assume A irreducibly diagonally dominant. Then, if 0 is an eigenvalue, by the
Taussky theorem, we have |a;| = A; for all i = 1...n. This is a contradiction as
by definition there is at least one i such that |a;i| > A;

Obviously, all real parts of the eigenvalues must be > 0. Therefore, if a real part
is 0, it lies on the boundary of one disk. So by Taussky it must be contained in
the boundary of all the disks and the imaginary axis. But there is at least one
disk which does not touch the imaginary axis. O

Corollary

Theorem: If A is symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they
must be positive, so A is positive definite. [J.

Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

(Il —D7'A]) < 1

Proof: Let B = (b;) =/ — D™*A. Then

If Ais sdd, then fori=1...n,

ajj A
bj| = —| = <1
j;"‘ U‘ Z |air‘ \aﬁ‘

J

Therefore, p(|B) < 1.

Theorem on Jacobi matrix Il
If Aisidd, thenfori=1...n,

ajj A
= i = <
> Ibil= 0 1= h st
Jj=1l...n j=1...n
J#i

A
g |bj| = |a,\ < 1 for at least one r
i

j=l..n

Therefore, p(|B|) <= 1. Assume p(|B|) = 1 By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks

Ai

<1
|aii

W=1<
it must lie on the boundary of this union, and by Taussky one has for all i

Ai

=1
|l

M =1<

which contradicts the idd condition. O

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0 and
a; <0 for i #j. Then p(/ — D™'A) < 1, i.e. the Jacobi method converges.

Proof In this case, |B| = B. [

Main Practical M-Matrix Criterion

Corollary: Let A be sdd or idd. Assume that a; > 0 and a; < 0 for i # j. Then
A'is an M-Matrix, i.e. A is nonsingular and Al >o0.
Proof: Let B = p(/ — D*A). Then p(B) < 1, therefore | — B is nonsingular.

We have for k > 0:

[-B"=(I-B)(I+B+B*+---+ B
(I-B)'(1=B“)=(I+B+B*+---+ B

The left hand side for k — oo converges to (/ — B) ™!, therefore

(I-B)*= i B
k=0

As B >0, we have (/| —B)™' = A™'D > 0. As D > 0 we must have A~ > 0. O

Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
> M~1 N are nonnegative, i.e. have nonnegative entries

> Regard the iteration w1 = M~ Nux + M~ 1b.
» We have | — M7*A = M7IN.




Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, Al'>0,andA=M—-Nisa regular
splitting. Then p(M™'N) < 1.
Proof: Let G = M~'N. Then A= M(/ — G), therefore | — G is nonsingular.

In addition

AN = (M(I = MTIN)TIN= (1= MN)'MTIN = (1 - G)T'G

By Perron-Frobenius, there p(G) is an eigenalue with a nonnegative eigenvector
x . Thus,

_ G)
0<A 1NX:7P( X
- 1-p(G)

Therefore 0 < p(G) < 1. As | — G is nonsingular, p(G) < 1 0.

Convergence rate

Corollary: p(M™'N) = ;= where 7 = p(A~'N).

Proof: Rearrange 7 = 12(/_;G£)G) O

Corollary: Let A>0, A= M; — Ny and A= M, — N» be regular splittings. If
Nz > Ny >0, then 1> p(M; ' N2) > p(M; ML)

Proof: m = p(A’lNz) > p(A’lNl) =T, 1%— is strictly increasing.

Application

Let A be an M-Matrix. Assume A=D — E — F.

v

Jacobi method: M = D is nonsingular, M™! > 0. N = E + F nonnegative
= convergence

Gauss-Seidel: M = D — E is an M-Matrix as A < M and M has
non-positive off-digonal entries. N = F > 0. = convergence

Comparison: N; > Ngs = Gauss-Seidel converges faster.

v

v

Intermediate Summary

v

Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

v

Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

v

Check for if matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

v

Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.

If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.

Example: 1D finite volume matrix:

We assume « > 0.

1 1 h
ati -3 uy sh+av
_1 2 1 w hf
h h
1 2 1
5 h Th us hty
-1 2 1 un—2 hfy_2
1 2 1
~h h ~h Un—1 hfy—1
1 1 h
-5 »to uy sfv+av,
> idd

> main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the
Jacobi iterative method to solve it.

Moreover, due to A™* >0, for f > 0 and v > 0 it follows that u > 0.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

» apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

> Result: incomplete LU factors L, U, remainder R:

A=LU-R

> Problem: with complete LU factorization procedure, for any nonsingular
matrix, the method is stable, i.e. zero pivots never occur. Is this true for the
incomplete LU Factorization as well ?

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute
the incomplete LU factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A= LU — R is a regular splitting.

