Addendum + Parallel Assembly
Scientific Computing Winter 2016/2017
Lecture 27
Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

Convergence tests

Error estimates for homogeneous Dirichlet problem

» Search u € H3(Q) such that

//\Vqudx = / fv dx Vv € Hy(Q)
Q Q

> Then, limy_o ||u — un]|1,0 = 0.
> If u€ H*(Q) (e.g. convex domain, smooth coefficients), then

IN

llu = unllre < chlulaa < 'hlflog

0.0 < ch’|ulaq < I |flog

llu = un|

and (“Aubin-Nitsche-Lemma")

|lu = unllo.o < chlulr0

Stiffness matrix calculation for Laplace operator for P1 FEM

a; = a(i, ;) = / VoiVe; dx

/ Y VoilkVejlk dx
Q

KET

Assembly loop:

Set a; = 0.

For each K € T:

For each m,n=0...d:

Smn = / V)\mV)\n dx
K

Bjor (Kom) o (Kon) = Fjgor (K,m).Jgor (K,n) T Smn

Local stiffness matrix calculation for P1 FEM

ap ...aq: vertices of the simplex K, a € K.

IKj(a)l
IK]

Barycentric coordinates: \j(a) =

For indexing modulo d+1 we can write

1
|K| = Edet (aj+1 — aj,...dj+d —aj)

1
|Ki(a)| = 0 det (aj+1 —a,...34d — a)

From this information, we can calculate V\;j(x) (which are constant vectors due
to linearity) and the corresponding entries of the local stiffness matrix

sij = / VAV dx
K

Local stiffness matrix calculation for P1 FEM in 2D
a0 = (x0,%0) ... a4 = (x2,y2): vertices of the simplex K, a = (x,y) € K.

K GGyl
IK]

Barycentric coordinates: \j(x,y) =

For indexing modulo d+1 we can write
1= L (277)
2

Yi+1 = Yi Yi+2 =Y

K1, 9)| = 7 det (X —X X2 X)

Yi+1r =Y Yi+2— Y

Therefore, we have

|Ki(x,)| = % (g1 = X)(yjv2 = ¥) = (s2 = X)(yjs1 —)
UK V)| = 5 (51 = ¥) = (2 =) = 5031 — 3302)
B IKi 0,9 = 5 (e = %) = (1 = x)) = 3052 — 3501)

6/31

Local stiffness matrix calculation for P1 FEM in 2D Il

|K

|

Yi+1 — Yj+2
Xj+2 — Xj+1

(y,-+1 — Yit2, Xi42 — Xi+1) (

So, let V = (Xl TX e XO)
Yi—Yo Y2—Y0
Then

x1 —x2 = Voo — Vo1

nn—y2=Vwo—Vu

and

2|K| Vo = (2 :ﬁ

_ Vio — Vi1
Vor — Voo
2|K| VA = (yz -

X0 — X2

X1 — Xo

~ N~
Il
/‘\
<
g
=
~_—

2|K| VAy = (yo G

Test problem

» Homogeneous Dirichlet problem:

—Au =277 sin(mx) sin(ry) in Q = (0,1) x (0,1)

uloa =0
» Exact solution:

u(x, y) = sin(mx) sin(my)
» Testing approach: generate series of finer grids with triangle, by control
the triangle are parameter acoording to the desired mesh size h.
> Do we get the theoretical error estimates ?

» We did not talk about error estimates for the finite volume method. What
can we expect ?

» For simplicity, we calculate not ||texact — Un|| but Mptexace — un|| where My is
the P1 nodal interpolation operator.

» More precise test would have to involve high order quadrature for
calculation of the norm.

FEM Results

8

=
10° .
e—e ' (seminorm)
e—e discr. L*
106 oo L™
---- 0.25h
©0.25h%
107
107 107

» Theoretical estimates are reproduced
> Useful test for debugging code. ..

Error norm

wellee
e—e ['(seminorm)
o—e discr. L*

106} e L™ h
s 0.25h .

o 0.25n%
107
107 107 10°

Number of unknowns

Finite volume local stiffness matrix calculation |

A
c
Sa
B a C
Triangle edge lengths:
a,b,c
Semiperimeter:
s—a,b_ ¢
T2 22

Square area (from Heron's formula):
16A% = 16s(s—a)(s—b)(s—c) = (—a+ b+c)(a—b+c)(a+b—c)(a+b+c)
Square circumradius:
R? a?b%c? _ a?b%c?
(—a+b+c)(a—b+c)(a+b—c)(a+b+0) 16A2

Finite volume local stiffness matrix calculation Il
Square of the Voronoi surface contribution via Pythagoras:
2
a* (a2 . — c2)

s g (L)L
=R _<2> 4(a—b-c)(a—b+c)(at+b—c)(at+b+c)

Square of edge contribution in the finite volume method:

2
, s (32 — b - 62)
a
ea = —

a2 4(a—b-c)(a—b+c)(at+b—c)(at+b+c)

Comparison with pdelib formula:
2 (b2+62—a2)2

e 64A? =0

This implies the formula for the edge contribution

_Sa b+ c* -2
ST T BA

The sign chosen implies a positive value if the angle a < 7, and a negative value

if it is obtuse. In the latter case, this corresponds to the negative length of the

line between edge midpoint and circumcenter, which is exactly the value which

needs to be added to the corresponding amount from the opposite triangle in

order to obtain the measure of the Voronoi face.

