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The Galerkin method

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear
form, and f a linear functional on V. Assume a is coercive with coercivity
constant «, and continuity constant ~.

» Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search up € V}, such that

a(uh, Vh) = f(Vh) Yvp, € V,

By Lax-Milgram, this problem has a unique solution as well.



Céa’s lemma

» What is the connection between v and up, ?
> Let v, € V), be arbitrary. Then

IN

allu— up|* < a(u — up, u— up)  (Coercivity)

a(u— up,u—vy) + a(u — un, v — up)

a(u— up,u—vy) (Galerkin Orthogonality)

IN

Y||lu — upl| - ||u— va|] (Boundedness)
> As a result
lu—wll <L inf [ju— v

Q vyeV),

» Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace V.



Definition of a Finite Element (Ciarlet)

Triplet {K, P, X} where

» K C R? compact, connected Lipschitz domain with non-empty interior

> P: finite dimensional vector space of functions p : K — R™ (mostly,
m=1m=d)

> ¥ ={o01...0:} C L(P,R): set of linear forms defined on P called local
degrees of freedom such that the mapping

/\2 P> R
p = (o1(p)---os(p))
is bijective, i.e. X is a basis of L(P,R).
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Local shape functions

» Due to bijectivity of Ax, for any finite element {K, P, X}, there exists a
basis {6:...6s} C P such that

oi(0)) =065 (1<i,j<s)

» Elements of such a basis are called local shape functions
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Unisolvence

» Bijectivity of Ay is equivalent to the condition

V(ai...as) € R° Jlp € Psuch thatoi(p) = a; (1 <i<5s)

i.e. for any given tuple of values a = (o ... as) there is a unique
polynomial p € P such that As(p) = a.
» Equivalent to unisolvence:

dmP=1X|=s
VpeP: oi(p)=0(i=1...s) = p=0



Lagrange finite elements

> A finite element {K, P, X} is called Lagrange finite element (or nodal finite
element) if there exist a set of points {a1...as} C K such that

oi(p) =p(ai) 1<i<s
> {a1...as}: nodes of the finite element

» nodal basis: {01 ...6s} C P such that

Oj(ar) =65 (1<i,j<s)



Local interpolation operator

> Let {K, P, X} be a finite element with shape function bases {61 ...6s}. Let
V(K) be a normed vector space of functions v : K — R" such that

> PC V(K)
> The linear forms in X can be extended to be defined on V(K)

> Jlocal interpolation operator

Tk : V(K) = P
Vi ZU;(V)O,-
i—1

> P is invariant under the action of Zx, i.e. Vp € P,Zk(p) = p.
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Local Lagrange interpolation operator

> Let V(K) = (C°(K))"

Ix : V(K) = P

s

V = IKV = Z v(a,-)@,—

i=1
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Simplices

> Let {ag...aqs} C RY such that the d vectors a; — ag ... a4 — ao are linearly
independent. Then the convex hull K of a ... aq is called simplex, and
ao ... aq are called vertices of the simplex.

> Unit simplex: ap = (0...0),a, = (0,1...0)...a4 = (0...0,1).

d
K= XGRd:X,-EO(i:I...d)and Zx,-gl
i=1

> A general simplex can be defined as an image of the unit simplex under
some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;



Barycentric coordinates

> Let K be a simplex.
» Functions \; (i =0...d):

AR SR

(X — a,-) - n;
x—=Aix)=1—- —%—

(aj — a,-) -n;

where a; is any vertex of K situated in F;.
» For x € K, one has
1_ (x—a,-)~n,- _ (aj—a;)~n;—(x—a;)~n;
(aj —ai) - ni (aj —ai) - ni

o (aj — X) ‘n; diSt(X7 F,')

o (aj — a,-) - n; o dist(a,-, F,‘)

o diSt(X, F,)‘F,|/d

- dist(a,-, F,)|F,‘/d

_IK()]

K]

i.e. \i(x) is the ratio of the volume of the simplex Ki(x) made up of x and
the vertices of F; to the volume of K.
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Barycentric coordinates |l

> Ai(a) = 6

> \i(x)=0Vx € F

» 37 Ai(x) =1Vx € R
(just sum up the volumes)

> 3 A(x)(x — ar) = 0 Vx € R?
(due to > Ai(x)x = x and D Aja; = x as the vector of linear coordinate
functions)

> Unit simplex:

> )\o(X) =1- 27:1 Xj
> )\,-(x):x,-forlgigd

13 /47



Polynomial space Py

» Space of polynomials in xi ... x4 of total degree < k with real coefficients
Qiy..ig*

P =< p(x) = Z oz,-l,,,,-a,xlf1 ...X"f

0<iy...ig<k
i1t tig <k
» Dimension:
k+1, d=1
. _(d+ k) _ 1 _
dimP, = K = 2(k+1)(k+2), d=2
T(k+1)(k+2)(k+3), d=3
3, d=1
dimP, =¢6, d=2
10, d=3
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Py simplex finite elements

» K: simplex spanned by a...aq in R?