ILU(0)

» Special case of ILU: ignore any fill-in.
> Representation:

M=(D—-E)DYD-F)

» D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

> Setup:

for i=1...n do
d(i)=a(i,i)
end

for i=1...n do
d(i)=1.0/d(i)
for j=i*l ... n do
d(3)=d(j)-ald,j*dE)*aj,1)
en
end




ILU(0)

Solve Mu = v

for i=1...n do
x=0

for j=1 ... i-1 do

x=x+a(i,j)*u(j)

end
u(i)=d(i)*(v(i)-x)

for j=i+l...n do
x=xta(i,j)*u(j)

end
u(i)=u(i)-d(i)*x

ILU(0)

v

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified"): add ignored off-diagonal entries to D
> ILUT: zero pattern calculated dynamically based on drop tolerance

vy

Dependence on ordering

Can be parallelized using graph coloring

Not much theory: experiment for particular systems

| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU

vyYVvVVYY

Preconditioners

> Leave this topic for a while now
> Hopefully, we well be able to discuss

> Multigrid: gives O(n) complexity in optimal situations
» Domain decomposition: Structurally well suited for large scale parallelization

More general iteration schemes

Generalization of iteration schemes

» Simple iterations converge slowly

» For most practical purposes, Krylov subspace methods are used.

» We will introduce one special case and give hints on practically useful more
general cases

> Material after J. Shewchuk: !An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain*

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R" x R" - R

a(u,v) = (Au,v) = v Au = ZZQUV"”/

i=1 j=1

As A'is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function
1 T
f(u) = Ea(u7 u)y—b'u
What is the minimizer of f ?

f'(u)=Au—b=0

> Solution of SPD system = minimization of f.

Method of steepest descent

» Given some vector u; look for a new iterate ;1.
» The direction of steepest descend is given by —f'(u;).

> So look for uj;1 in the direction of —f’(u;) = ri = b — Au; such that it
minimizes f in this direction, i.e. set ui1 = u; + ar with « choosen from

— d . ) — ! . ) .
0= %F(u, +ar)=f(u+an)n

= (b— A(uj + ar), r)
= (b — Aui, i) — a(Ari, r;)
= ( iy r") - D((Ar,z, r")
_ (rin)
(Ari, ri)

Method of steepest descent: iteration scheme

ri=b— Au;
()
YT (Ann)

Uip1 = Ui + airi

) N 1
Let & the exact solution. Define ¢; = u; — 0. Let ||u||a = (Au, u)2 be the energy
norm wrt. A.

Theorem The convergence rate of the method is

k—1\
) leolla

o <
lella < (355




Conjugate directions

For steepest descent, there is no guarantee that a search direction d; = r; = Ae;
is not used several times. If all search directions would be orthogonal, or, indeed,
A-orthogonal, one could control this situation.

So, let do, di ... ds—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi,d;) =0, i#j.

» Look for uj;+1 in the direction of d; such that it minimizes f in this direction,
i.e. set ujy1 = uj + ad; with o choosen from

0= %f(u; +ad) = f'(ui + ad) - d;
= (b— A(u + ad;), d;)
= (b — Au;, d;) — oAd;, di)
= (i, d;) — a(Ad;, d;)
(i, di)

a=

- (Ad;, d;)

Conjugate directions Il

e = up — U (such that Aep = —ry) can be represented in the basis of the search
directions:
n—1
0=y od
i=0

Projecting onto d in the A scalar product gives

n—1
(Ao, di) = > 01(Ad). dh)
i=0
(Aeo, di) = 0k(Adk, di)
(Aeo,di) (Ao + 30, aidisdi)  (Aex, di

~ (Ade do) (Ad, di)) ~ (Ady, di)
_ (e dd)

(Ady, di)

= —Qk

Ok

Conjugate directions |1l

Then,

i1
e =e + Z o;d;
j=0
n—1 i—1
=- Z(dej + Z a;d;
j=0 j=0
n-1
==Y wd
=i

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps.

But by what magic we can obtain these d;?

Conjugate directions V

Furthermore, we have

uir1 = uj + a;d;
eiy1 = & + aid;
Aeir1 = Aej + aiAdi

rig1 = ri — aiAd;

Gram-Schmidt Orthogonalization

» Assume we have been given some linearly independent vectors
VO, V1 ... Vho1.

> Set do = v

> Define

i—1
di=vi+ Zﬁrkdk
k=0

> For j < i, A-project onto d; and require orthogonality:

i—1
(Ads, ) = (Avi,d)) + D _ Bi(Adk, )

k=0
0= (Avi,d)) + 5(Ad;, )
o (Avd)
P T (Ady )

» If v; are the coordinate unit vectors, this is Gaussian elimination!

> If v; are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d; from dj, j < i, we can choose v; = r; — the
residuals built up during the conjugate direction process.

Let K; = span{dy...dj—1}. Then, i L K;

But d; are built by Gram-Schmidt from the residuals, so we also have
Ki=span{r...ri—1} and (r;, r;) =0 for j < i.

From r; = ri1 — aj_1Ad;_1 we obtain
Ki = Ki-1Uspan{Ad;_1}

This gives two other representations of K;:

K; = span{do, Ado, A%db, . .

2
= span{r, Aro, A°ro,. ..

