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Time dependent Robin boundary value problem

» Choose final time T > 0. Regard functions (x, t) — R.

Ou—V-kVu=1f inQx][0,T]
kVu-fi+a(u—g)=0 on9dQ x [0, T]
u(x,0) = wo(x) inQ

» This is an initial boundary value problem

» This problem has a weak formulation in the Sobolev space
L? ([07 T], HI(Q)), which then allows for a Galerkin approximation in a
corresponding subspace

> We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform a finite element (finite volume)
discretization in space.

> Rothe method: first discretize in time, then in space
> Method of lines: first discretize in space, get a huge ODE system



Time discretization

» Choose time discretization points 0 = to < t;--- < ty = T, let
Ti = ti — ti—1
Fori=1...N, solve

AU Y okVue=f inQx[0,T]

Ti

kVug -+ alup—g)=0 ondQ x[0,T]

where ug = Quj + (1 — 0)uj—1
» 0 = 1: backward (implicit) Euler method

v

6 = 1: Crank-Nicolson scheme

v

0 = 0: forward (explicit) Euler method

> Note that the explicit Euler method does not involve the solution of a PDE
system. What do we have to pay for this ?



Weak formulation

» Weak formulation: search u € H*(Q) such that

1/u;vdx—|—9(/nVu,—Vvdx+/ auv ds> =
Ti Ja Q aa
l/u,-,lvdx—|—(1—0) (/ /fVu,-qudx—i—/ aQui_1Vv ds>
Ti Ja Q o9

+/fvdx+/ agvds Vv € H'(Q)
Q o9

» Matrix formulation (in case of constant coefficents, A; = A)

lMU,‘ —+ 0A,‘U,' = l,\/IU,'_l —+ (1 — 9)A,‘U,'_1 —+ F
X Ti

Ti

» M: mass matrix, A: stiffness matrix



Matrix properties
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Mass matrix

>

Mass matrix M = (mj):

mjj :/¢f¢j dx
Q

Self-adjoint, coercive bilinear form = M is symmetric, positiv definite

For a family of quasi-uniform, shape-regular triangulations, for every
eigenvalue i one has the estimate

C1hd < 12 < Czhd

Therefore the condition number k(M) is bounded by a constant
independent of h:
k(M) <c

How to see this 7 Let uy = E,N:1 Ui¢i, and p an eigenvalue (positive,real!)
Then

llunls = (U, MU)an = u(U, U)gn = pl| Ullw

From quasi-uniformity we obtain
ah®|Ullew < lunlls < c2h™]|U|Izw

and conclude



Mass matrix M-Property 7

» For Pl-finite elements, all integrals mj = fQ ¢i¢; dx are zero or positive, so
we get positive off diagonal elements.

> No M-Property!



Stiffness matrix condition number 4 row sums

v

Stiffness matrix A = (aj):

a; = a(¢i, ;) = / ViV dx
Q

v

bilinear form a(-, -) is self-adjoint, therefore A is symmetric, positive definite

Condition number estimate for P! finite elements on quasi-uniform
triangulation:

\4

k(A) < ch™?

» Row sums:

N N N
Zaij - Z/V@-qubj dx = / VoiV (Z ¢j> dx
j=1 j=1 7% e i=1

:/QVQS,-V(l) dx

=0



Stiffness matrix entry signs

Local stiffness matrices

K iy
sj= | VAV dx = |—|2 (yiss = yira, xisz — xiga) (2710092
K 2|K]

Xj+2 — Xj+1

» Main diagonal entries must be positive

» Local contributions from element stiffness matrices: Scalar products of
vectors orthogonal to edges. These are nonpositive if the angle between the
edges are < 90°

> weakly acute triangulation: all triangle angles are less than < 90°
> in fact, for constant coefficients, in 2D, Delaunay is sufficient!
> All rows sums are zero = A is singular

> Matrix becomes irreducibly diagonally dominant if we add at least one
positive value to the main diagonal, e.g. from Dirichlet BC or lumped mass
matrix = M — Matrix

> Adding a mass matrix yields a positive definite matrix and thus
nonsingularity, but destroys M-property



Back to time dependent problem

Assume M diagonal, A =S + D, where S is the stiffness matrix, and D is a
nonnegative diagonal matrix. We have

(Su)i = Zs;jui = sjiui + Zsijuj

i#j

j
=(=) s)ui+ Y siy

i#j i#j

=Y —silu — )

i#j



Forward Euler

|
<
IS
I

1
i = —Mui—1 + Aiuj—1
Ti Ti

&
I

= uj—1+ T,‘MilA,'u,;l = (I + TM71D+ TMils)U,;l

> Entries of TM™*A)u;_; are of order hl—z and so we can expect stabilityonly if
7 balances %, i.e.
T < Ch?

» A more thorough stability estimate proves this situation



Backward Euler

l/WU,‘ + Au; = ll\/lu,-,l
Ti Ti
(I+mM A = u_y
up = (/ + T,'MilA)ilu,;l

But here, we can estimate that

10+ M A) oo < 1



Backward Euler Estimate

Theorem: Assume S has the sign pattern of an M-Matrix with row sum zero,
and D is a nonnegative diagonal matrix. Then ||(/ + D + S) ™ [|ec < 1

Proof: Assume that ||(/ 4+ S)7}||ec > 1. We know that (/4 S)™! has positive
entries. Then for a;; being the entries of (/ + S)7%,

n
n
max;—_, aj > 1.
Jj=1

Let k be a row where the maximum is reached. Let e = (1...1)". Then for
v=(I+S) 'e we have that v > 0, v > 1 and vk > v; for all j # k. The kth
equation of e = (I + S)v then looks like

1= v+ VkZ|5kj| —Z|5kj|‘/j

J#k 7k
> Vi + vk Z |ski| — Z [ k] v
J#k 7k
=v>1

This contradiction enforces ||(/ + S) || < 1.