> P =Py, such that s = dim Py

> For0<ig...ig < k, io+ -+ ig = k, let the set of nodes be defined by
the points aj,...i,x with barycentric coordinates (2 ... ).
Define X by oiy._isi(p) = p(ai...izk)-
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Py simplex finite elements

vVvyVvyy

K: simplex spanned by ap ... aq in R

P =P, suchthats=d +1

Nodes = vertices

Basis functions = barycentric coordinates

A £

oo
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Conformal triangulations

> Let 7 be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,, m=1...n.:

Ne
Q=[] Kn
m=1
» Each simplex can be seen as the image of a affine transormation of a
reference (e.g. unit) simplex K:
Km = Tm(K)

» We assume that it is conformal, i.e. if Ky, K, have a d — 1 dimensional
intersection F = K, N K, then there is a face F of K and renumberings of
the vertices of K,, Ky, such that F = T, (F) =T, ( )and Tol> = Tolx
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Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common vertex
» d = 2 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge

» d = 3 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge or a common face
» Triangulations corresponding to simplicial complexes are conformal

» Delaunay triangulations are conformal
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Reference finite element

Let {IAD, K, )E} be a fixed finite element

Let Tx be some affine transformation and K = TK(R)

There is a linear bijective mapping 1k between functions on K and
functions on K:

v

vy

Pi : V(K) = V(K)
fisfoTk

> Let
> K = Tk(K)$
> P ={vx'(p)ip € P},

> Yy ={okii=1...5:0ki(p) = 7i(¢¥k(p))} Then {K, Pk, Tk} is a finite
element.
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Commutativity of interpolation and reference mapping

> Ty ok = i o Lk,
i.e. the following diagram is commutative:

V(K) —2 v(K)

JIK lIk

Pc —2 s P



Global interpolation operator 7,

> Let {K, Pk, Xk}keT;, be a triangulation of €.

» Domain:

D(Zy) = {v € (L*(R))™ such that VK € T, v|x € V(K)}
> For all v € D(Z4), define Z,v via

Ihle—IK V| ZO’K,(V|K)0K,VK€777,

i=1

Assuming 6 ; = 0 outside of K, one can write

Ihv = Z iGK,i(WK)@K,i,

KeTy i=1

mapping D(Z) to the approximation space

Wi = {vs € (L'(Q))" such that YK € T, vi|x € Pk}
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H'-Conformal approximation using Lagrangian finite elemenents

» Let V be a Banach space of functions on Q. The approximation space W,
is said to be V-conformal if W, C V.

» Non-conformal approximations are possible, we will stick to the conformal
case.

» Conformal subspace of W}, with zero jumps at element faces:

Vi = {vn € Wy : VY0, m, K 0 Ky # 0 = (Vi K ) Kk = (Vhl Ky ) Ko }

> Then: Vi, C HY(Q)

N
N
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Zero jump at interfaces with Lagrangian finite elements

» Assume geometrically conformal mesh
» Assume all faces of K have the same number of nodes s°

» For any face F = K1 N K3 there are renumberings of the nodes of Ki and
K> such that for i =1...5%, ax, ; = ak,.i

» Then, vi|k, and vi|k, match at the interface K1 N K if and only if they
match at the common nodes

Vil (ar.1) = vhli(ar,)) (I =1...5%)



Global degrees of freedom

> Let {a1...an} = | {ak1---aks}
KET,
> Degree of freedom map
J:Tax{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number
> Global shape functions ¢1,...,on € W), defined by
_ Jomn f3dne {1...s}:j(K,n)=i
dilk(ak.m) = {0 otherwise
> Global degrees of freedom 71, ...,vnv : V4 — R defined by

i(vn) = va(ai)
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From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
> Then, we have the representation u, = ZJ’.’:I ujp;
> In order to search uy € V), such that

a(uh, Vh) = f(Vh) Yvy € Vj

it is actually sufficient to require
a(un, i) =f(¢i) (i=1...n)

a (Z “j¢j:¢i> =f(¢i)) (i=1...n)

> aler ¢y = F(¢:) (i=1...n)

AU =F

with A = (a;), a5 = a(¢i, ¢;), F = (fi), fi = F(¢i), U = (u;).

» Matrix dimension is n X n.
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Stiffness matrix calculation for Laplace operator for P1 FEM

a; = a(i, ;) = / VoiVe; dx

/ Y VoilkVejlk dx
Q

KET

Assembly loop:

Set a; = 0.

