
~

Parallelization, OpenMP
Scientific Computing Winter 2016/2017

Lecture 26

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

1 / 18



Why parallelization ?
I Computers became faster and faster without that. . .

[Source: spiralgen.com]

I But: clock rate of processors limited due to physical limits
I ⇒ parallelization is the main road to increase the amount of data processed
I Parallel systems nowadays ubiquitous: even laptops and smartphones have

multicore processors
I Amount of accessible memory per processor is limited ⇒ systems with large

memory can be created based on parallel processors
2 / 18



TOP 500 2016 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical desktop
computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org ]

3 / 18



TOP 500 2016 rank 7-13

[Source:www.top500.org ]

4 / 18



Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi

I Distributed memory systems
I interconnected CPUs

5 / 18



MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of CPUs

interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

6 / 18



MIMD Hardware: Shared Memory

Symmetric Multiprocessing
(SMP)/Uniform memory acces (UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well

7 / 18



Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms

8 / 18



Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for more high level interfaces

#include <pthread.h>

void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It’s me, thread #%ld!\n", tid);
pthread_exit(NULL);

}

int main (int argc, char *argv[])
{ pthread_t threads[NUM_THREADS];

int rc; long t;

for(t=0; t<NUM_THREADS; t++){
printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}

}
pthread_exit(NULL);

}

Source: computing.llnl.gov/tutorials

I compile and link with
gcc -pthread -o pthreads pthreads.c

9 / 18



Shared memory programming: C++11 threads
I Threads introduced into C++ standard with C++11
I Quite late. . . many codes already use other approaches
I But intersting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from the main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}

Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

I compile and link with
g++ -std=c++11 -pthread cpp11threads.cxx -o cpp11threads

10 / 18



Thread programming: mutexes and locking
I If threads work with common data (write to the same memory address, use

the same output channel) access must be syncronized
I Mutexes allow to define regions in a program which are accessed by all

threads in a sequential manner.
#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx;
void call_from_thread(int tid) {

mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

}
int main() {

std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from the main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}

I Barrier: all threads use the same mutex for the same region
I Deadlock: two threads block each other by locking two different locks and

waiting for each other to finish
11 / 18



Shared memory programming: OpenMP

I Mostly based on pthreads
I Available in C++,C,Fortran for all common compilers
I Compiler directives (pragmas) describe parallel regions

... sequential code ...
#pragma omp parallel
{
... parallel code ...

}
(implicit barrier)
... sequential code ...

[Source: computing.llnl.gov/tutorials]

12 / 18



Shared memory programming: OpenMP II

#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main (int argc, char *argv[])
{

int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{

call_from_thread(i);
}
return 0;

}

I compile and link with

g++ -fopenmp -o cppomp cppomp.cxx

13 / 18



Example: u = au + v und s = u · v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*v[i];

//implicit barrier
double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I Code can be parallelized by introducing compiler directives
I Compiler directives are ignored if not in parallel mode
I Write conflict with + s: several threads may access the same variable
I In standard situations, reduction variables can be used to avoid conflicts

14 / 18



Do it yourself reduction

#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)
s+=s0[ithread];

15 / 18



OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

I Distribution of indices with thread is implicit and can be influenced by
scheduling directives

I Number of threads can be set via OMP_NUM_THREADS environment variable
or call to omp_set_num_threads()

I First Touch Principle (NUMA): first thread which “touches” data triggers
the allocation of memory with the processeor where the thread is running on

16 / 18



Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =

∫
Ω

f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω

I ⇒ global coupling: any solution algorithm needs global communication

17 / 18



Structured and unstructured grids

Structured grid

I Easy next neighbor access via index
calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based access

to next neighbors
I Hardly feasible fo SIMD/GPU

18 / 18


