Convection-Diffusion + Nonlinearities

Scientific Computing Winter 2016/2017

Lecture 24
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Examination dates

```
20.2.
21.2. > 14:00
22.2.
24.2.
6.3.
7.3. >14:00
8.3. >14:00
9.3
13.3.
14.3.
15.3.
20.3.-24.3.
```

Recap

Time dependent Robin boundary value problem

- Choose final time $T>0$. Regard functions $(x, t) \rightarrow \mathbb{R}$.

$$
\begin{array}{rlrl}
\partial_{t} u-\nabla \cdot \kappa \nabla u & =f \quad \text { in } \Omega \times[0, T] \\
\kappa \nabla u \cdot \vec{n}+\alpha(u-g) & =0 & \text { on } \partial \Omega \times[0, T] \\
u(x, 0) & =u_{0}(x) \quad \text { in } \Omega
\end{array}
$$

- This is an initial boundary value problem
- This problem has a weak formulation in the Sobolev space $L^{2}\left([0, T], H^{1}(\Omega)\right)$, which then allows for a Galerkin approximation in a corresponding subspace
- We will proceed in a simpler manner: first, perform a finite difference discretization in time, then perform a finite element (finite volume) discretization in space.
- Rothe method: first discretize in time, then in space
- Method of lines: first discretize in space, get a huge ODE system

Time discretization

- Choose time discretization points $0=t_{0}<t_{1} \cdots<t_{N}=T$, let $\tau_{i}=t_{i}-t_{i-1}$ For $i=1 \ldots N$, solve

$$
\begin{array}{ll}
\frac{u_{i}-u_{i-1}}{\tau_{i}}-\nabla \cdot \kappa \nabla u_{\theta}=f & \text { in } \Omega \times[0, T] \\
\kappa \nabla u_{\theta} \cdot \vec{n}+\alpha\left(u_{\theta}-g\right)=0 & \text { on } \partial \Omega \times[0, T]
\end{array}
$$

where $u_{\theta}=\theta u_{i}+(1-\theta) u_{i-1}$

- $\theta=1$: backward (implicit) Euler method
- $\theta=\frac{1}{2}$: Crank-Nicolson scheme
- $\theta=0$: forward (explicit) Euler method
- Note that the explicit Euler method does not involve the solution of a PDE system. What do we have to pay for this ?

Weak formulation

- Weak formulation: search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
\frac{1}{\tau_{i}} \int_{\Omega} u_{i} v d x+\theta & \left(\int_{\Omega} \kappa \nabla u_{i} \nabla v d x+\int_{\partial \Omega} \alpha u_{i} v d s\right)= \\
\frac{1}{\tau_{i}} \int_{\Omega} u_{i-1} v d x+(1-\theta) & \left(\int_{\Omega} \kappa \nabla u_{i-1} \nabla v d x+\int_{\partial \Omega} \alpha u_{i-1} v d s\right) \\
& +\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s \forall v \in H^{1}(\Omega)
\end{aligned}
$$

- Matrix formulation (in case of constant coefficents, $A_{i}=A$)

$$
\frac{1}{\tau_{i}} M u_{i}+\theta A_{i} u_{i}=\frac{1}{\tau_{i}} M u_{i-1}+(1-\theta) A_{i} u_{i-1}+F
$$

- M : mass matrix, A : stiffness matrix

Mass matrix

- Mass matrix $M=\left(m_{i j}\right)$:

$$
m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x
$$

- Self-adjoint, coercive bilinear form $\Rightarrow M$ is symmetric, positiv definite
- For a family of quasi-uniform, shape-regular triangulations the condition number $\kappa(M)$ is bounded by a constant independent of h :

$$
\kappa(M) \leq c
$$

Mass matrix M-Property ?

- For P^{1}-finite elements, all integrals $m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x$ are zero or positive, so we get positive off diagonal elements.
- No M-Property!