11/31

FVM Results

10" 107

error norm
5

Error norm
5

oo oo L’
10° " . 10° "
e—o H' (seminorm) e—e H'(seminorm)
e—e discr. L* e—e discr. L?
10° oo L 106 l[e—e >
e 0.25h e 0.25h
0.25h% e 0.25h7
107 107
107 107 10" 107 107 10° 10° 10°
h Number of unknowns

» Similar results as for FEM

12/31

Recap

13/31

Why parallelization ?

» Computers became faster and faster without that. ..

Floating point peak performance [Gflop/s]
CPU frequency [GHz]

100

parallelism

P ore 7
Pertium 4 core 2 bue

Pantm 1 free speedup

Pentium Pro
0.1
single precision
—&— double precision
—&— CPU frequency

T
1993 1995 1997 1999 2001 2003 2005 2007 2009

[Source: spiralgen.com]

v

But: clock rate of processors limited due to physical limits

= parallelization is the main road to increase the amount of data processed
Parallel systems nowadays ubiquitous: even laptops and smartphones have
multicore processors

» Amount of accessible memory per processor is limited = systems with large
memory can be created based on parallel processors

vy

Parallel paradigms

SIMD
Single Instruction Multiple Data
prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n) =
C(1)=A(1)*B(1) C(2)=A(2)B(2) C(n)=A(n)*B(n) .
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

» "classical” vector systems: Cray,
Convex ...

» Graphics processing units (GPU)

MIMD
Multiple Instruction Multiple Data
prev instruct prev instruct prev instruct
load A(1) call funcD do 10i=1,N
load B(1) x=y*z alpha=w**3 o
C(1)=A(1)'B(1) sum=x*2 zeta=C(j) :
store C(1) call sub(i,j) 10 continue
next instruct next instruct next instruct
P1 P2 Pn

[Source: computing.linl.gov/tutorials]

> Shared memory systems
» IBM Power, Intel Xeon, AMD
Opteron . ..
> Smartphones ...
» Xeon Phi
> Distributed memory systems
> interconnected CPUs

MIMD Hardware: Distributed memory

|IIIIIII|||||||||||I Ek |IIIIIII||||||IIII|

[Source: computing.linl.gov/tutorials]

MPI_Send(buf,count,type,dest,tag, comm)

MPI_Recv(buf,count,type,src,tag,comm,stat)

“Linux Cluster”
“Commodity Hardware”

Memory scales with number of CPUs
interconneted

High latency for communication

Mostly programmed using MPI
(Message passing interface)
Explicit programming of
communications:

gather data, pack, send, receive,
unpack, scatter

16 /31

MIMD Hardware: Shared Memory

Symmetric Multiprocessing

(SMP)/Uniform memory acces (UMA) Nonuniform Memory Access (NUMA)

Bus Interconnect

- [Source: computing.linl.gov/tutorials]

[Source: computing.linl.gov/tutorials]

> Possibly varying memory access
latencies

» Combination of SMP systems
» ccNUMA: Cache coherent NUMA

» Similar processors

» Similar memory access times

Shared memory: one (virtual) address space for all processors involved

v

» Communication hidden behind memory acces

> Not easy to scale large numbers of CPUS

v

MPI works on these systems as well

17 /31

Hybrid distributed /shared memory

v

Combination of shared and distributed memory approach
Top 500 computers

v

[Source: computing.linl.gov/tutorials]

v

Shared memory nodes can be mixed CPU-GPU
Need to master both kinds of programming paradigms

v

18/31

Shared memory programming: pthreads

Thread: lightweight process which can run parallel to others
pthreads (POSIX threads): widely distributed

cumbersome tuning + syncronization

basic structure for more high level interfaces

vvyVvyy

#include <pthread.h>

void *PrintHello(void *threadid)

{ long tid = (long)threadid;
printf("Hello World! It’s me, thread #%1d!\n", tid);
pthread_exit (NULL) ;

}

int main (int argc, char *argv[])
{ pthread_t threads[NUM_THREADS];
int rc; long t;

for(t=0; t<NUM_THREADS; t++){

printf("In main: creating thread %ld\n", t);

rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);

if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}
}
pthread_exit (NULL) ;

Source: computing.llnl.gov/tutorials

» compile and link with

gcc -pthread -o pthreads pthreads.c

Shared memory programming: C+4+11 threads

» Threads introduced into C++ standard with C++11
» Quite late... many codes already use other approaches
» But intersting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;
¥

int main() {

std::thread t[num_threads];

for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);

s

std::cout << "Launched from the main\n";

//Join the threads with the main thread

for (int i = 0; i < num_threads; ++i) {
t[i].join();

return 0;

Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial /

» compile and link with

g++ -std=c++11 -pthread cppllithreads.cxx -o cpplithreads

Thread programming: mutexes and locking

> If threads work with common data (write to the same memory address, use
the same output channel) access must be syncronized

» Mutexes allow to define regions in a program which are accessed by all
threads in a sequential manner.