Backward Euler Estimate |l

I+A=I+D+S
=(I+D)I+D)'(I+D+S)
=(I+ D)(I + Apo)

with Apg = (/ + D)™'S has row sum zero Thus
107+ A) Moo =I1(/ + Apo) ™ (/ + D)oo
<[|(/ + D)l
<1,

because all main diagonal entries of / + D are greater or equal to 1. [J



Backward Euler Estimate Il

We can estimate that
I+ M "A=1+1M D+ 7mM7'S
and obtain

10/ +7M 7 A) o <1

> We get this stability independent of the time step.

> Another theory is possible using L? estimates and positive definiteness

16

26



Discrete maximum principle
Assuming v > 0 we can conclude u > 0.

fMu—F(D-&-S) f/\//v
(Tm,' + d,-)u,- + siiui = Tm;v; + Z(*SU)UJ
i#j
1

up = m;v; + —Sjj ) Uj
Tm; + d; + Zi#j(—s;j) (r g( 1))

Tmivi+ Y (—sj)u
i)

it U i fji
S a3 (e " O L)

max({vi} U {uj}j)

IN

» Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in the
neigboring points.

> No new local maxima can appear during time evolution

There is a continuous counterpart which can be derived from weak solution

» M-property is crucial for the proof.

v



The finite volume idea revisited

» Assume €2 is a polygon
> Subdivide the domain  into a finite number of control volumes :

Q= UkeN’ Wk
such that
> wy are open (not containing their boundary) convex domains

> wi Nw =0 if wy #* w
> oy = Wi N, are either empty, points or straight lines

> we will write |o| for the length
> if |ox| > 0 we say that wy, w; are neigbours

> neigbours of wx: Ny = {l € N : |ow| > 0}
» To each control volume wy assign a collocation point: xx € @&, such that
» admissibility condition: if / € N then the line x,x, is orthogonal to oy
> if wy is situated at the boundary, i.e. v, = Owx N AN # B, then x, € O

» Now, we know how to construct this partition
> obtain a boundary conforming Delaunay triangulation
> construct restricted Voronoi cells



Finite volumes for time dependent problem
Search function u: Q x [0, T] — R such that u(x,0) = uo(x) and

Ou—V-AVu=0 inQx|[0,T]
AVu-n+a(u—w)=0 onl x[0,T]

» Given control volume wy, integrate equation over space-time control volume

o:/wk (%(u—v)—V-AVu)dw:—/a
=—Z/

LEN, YO

w, g
~ 8 vy + ZN Bl — ) + Pl — m)
k

AVu - nedy + 1 / (u—v)dw
T
Wi

Wk

AVu - ngdy — / AVu-ndy — l/ (u—=v)dw
kl Yk T Wk

> Here, ux = u(xk), Wy = W(Xk), fk = f(Xk)
> %I_MU,‘ + Au; = %I_MU,;l
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Convection-Diffusion



The convection - diffusion equation

Search function v : Q X [0, T] — R such that u(x,0) = up(x) and

Oty —V(-DVu—uv) =0 inQx [0, T]
(DVu—uwv) -n+a(u—w)=0 onl x[0,T]

» Here:

> u: species concentration
> D: diffusion coefficient
> v: velocity of medium (e.g. fluid)

el k' )+ Z ﬂg (e, ur) + |yl oe(uk — wi)
Len,

Let viy = fak/v nk/dfy

IGI



Finite volumes for convection - diffusion Il

» Central difference flux:

1
g(uk, u) = D(uk — uy) — thE(Uk + w)vi

1 1
=(D - Ehk/VkI)Uk —(D+ EthVkI)XUI

> M-Property (sign pattern) only guaranteed for h — 0 !

» Upwind flux:

haugvig, vy <0
g(uw, ur) = D(uk — ) +
hauivig, v >0

1
=(D+ D)(uk — u) — hk/E(Uk + v

> M-Property guaranteed unconditonally !
> Artificial diffusion D = %hk/\vm

N
N

™



Finite volumes for convection - diffusion: exponential fitting

Project equation onto edge xxx; of length h = hy, integrate once - g =

' +eqg=j
Clo:CK
C|h=CL

Solution of the homogeneus problem:

/
¢ =—cq
dJc=—q
Inc=co—gx

¢ = Kexp(—gx)

—Vki
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Exponential fitting I
Solution of the inhomogeneous problem: set K = K(x):

K’ exp(—gx) — gK exp(—qx) + gK exp(—qx) = j
K’ = jexp(qx)

1,
K =Ko+ 7 exp(gx)
Therefore,
1,
c = Koexp(—gx) + Pt

1.
ck =Ko+ —j
q

1.
cL = Koexp(—qh) + 7



Exponential fitting Il

Use boundary conditions

Ck — CL
Ko = T exp(—ah)
. Cck — CL 1
T 1-exp(—gh) q
. q
J AT T " exp(—qh)
1
~ 1—exp(—gh
_ ( —exp(—qh) ) " — q a
1 — exp(—gqh) exp(—qh) — 1
= -9 Kk — q
exp(gh) — 1 exp(—qh)
_ B(=gh)cr — B(gh)cx
h

CK

=q(1

yex =

,1C’-

where B(¢) = —5

PGS Bernoulli function



Exponential fitting 1V

v

Upwind flux:

g(u, ur) = D(B(

v

Allen+Southwell 1955
Scharfetter+Gummel 1969
Ilin 1969

Chang+Cooper 1970
Guaranteed M property!

v

v

v

v

— Vi hy
D

Juk — B(

Vit hi
D

Jur)