Stiffness matrix condition number + row sums

- Stiffness matrix $A=\left(a_{i j}\right)$:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x
$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A is symmetric, positive definite
- Condition number estimate for P^{1} finite elements on quasi-uniform triangulation:

$$
\kappa(A) \leq c h^{-2}
$$

- Row sums:

$$
\begin{aligned}
\sum_{j=1}^{N} a_{i j} & =\sum_{j=1}^{N} \int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{\Omega} \nabla \phi_{i} \nabla\left(\sum_{j=1}^{N} \phi_{j}\right) d x \\
& =\int_{\Omega} \nabla \phi_{i} \nabla(1) d x \\
& =0
\end{aligned}
$$

Stiffness matrix entry signs

Local stiffness matrices

$$
s_{i j}=\int_{K} \nabla \lambda_{i} \nabla \lambda_{j} d x=\frac{|K|}{2|K|^{2}}\left(y_{i+1}-y_{i+2}, x_{i+2}-x_{i+1}\right)\binom{y_{j+1}-y_{j+2}}{x_{j+2}-x_{j+1}}
$$

- Main diagonal entries must be positive
- Local contributions from element stiffness matrices: Scalar products of vectors orthogonal to edges. These are nonpositive if the angle between the edges are $\leq 90^{\circ}$
- weakly acute triangulation: all triangle angles are less than $\leq 90^{\circ}$
- in fact, for constant coefficients, in 2D, Delaunay is sufficient!
- All rows sums are zero $\Rightarrow A$ is singular
- Matrix becomes irreducibly diagonally dominant if we add at least one positive value to the main diagonal, e.g. from Dirichlet BC or lumped mass matrix $\Rightarrow M$ - Matrix
- Adding a mass matrix yields a positive definite matrix and thus nonsingularity, but destroys M-property

Back to time dependent problem

Assume M diagonal, $A=S+D$, where S is the stiffness matrix, and D is a nonnegative diagonal matrix. We have

$$
\begin{aligned}
(S u)_{i} & =\sum_{j} s_{i j} u_{j}=s_{i i} u_{i}+\sum_{i \neq j} s_{i j} u_{j} \\
& =\left(-\sum_{i \neq j} s_{i j}\right) u_{i}+\sum_{i \neq j} s_{i j} u_{j} \\
& =\sum_{i \neq j}-s_{i j}\left(u_{i}-u_{j}\right)
\end{aligned}
$$

Forward Euler

$$
\begin{aligned}
\frac{1}{\tau_{i}} M u_{i} & =\frac{1}{\tau_{i}} M u_{i-1}+A_{i} u_{i-1} \\
u_{i} & =u_{i-1}+\tau_{i} M^{-1} A_{i} u_{i-1}=\left(I+\tau M^{-1} D+\tau M^{-1} S\right) u_{i-1}
\end{aligned}
$$

- Entries of $\left.\tau M^{-1} A\right) u_{i-1}$ are of order $\frac{1}{h^{2}}$, and so we can expect stabilityonly if τ balances $\frac{1}{h^{2}}$, i.e.

$$
\tau \leq C h^{2}
$$

- A more thorough stability estimate proves this situation

Backward Euler

$$
\begin{aligned}
\frac{1}{\tau_{i}} M u_{i}+A u_{i} & =\frac{1}{\tau_{i}} M u_{i-1} \\
\left(I+\tau_{i} M^{-1} A\right) u_{i} & =u_{i-1} \\
u_{i} & =\left(I+\tau_{i} M^{-1} A\right)^{-1} u_{i-1}
\end{aligned}
$$

But here, we can estimate that

$$
\left\|\left(I+\tau_{i} M^{-1} A\right)^{-1}\right\|_{\infty} \leq 1
$$

- We get this stability independent of the time step.
- Another theory is possible using L^{2} estimates and positive definiteness

Discrete maximum principle

Assuming $v \geq 0$ we can conclude $u \geq 0$.

$$
\begin{aligned}
\frac{1}{\tau} M u+(D+S) u & =\frac{1}{\tau} M v \\
\left(\tau m_{i}+d_{i}\right) u_{i}+s_{i i} u_{i} & =\tau m_{i} v_{i}+\sum_{i \neq j}\left(-s_{i j}\right) u_{j} \\
u_{i} & =\frac{1}{\tau m_{i}+d_{i}+\sum_{i \neq j}\left(-s_{i j}\right)}\left(\tau m_{i} v_{i}+\sum_{i \neq j}\left(-s_{i j}\right) u_{j}\right) \\
& \leq \frac{\tau m_{i} v_{i}+\sum_{i \neq j}\left(-s_{i j}\right) u_{j}}{\tau m_{i}+d_{i}+\sum_{i \neq j}\left(-s_{i j}\right)} \max \left(\left\{v_{i}\right\} \cup\left\{u_{j}\right\}_{j \neq i}\right) \\
& \leq \max \left(\left\{v_{i}\right\} \cup\left\{u_{j}\right\}_{j \neq i}\right)
\end{aligned}
$$

- Provided, the right hand side is zero, the solution in a given node is bounded by the value from the old timestep, and by the solution in the neigboring points.
- No new local maxima can appear during time evolution
- There is a continuous counterpart which can be derived from weak solution
- M-property is crucial for the proof.