#include <iostream>

#include <thread>

#include <mutex>

std::mutex mtx;

void call_from_thread(int tid) {
mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

int main() {

std::thread t[num_threads];

for (int i = 0; i < num_threads; ++i) {
t[i] = std::thread(call_from_thread, i);

s

std::cout << "Launched from the main\n";

//Join the threads with the main thread

for (int i = 0; i < num_threads; ++i) {
t[i].join();

return O;

» Barrier: all threads use the same mutex for the same region
» Deadlock: two threads block each other by locking two different locks and
waiting for each other to finish

Shared memory programming: OpenMP

» Mostly based on pthreads
» Available in C++,C,Fortran for all common compilers

» Compiler directives (pragmas) describe parallel regions

. sequential code ...
#pragma omp parallel

. parallel code ...

(implicit barrier)
. sequential code ...

master thread - ‘ -
el o . o threads ¥
! threads threads
parallel region parallel region parallel region

[Source: computing.linl.gov/tutorials]

Shared memory programming: OpenMP Il

#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;
¥

int main (int argc, char *argv([])
{
int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{
call_from_thread(i);
}
return O;

}

» compile and link with

g++ -fopenmp -0 cppomp Cppomp.CXX

Example: u=au+vunds=u-v

double ulnl],v[n];

#pragma omp parallel for

for(int i=0; i<n ; i++)
ulil+=axv[il;

//implicit barrier
double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)
s+=ulil*v[i];

v

Code can be parallelized by introducing compiler directives

v

Compiler directives are ignored if not in parallel mode

v

Write conflict with + s: several threads may access the same variable

v

In standard situations, reduction variables can be used to avoid conflicts

Do it yourself reduction

#include <omp.h>

int maxthreads=omp_get_max_threads() ;

double sO[maxthreads];

double uln],v[n];

for (int ithread=0;ithread<maxthreads; ithread++)
s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{
int ithread=omp_get_thread_num();
sO[ithread]+=u[il*v[i];
¥

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)
s+=s0[ithread] ;

OpenMP: further aspects

double u[n],v([n];
#pragma omp parallel for Bus Interconnect

for(int i=0; i<n ; i++)
u[l] e [l] : “
[Quelle: computing.linl.gov/tutorials]

» Distribution of indices with thread is implicit and can be influenced by
scheduling directives

» Number of threads can be set via OMP_NUM_THREADS environment variable
or call to omp_set_num_threads()

» First Touch Principle (NUMA): first thread which “touches” data triggers
the allocation of memory with the processeor where the thread is running on

26 /31

Structured and unstructured grids

Structured grid

» Easy next neighbor access via index
calculation

» Efficient implementation on
SIMD/GPU

» Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

> General geometries

> lIrregular, index vector based access

to next neighbors
» Hardly feasible fo SIMD/GPU

27 /31

Stiffness matrix assembly for Laplace operator for P1 FEM

a; = a(i, ;) = / VoiVe; dx

/ Y VoilkVejlk dx
Q

KET

Assembly loop:

Set a; = 0.

For each K € T:

For each m,n=0...d:

Smn = / V)\mV)\n dx
K

Bjor (Kom) o (Kon) = Fjgor (K,m).Jgor (K,n) T Smn

28 /31

Mesh partitioning
Partition set of cells in 75, and color the graph of the partitions.

Result: C: set of colors, P.: set of partitions of given color. Then:
Th = UCEC Upe'Pc P

» Sample algorithm:
> Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) — Partitions of color 1
> Create separators along boundaries — Partitions of color 2
> “triple points” — Partitions of color 3

> No interference between assembly loops for partitions of the same color

> Immediate parallelization without critical regions
29/31

Parallel stiffness matrix assembly for Laplace operator for P1 FEM

Set a; = 0.

For each color c € C
#pragma omp parallel for
For each p € P.:
For each K € p:
For each m,n=20...d:
Son = [, VAmV A, dx

Fjor (K)o (K,n) T = Smn

» Similar structure for Voronoi finite volumes, nonlinear operator evaluation,
Jacobi matrix assembly

Linear system solution

» Sparse matrices

> Direct solvers are hard to parallelize though many efforts are undertaken

> lterative methods easier to parallelize

> partitioning of vectors + coloring inherited from cell partitioning
> keep loop structure (first touch principle)
> parallelize

>

>
>
>

vector algebra

scalar products

matrix vector products
preconditioners