For each K € T:

For each m,n=0...d:

Smn = / V)\mV)\n dx
K

Bjor (Kom) o (Kon) = Fjgor (K,m).Jgor (K,n) T Smn



Local stiffness matrix calculation for P1 FEM

ap ...aq: vertices of the simplex K, a € K.

IKj(a)l
IK]

Barycentric coordinates: \j(a) =

For indexing modulo d+1 we can write

1
|K| = Edet (aj+1 — aj,...dj+d —aj)

1
|Ki(a)| = 0 det (aj+1 —a,...34d — a)

From this information, we can calculate V\;j(x) (which are constant vectors due
to linearity) and the corresponding entries of the local stiffness matrix

sij = / VAV dx
K
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Local stiffness matrix calculation for P1 FEM in 2D Il

|K

|

Yi+1 — Yj+2
Xj+2 — Xj+1

(y,-+1 — Yit2, Xi42 — Xi+1) (

So, let V = (Xl TX e XO)
Yi—Yo Y2—Y0
Then

x1 —x2 = Voo — Vo1

nn—y2=Vwo—Vu

and

2|K| Vo = (2 :ﬁ

_ Vio — Vi1
Vor — Voo
2|K| VA = (yz -

X0 — X2

X1 — Xo

~ N~
Il
/‘\
<
g
=
~_—

2|K| VA; = (yo G



Local stiffness matrix calculation for P1 FEM in 2D Il

|K

|

Yi+1 — Yj+2
Xj+2 — Xj+1
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2|K| VA; = (yo G



Degree of freedom map representation for P1 finite elements

> List of global nodes a ... an: two dimensional array of coordinate values
with N rows and d columns

> Local-global degree of freedom map: two-dimensional array C of index
values with Ng rows and d 4+ 1 columns such that C(i, m) = jaor (Ki, m).

> The mesh generator triangle generates this information directly



Finite element assembly loop

for (int icell=0; icell<ncells; icell++)

{

// Fill matriz V
V(0,0)= points(cells(icell,1),0)- points(cells(icell,0),
V(0,1)= points(cells(icell,2),0)- points(cells(icell,0),

V(1,0)= points(cells(icell,1),1)- points(cells(icell,0),
V(1,1)= points(cells(icell,2),1)- points(cells(icell,0),

// Compute determinant
double det=V(0,0)*V(1,1) - V(0,1)*V(1,0);
double invdet = 1.0/det;

// Compute entris of local stiffness matriz

SLocal(0,0)= invdet * ( ( V(1,0)-V(1,1) )*( V(1,0)-V(1,
+( Vv(0,1)-V(0,0) )*( V(0,1)-Vv(0,

SLocal(0,1)= invdet * ( ( V(1,0)-V(1,1) )* V(1,1)

SLocal(0,2)= invdet * ( -( V(1,0)-V(1,1) )* V(1,0)

SLocal(1,1)= invdet * ( V(1,1)*V(1,1) + V(0,1)*V(0,1)
SLocal(1,2)= invdet * ( -V(1,1)*V(1,0) - V(0,1)*V(0,0)

SLocal(2,2)= invdet * ( V(1,0)*V(1,0)+ V(0,0)*V(0,0) );

SLocal(1,0)=SLocal(0,1);
SLocal(2,0)=SLocal(0,2);
SLocal(2,1)=SLocal(1,2);

// Assemble into global stiffness matriz
for (int i=0;i<=ndim;i++)
for (int j=0;j<=ndim;j++)
SGlobal(cells(icell,i),cells(icell,j))+=SLocal(i,j);

0);
0);

1)
1)

1)
0)

- -

);
- (V(0,1)-V(0,0) )*V(0,1) );
+ ( V(0,1)-V(0,0) )*V(0,0) );

)
)3
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Affine transformation estimates |

> K: reference element

» Let K € Th. Affine mapping:

T K=K
?HJK;(\+bK

with Jk € Rd’d, bk € RY, Jx nonsingular
» Diameter of K: hx = max, wek |[x1 — x|
> pi diameter of largest ball that can be inscribed into K

h .
> oK = ﬁ: local shape regularity

Lemma
> |detJK|:%§,E;
h,
>l < 2
_ hy,
> [l <



Local interpolation |

» For w € H°(K) recall the H* seminorm |w|? x = Z‘B‘:S ||85W\|i2(K)

Lemma: Let w € H°(K) and w = w o Tk. There exists a constant ¢ such that

_1
Wl g < cllJxl | det Jic| 2 [wls k

- 1.
wls.x < cl|Jic || det k|2 W],
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Local interpolation Il

Theorem: Let {R, P, )E} be a finite element with associated normed vector
space V(K). Assume there exists k such that

Px C P C HY(K) c V(K)

and H’+1(}A<) C V(R) for 0 </ < k. There exists ¢ > 0 such that for all
m=0...14+1, K€ T, veHYK):

v — Thv|mk < chd "o R|V]i1,k
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Local interpolation: special cases for Lagrange finite elements

v — I},}V|O,K < chic|v]a,x

lv — Tivlik < chkok|v]ak
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Shape regularity