The finite volume idea revisited

- Assume Ω is a polygon
- Subdivide the domain Ω into a finite number of control volumes : $\bar{\Omega}=\bigcup_{k \in \mathcal{N}} \bar{\omega}_{k}$ such that
- ω_{k} are open (not containing their boundary) convex domains
- $\omega_{k} \cap \omega_{l}=\emptyset$ if $\omega_{k} \neq \omega_{l}$
- $\sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ are either empty, points or straight lines
- we will write $\left|\sigma_{k l}\right|$ for the length
- if $\left|\sigma_{k l}\right|>0$ we say that ω_{k}, ω_{l} are neigbours
- neigbours of $\omega_{k}: \mathcal{N}_{k}=\left\{I \in \mathcal{N}:\left|\sigma_{k l}\right|>0\right\}$
- To each control volume ω_{k} assign a collocation point: $\mathbf{x}_{k} \in \bar{\omega}_{k}$ such that
- admissibility condition: if $I \in \mathcal{N}_{k}$ then the line $\mathbf{x}_{k} \mathbf{x}_{l}$ is orthogonal to $\sigma_{k l}$
- if ω_{k} is situated at the boundary, i.e. $\gamma_{k}=\partial \omega_{k} \cap \partial \Omega \neq \emptyset$, then $x_{k} \in \partial \Omega$

- Now, we know how to construct this partition
- obtain a boundary conforming Delaunay triangulation
- construct restricted Voronoi cells

Finite volumes for time dependent problem
Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot \lambda \nabla u & =0 & & \text { in } \Omega \times[0, T] \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-w) & =0 & & \text { on } \Gamma \times[0, T]
\end{aligned}
$$

- Given control volume ω_{k}, integrate equation over space-time control volume

$$
\begin{aligned}
0 & =\int_{\omega_{k}}\left(\frac{1}{\tau}(u-v)-\nabla \cdot \lambda \nabla u\right) d \omega=-\int_{\partial \omega_{k}} \lambda \nabla u \cdot \mathbf{n}_{k} d \gamma+\frac{1}{\tau} \int_{\omega_{k}}(u-v) d \omega \\
& =-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \lambda \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} \lambda \nabla u \cdot \mathbf{n} d \gamma-\frac{1}{\tau} \int_{\omega_{k}}(u-v) d \omega \\
& \approx \frac{\left|\omega_{k}\right|}{\tau}\left(u_{k}-v_{k}\right)+\sum_{L \in \mathcal{N}_{k}} \frac{\left|\sigma_{k k}\right|}{h_{k l}}\left(u_{k}-u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-w_{k}\right)
\end{aligned}
$$

- Here, $u_{k}=u\left(\mathbf{x}_{k}\right), w_{k}=w\left(\mathbf{x}_{k}\right), f_{k}=f\left(\mathbf{x}_{k}\right)$
- $\frac{1}{\tau_{i}} M u_{i}+A u_{i}=\frac{1}{\tau_{i}} M u_{i-1}$

Convection-Diffusion

The convection - diffusion equation

Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{aligned}
\partial_{t} u-\nabla(\cdot D \nabla u-u \mathbf{v}) & =0 & \text { in } \Omega \times[0, T] \\
(D \nabla u-u \mathbf{v}) n+\alpha(u-w) & =0 & \text { on } \Gamma \times[0, T]
\end{aligned}
$$

- Here:
- u: species concentration
- D: diffusion coefficient
- v: velocity of medium (e.g. fluid)

$$
\frac{\left|\omega_{k}\right|}{\tau}\left(u_{k}-v_{k}\right)+\sum_{L \in \mathcal{N}_{k}} \frac{\left|\sigma_{k l}\right|}{h_{k l}} g_{k l}\left(u_{k}, u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-w_{k}\right)=f_{k}
$$

Let $v_{k l}=\frac{1}{\left|\sigma_{k l}\right|} \int \sigma_{k l} \mathbf{v} \cdot \mathbf{n}_{k l} d \gamma$