LA )
; Al—lro}

Such type of subspace of R" is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

Conjugate gradients I

Look at Gram-Schmidt under these conditions. The essential data are (setting
_ PR _ _(And) _ (Adpn)
vi = r; and using j < i) B = —Gdd) = ~add)

Then, for j < i:

i1 = rj — ojAd;
(rj+1, 1) = (1, ri) = oj(Adj, ri)
aj(Adj, ) = (1, ri) = (rjs1, 1)
—a (i n), j+1=i —=(rn), j+1=i
(Adj, ri) = fj(l],f:% j=i = i(fi,ﬂ'), j=i
0, else 0, else
8 — Sy Jt =i
"7 o

s else

Conjugate gradients Ill
For Gram-Schmidt we defined (replacing v; by r;):

i—1

di=ri+ Z Bikdi
k=0

=i+ Bii-1di-1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don't have to store old residuals or search
directions. In the sequel, set §; := §j,i-1.

We have

di-1 = ri-1 + Bi—1di—2
(di-1,ri1) = (ri-1, ri-1) + Bi—a(di—2, ri-1)

= (fi—1, ri-1)
PR (i) (riyn)
" i (Adici,dic1)  (dica, ric1)
_ ()

(ri-1,ri-1)




Conjugate gradients IV - The algorithm
Given initial value ug, spd matrix A, right hand side b.

do=1ro=b— Aug
(ri, ri)

Qj =

(Ad;, di)
uit1 = uj + aid;
riy1 = i — a;Ad;

(ris1, riv1)
(ri, ri)
dit1 = fiy1 + Biad;

Biv1 =

At the i-th step, the algorithm yields the element from ey + KC; with the
minimum energy error.

Theorem The convergence rate of the method is

Vi-1Y
[leilla <2 (m [leol[a

Amax(A)
Amin(A)

where k = is the spectral condition number.

Preconditioning

We discussed all these nice preconditioners - GS, Jacobi, ILU, may be there are
more of them. Are they of any help here ?

Let M be spd. We can try to solve M~Au = M~1b instead of the original
system.

But in general, M~'A is neither symmetric, nor definite. But there is a trick:

Let E be such that M = EET, e.g. its Cholesky factorization. Then,
o(M™*A) = o(ET'AE"T):

Assume M~'Au = Au. We have
(ET*AE"TYWE u) =(ETETYEAu=E" M Au= XETu

& ETuis an eigenvector of ET*AE™T with eigenvalue .

Good preconditioner: M & A in the sense that k(M ' A) << r(A).

Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system

E'AE "k =E"'b
with 1= ETu

dy=F=E'b—E'AE Ty
_ (Fi, 7i)

T (ET'AE-Td: dy)

i1 = O + aid;

Fo1=F —oE TAETTd;

a@;j

(Fit1, Fi1)
(i, %)

dig1 = Fia1 + Brrd;

Biv1

Not very practical as we need E

Preconditioned CG Il

Assume ¥ = E"'r;, a; = ETd:, we get the equivalent algorithm

ro=b— Aug
do = Mflru

Q=

Ujis1 = Ui + aid;

fit1 = ri — aiAd;

(M~ 'risy, risa)
(fi,f,')

dis1 = M ric + Bisrd;

31+1 -

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

riy1 = i — a;iAd;
give a much more optimistic picture on the state of the iteration than the real

residual

riy1 = b — Auiy1

C++ implementation

template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;

Vector p, z, q;

Vector alpha(1), beta(1), rho(1), rho_1(1);

Real normb = norm(b);

-1;
if ((resid = norm(r) / mormb) <= tol) {
tol = resid;
max_iter = 0;
return 0;
¥
for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);
Tho(0) = dot(r, 2);
if (4 == 1)
P =2z;
else {
beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;
}
= Ap;
alpha(0) = rho(0) / dot(p, @);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / mormb) <= tol) {
tol = resid;
max_iter = i;
return 0;

¥
rho_1(0) = rho(0);

tol = resid;
by

return 1;

C++ implementation Il

> Available from http://www.netlib.org/templates/cpp//cg.h
> Slightly adapted for numexx
> Available in numxx in the namespace netlib.

Unsymmetric problems

» By definition, CG is only applicable to symmetric problems.
> The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xo, perform

n=b-Ax fo=b—%A"
po=ro Po="
iy Fi
Xit1 = Xi + aip; Kit1 = %Ki+ qipi
riv1 = ri — i Apj P = — AT
Bi — (?i+1, Vf+1)
(i, i)
piv1 = riy1 + Bipi Piv1 = Piy1 + Bipi

The two sequences produced by the algorithm are biorthogonal, i.e.,
(Bi, Ap;) = (Fi,r;) = 0 for i # j.




Unsymmetric problems Il

v

v

v

vy

v

BiCG is very unstable an additionally needs the transposed matrix vector
product, it is seldomly used in practice
There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.
Main practical approaches to fix the situation:

> “Stabilize” BiCG — BiCGstab

> tweak CG — Conjugate gradients squared (CGS)

> Error minimization in Krylov subspace — Generalized Minimum Residual

(GMRES)

Both CGS and BiCGstab can show rather erratic convergence behavior
For GMRES one has to keep the full Krylov subspace, which is not possible
in practice = restart strategy.
From my experience, BiCGstab is a good first guess