Finite volumes for convection - diffusion II

- Central difference flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)-h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l} \\
& =\left(D-\frac{1}{2} h_{k l} v_{k l}\right) u_{k}-\left(D+\frac{1}{2} h_{k l} v_{k l}\right) x u_{l}
\end{aligned}
$$

- M-Property (sign pattern) only guaranteed for $h \rightarrow 0$!
- Upwind flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+ \begin{cases}h_{k l} u_{k} v_{k l}, & v_{k l}<0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}>0\end{cases} \\
& =(D+\tilde{D})\left(u_{k}-u_{l}\right)-h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}
\end{aligned}
$$

- M-Property guaranteed unconditonally !
- Artificial diffusion $\tilde{D}=\frac{1}{2} h_{k l}\left|v_{k l}\right|$

Finite volumes for convection - diffusion: exponential fitting

Project equation onto edge $x_{K} x_{L}$ of length $h=h_{k l}$, integrate once $-q=-v_{k l}$

$$
\begin{aligned}
c^{\prime}+c q & =j \\
\left.c\right|_{0} & =c_{K} \\
\left.c\right|_{h} & =c_{L}
\end{aligned}
$$

Solution of the homogeneus problem:

$$
\begin{array}{r}
c^{\prime}=-c q \\
c^{\prime} / c=-q \\
\ln c=c_{0}-q x \\
c=K \exp (-q x)
\end{array}
$$

Exponential fitting II

Solution of the inhomogeneous problem: set $K=K(x)$:

$$
\begin{aligned}
K^{\prime} \exp (-q x)-q K \exp (-q x)+q K \exp (-q x) & =j \\
K^{\prime} & =j \exp (q x) \\
K & =K_{0}+\frac{1}{q} j \exp (q x)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c & =K_{0} \exp (-q x)+\frac{1}{q} j \\
c_{K} & =K_{0}+\frac{1}{q} j \\
c_{L} & =K_{0} \exp (-q h)+\frac{1}{q} j
\end{aligned}
$$

Exponential fitting III

Use boundary conditions

$$
\begin{aligned}
K_{0} & =\frac{c_{K}-c_{L}}{1-\exp (-q h)} \\
c_{K} & =\frac{c_{K}-c_{L}}{1-\exp (-q h)}+\frac{1}{q} j \\
j & =q c_{K}-\frac{q}{1-\exp (-q h)}\left(c_{K}-c_{L}\right) \\
& =q\left(1-\frac{1}{1-\exp (-q h)}\right) c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =q\left(\frac{-\exp (-q h)}{1-\exp (-q h)}\right) c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =\frac{-q}{\exp (q h)-1} c_{K}-\frac{q}{\exp (-q h)-1} c_{L} \\
& =\frac{B(-q h) c_{L}-B(q h) c_{K}}{h}
\end{aligned}
$$

where $B(\xi)=\frac{\xi}{\exp (\xi)-1}$: Bernoulli function

Exponential fitting IV

- Upwind flux:

$$
g_{k l}\left(u_{k}, u_{l}\right)=D\left(B\left(\frac{v_{k l} h_{k l}}{D}\right) u_{k}-B\left(\frac{-v_{k l} h_{k l}}{D}\right) u_{l}\right)
$$

- Allen+Southwell 1955
- Scharfetter+Gummel 1969
- Ilin 1969
- Chang+Cooper 1970
- Guaranteed M property!

Exponential fitting: Artificial diffusion

- Difference of exponential fitting scheme and central scheme
- Use: $B(-x)=B(x)+x \Rightarrow$

$$
\begin{aligned}
& B(x)+\frac{1}{2} x=B(-x)-\frac{1}{2} x=B(|x|)+\frac{1}{2}|x| \\
D_{\text {art }}\left(u_{k}-u_{l}\right)= & D\left(B\left(\frac{v h}{D}\right) u_{k}-B\left(\frac{-v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right)+h \frac{1}{2}\left(u_{k}+u_{l}\right) v \\
= & D\left(\frac{v h}{2 D}+B\left(\frac{v h}{D}\right)\right) u_{k}-D\left(\frac{-v h}{2 D}+B\left(\frac{-v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right) \\
= & D\left(\frac{1}{2}\left|\frac{v h}{D}\right|+B\left(\left|\frac{v h}{D}\right|\right)-1\right)\left(u_{k}-u_{l}\right)
\end{aligned}
$$

- Further, for $x>0$:

$$
\frac{1}{2} x \geq \frac{1}{2} x+B(x)-1 \geq 0
$$

- Therefore

$$
\frac{|v h|}{2} \geq D_{a r t} \geq 0
$$

Exponential fitting: Artificial diffusion II

Comparison of artificial diffusion functions $\frac{1}{2}|x|$ (upwind) and $\frac{1}{2}|x|+B(|x|)-1$ (exp. fitting)

Convection-Diffusion implementation: central differences

```
F=0;
U=0;
for (int k=0, l=1;k<n-1;k++,l++)
{
    double g_kl=D - 0.5*(v*h);
    double g_lk=D + 0.5*(v*h);
    M(k,k)+=g_kl/h;
    M(k,l)-=g_kl/h;
    M(l,l)+=g_lk/h;
    M(l,k)-=g_lk/h;
}
M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F(n-1)=1.0e30;
```


Convection-Diffusion implementation: upwind scheme

```
F=0;
U=0;
for (int k=0, l=1;k<n-1;k++,l++)
{
    double g_kl=D;
    double g_lk=D;
    if (v<0) g_kl-=v*h;
    else g_lk+=v*h;
    M(k,k)+=g_kl/h;
    M(k,l)-=g_kl/h;
    M(l,l)+=g_lk/h;
    M(l,k)-=g_lk/h;
}
M(0,0)+=1.0e30;
M(n-1,n-1)+=1.0e30;
F(n-1)=1.0e30;
```


Convection-Diffusion implementation: exponential fitting scheme

```
inline double B(double x)
{
    if (std::fabs(x)<1.0e-10) return 1.0;
    return x/(std::exp(x)-1.0);
}
    F=0;
    U=0;
    for (int k=0, l=1;k<n-1;k++,l++)
    {
        double g_kl=D* B(v*h/D);
        double g_lk=D* B(-v*h/D);
        M(k,k)+=g_kl/h;
        M(k,l)-=g_kl/h;
        M(l,l)+=g_lk/h;
        M(l,k)-=g_lk/h;
    }
    M(0,0)+=1.0e30;
    M(n-1,n-1)+=1.0e30;
    F(n-1)=1.0e30;
```


Convection-Diffusion test problem, $\mathrm{N}=20$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical
- Upwind: larger boundary layer

Convection-Diffusion test problem, $\mathrm{N}=40$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical, but less "'wiggles"
- Upwind: larger boundary layer

Convection-Diffusion test problem, $\mathrm{N}=80$

- $\Omega=(0,1),-\nabla \cdot(D \nabla u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: grid is fine enough to yield M-Matrix property, good approximation of boundary layer due to higher convergence order
- Upwind: "smearing" of boundary layer

1D convection diffusion summary

- upwinding and exponential fitting unconditionally yield the M-property of the discretization matrix
- exponential fitting for this case (zero right hand side, 1D) yields exact solution. It is anyway "less diffusive" as artificial diffusion is optimized
- central scheme has higher convergence order than upwind (and exponential fitting) but on coarse grid it may lead to unphysical oscillations
- for $2 / 3 \mathrm{D}$ problems, sufficiently fine grids to stabilize central scheme may be prohibitively expensive
- local grid refinement may help to offset artificial diffusion

Convection-diffusion and finite elements

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla(\cdot D \nabla u-u \mathbf{v}) & =f \quad \text { in } \Omega \\
u & =u_{D} \operatorname{on} \partial \Omega
\end{aligned}
$$

- Assume v is divergence-free, i.e. $\nabla \cdot v=0$.
- Then the main part of the equation can be reformulated as

$$
-\nabla(\cdot D \nabla u)+v \cdot \nabla u=0 \quad \text { in } \Omega
$$

yielding a weak formulation: find $u \in H^{1}(\Omega)$ such that $u-u_{D} \in H_{0}^{1}(\Omega)$ and $\forall w \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} D \nabla u \cdot \nabla w d x+\int_{\Omega} \mathbf{v} \cdot \nabla u w d x=\int_{\Omega} f w d x
$$

- Galerkin formulation: find $u_{h} \in V_{h}$ with bc. such that $\forall w_{h} \in V_{h}$

$$
\int_{\Omega} D \nabla u_{h} \cdot \nabla w_{h} d x+\int_{\Omega} \mathbf{v} \cdot \nabla u_{h} w_{h} d x=\int_{\Omega} f w_{h} d x
$$

Convection-diffusion and finite elements II

- Galerkin ansatz has similar problems as central difference ansatz in the finite volume/finite difference case Rightarrow stabilization?
- Most popular: streamline upwind Petrov-Galerkin

$$
\int_{\Omega} D \nabla u_{h} \cdot \nabla w_{h} d x+\int_{\Omega} \mathbf{v} \cdot \nabla u_{h} w_{h} d x+S\left(u_{h}, w_{h}\right)=\int_{\Omega} f w_{h} d x
$$

with

$$
S\left(u_{h}, w_{h}\right)=\sum_{K} \int_{K}\left(-\nabla\left(\cdot D \nabla u_{h}-u_{h} \mathbf{v}\right)-f\right) \delta_{K} v \cdot w_{h} d x
$$

where $\delta_{K}=\frac{h_{K}^{v}}{2|\mathbf{v}|} \xi\left(\frac{|\mathbf{v}| h_{K}^{v}}{D}\right)$ with $\xi(\alpha)=\operatorname{coth}(\alpha)-\frac{1}{\alpha}$ and h_{K}^{v} is the size of element K in the direction of \mathbf{v}.

Convection-diffusion and finite elements III

- Many methods to stabilize, none guarantees M-Property even on weakly acute meshes! (V. John, P. Knobloch, Computer Methods in Applied Mechanics and Engineering, 2007)
- Comparison paper:
M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and R. Umla, "An assessment of discretizations for convection-dominated convection-diffusion equations," Comp. Meth. Appl. Mech. Engrg., vol. 200, pp. 3395-3409, 2011:
- if it is necessary to compute solutions without spurious oscillations: use FVM, taking care on the construction of an appropriate grid might be essential for reducing the smearing of the layers,
- if sharpness and position of layers are important and spurious oscillations can be tolerated: often the SUPG method is a good choice.
- Topic of ongoing research

Nonlinear problems

Nonlinear problems: motivation

- Assume nonlinear dependency of some coefficients of the equation on the solution. E.g. nonlinear diffusion problem

$$
\begin{aligned}
-\nabla(\cdot D(u) \nabla u) & =f \quad \text { in } \Omega \\
u & =u_{D} \operatorname{on} \partial \Omega
\end{aligned}
$$

- FE+FV discretization methods lead to large nonlinear systems of equations

Nonlinear problems: caution!

This is a significantly more complex world:

- Possibly multiple solution branches
- Weak formulations in L^{p} spaces
- No direct solution methods
- Narrow domains of definition (e.g. only for positive solutions)

Finite element discretization for nonlinear diffusion

- Find $u_{h} \in V_{h}$ such that for all $w_{h} \in V_{h}$:

$$
\int_{\Omega} D\left(u_{h}\right) \nabla u_{h} \cdot \nabla w_{h} d x=\int_{\Omega} f w_{h} d x
$$

- Use appropriate quadrature rules for the nonlinear integrals
- Discrete system

$$
A\left(u_{h}\right)=F\left(u_{h}\right)
$$

Finite volume discretization for nonlinear diffusion

$$
\begin{align*}
0 & =\int_{\omega_{k}}(-\nabla \cdot D(u) \nabla u-f) d \omega \\
& =-\int_{\partial \omega_{k}} D(u) \nabla u \cdot \mathbf{n}_{k} d \gamma-\int_{\omega_{k}} f d \omega \tag{Gauss}\\
& =-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{k l}} D(u) \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} D(u) \nabla u \cdot \mathbf{n} d \gamma-\int_{\omega_{k}} f d \omega \\
& \approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{k l}}{h_{k l}} g_{k l}\left(u_{k}, u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-v_{k}\right)-\left|\omega_{k}\right| f_{k}
\end{align*}
$$

with

$$
g_{k l}\left(u_{k}, u_{l}\right)=\left\{\begin{array}{l}
D\left(\frac{1}{2}\left(u_{k}+u_{l}\right)\right)\left(u_{k}-u_{l}\right) \\
\text { or } \\
\mathcal{D}\left(u_{k}\right)-\mathcal{D}\left(u_{l}\right)
\end{array}\right.
$$

where $\mathcal{D}(u)=\int_{0}^{u} D(\xi) d \xi$ (from exact solution ansatz at discretization edge)

- Discrete system

$$
A\left(u_{h}\right)=F\left(u_{h}\right)
$$

Iterative solution methods: fixed point iteration

- Let $u \in \mathbb{R}^{n}$.
- Problem: $A(u)=f$:

Assume $A(u)=M(u) u$, where for each $u, M(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear operator.

- Fixed point iteration scheme:

1. Choose initial value $u_{0}, i \leftarrow 0$
2. For $i \geq 0$, solve $M\left(u_{i}\right) u_{i+1}=f$
3. Set $i \leftarrow i+1$
4. Repeat from 2) until converged

- Convergence criteria:
- residual based: $\|A(u)-f\|<\varepsilon$
- update based $\left\|u_{i+1}-u_{i}\right\|<\varepsilon$
- Large domain of convergence
- Convergence may be slow
- Smooth coefficients not necessary

Iterative solution methods: Newton method

- Let $u \in \mathbb{R}^{n}$.
- Solve

$$
A(u)=\left(\begin{array}{c}
A_{1}\left(u_{1} \ldots u_{n}\right) \\
A_{2}\left(u_{1} \ldots u_{n}\right) \\
\vdots \\
A_{n}\left(u_{1} \ldots u_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)=f
$$

- Jacobi matrix (Frechet derivative) for given $u: A^{\prime}(u)=\left(a_{k l}\right)$ with

$$
a_{k l}=\frac{\partial}{\partial u_{l}} A_{k}\left(u_{1} \ldots u_{n}\right)
$$

- Iteration scheme

1. Choose initial value $u_{0}, i \leftarrow 0$
2. Calculate residual $r_{i}=A\left(u_{i}\right)-f$
3. Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$
4. Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$
5. Update solution: $u_{i+1}=u_{i}-h_{i}$
6. Set $i \leftarrow i+1$
7. Repeat from 2) until converged

- Convergence criteria:
- residual based: $\left\|r_{i}\right\|<\varepsilon$
- update based $\left\|h_{i}\right\|<\varepsilon$
- Limited domain of convergence
- Slow initial convergence
- Fast (quadratic) convergence close to solution

Newton method II

- Remedies for small domain of convergence: damping

1. Choose initial value $u_{0}, i \leftarrow 0$, damping parameter $d<1$:
2. Calculate residual $r_{i}=A\left(u_{i}\right)-f$
3. Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$
4. Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$
5. Update solution: $u_{i+1}=u_{i}-d h_{i}$
6. Set $i \leftarrow i+1$
7. Repeat from 2) until converged

- Damping slows convergence
- Better way: increase damping parameter during iteration:

1. Choose initial value $u_{0}, i \leftarrow 0$, damping parameter d_{0}, damping growth factor $\delta>1$
2. Calculate residual $r_{i}=A\left(u_{i}\right)-f$
3. Calculate Jacobi matrix $A^{\prime}\left(u_{i}\right)$
4. Solve update problem $A^{\prime}\left(u_{i}\right) h_{i}=r_{i}$
5. Update solution: $u_{i+1}=u_{i}-d_{i} h_{i}$
6. Update damping parameter: $d_{i+1}=\min \left(1, \delta d_{i}\right)$

Set $i \leftarrow i+1$
7. Repeat from 2) until converged

Newton method III

- Even if it converges, in each iteration step we have to solve linear system of equations
- can be done iteratively, e.g. with the LU factorization of the Jacobi matrix from first solution step
- iterative solution accuracy my be relaxed, but this may diminuish quadratic convergence
- Quadratic convergence yields very accurate solution with no large additional effort: once we are in the quadratic convergence region, convergence is very fast
- Monotonicity test: check if residual grows, this is often an sign that the iteration will diverge anyway.

Newton method IV

- Embedding method for parameter dependent problems.
- Solve $A\left(u_{\lambda}, \lambda\right)=f$ for $\lambda=1$.
- Assume $A\left(u_{0}, 0\right)$ can be easily solved.
- Parameter embedding method:

1. Solve $A\left(u_{0}, 0\right)=f$ choose step size δ Set $\lambda=0$
2. Solve $A\left(u_{\lambda+\delta}, \lambda+\delta\right)=0$ with initial value u_{λ}. Possibly decrease δ to achieve convergence
3. Set $\lambda \leftarrow \lambda+\delta$
4. Possibly increase δ
5. Repeat from 2) until $\lambda=1$

- Parameter embedding + damping + update based convergence control go a long way to solve even strongly nonlinear problems!