» Now we discuss a family of meshes 7, for h — 0. We want to estimate
global interpolation errors and see how they possibly diminuish

v

For given Ty, assume that h = maxkeT;, h;

v

A family of meshes is called shape regular if

h
Vh,VK € T, ok = — < 0o
PK

> In 1D, OK 1

2

> In 2D, ok Snox where Ok is the smallest angle

IN
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Global interpolation error estimate

Theorem Let Q be polyhedral, and let 7, be a shape regular family of affine
meshes. Then there exists ¢ such that for all h, v € H"™(Q),

[T

1+1
v — Zvll2 +Zh'"<Z|v—I,,v|mK> < ch"™ Vi1

KeTh

and

lim ( inf HV*Vh”LZ ) =0
h—=0 \ v,ev
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Global interpolation error estimate for Lagrangian finite elements, k =1

> Assume v € H*(Q)

llv = Zivlloa + hlv — Tiviia < ch’|v]e

lv—Thvlia < chlvlzq

lim | inf [v—wi10] =0
h—0 VhEV,f

> If v € H*(Q) cannot be guaranteed, estimates become worse. Example:

L-shaped domain.

> These results immediately can be applied in Cea's lemma.
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Error estimates for homogeneous Dirichlet problem

» Search u € H3(Q) such that

//\Vqudx = / fv dx Vv € Hy(Q)
Q Q

> Then, limy_o ||u — un]|1,0 = 0.
> If u€ H*(Q) (e.g. convex domain, smooth coefficients), then

IN

llu = unllre < chlulaa < 'hlflog

0.0 < ch’|ulaq < I |flog

llu = un|

and (“Aubin-Nitsche-Lemma")

|lu = unllo.o < chlulr0
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H?-Regularity

v

u € H*(Q) may be not fulfilled e.g.

> if Q has re-entrant corners
> if on a smooth part of the domain, the boundary condition type changes
> if problem coefficients (\) are discontinuos

» Situations differ as well between two and three space dimensions

v

Delicate theory, ongoing research in functional analysis
» Consequence for simuations

> Deterioration of convergence ratw
> Remedy: local refinement of the discretization mesh

> using a priori information
> using a posteriori error estimators + automatic refinement of discretizatiom mesh

40
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Higher regularity

> If u e H°(Q2) for s > 2, convergence order estimates become even better for
P* finite elements of order k > 1.

» Depending on the regularity of the solution the combination of grid
adaptation and higher oder ansatz functions may be successful
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More complicated integrals

» Assume non-constant right hand side f, space dependent heat conduction
coefficient k.

v

Right hand side integrals

fi:/Kf(X)/\,-(x) dx

v

P! stiffness matrix elements

dij = / H(X) VA; V)\j dX
K

v

P stiffness matrix elements created from higher order ansatz functions
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Quadrature rules

v

Quadrature rule:

lq
JECES) S

=1

v

&1: nodes, Gauss points

> w;: weights

» The largest number k such that the quadrature is exact for polynomials of
order k is called order kq of the quadrature rule, i.e.
lq
Vk < kq,Vp € IP”‘/ p(x) dx = |K]| Zwlp(fl)
K I=1
> Error estimate:

V¢ € M (K), <chd™ sup 9%¢(x)|

xEK,|a|=kq+1

- / Bx) dx— 3 wigl€n)
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Some common quadrature rules

Nodes are characterized by the barycentric coordinates

5700
A<
5700
ULy
2 “q el I
h 7mv 1,31,937;4 | <t | <
b0 |3 BN - -
7] NN 1,31,39710 s <
ey - - - -
Z | R i@l i |t 1S i
—
(= |
|
+ —~
—
i -
- o
| S| -~ 3
IS = o
Qe - o
L | o -
- ~_~
e 1Y || o .
~ 7 ~ —
O]~ D oo~
f?l% )1,21Faa Ovﬂ
| = e S 38
ey o o i ~©
— | SS—| ° .-
- s -
—~ = - o fo
ﬂiﬁ - NIl - N
3im o . -~ 5
~ O -~ -
! i S
= A RS
— e O _—|"> = 7K
~ .+ Nt} 71,4)0 [ [
S —~ o <=[- 0
(f761,21,3\ SO It O -
0 |- - ~| O = | 9O,
|.% o + )71,3031,21,31,407[,%
IO O A [0 mf N [ 0O | S e L0
9 i IR o PN =T
Pl NN AN NN NS NN
LFTlH N N OHOOO [
o
X[—=Hr= O OH—ANMHE—A N
o |~ [qV] ™




Matching of approximation order and quadrature order

» “Variational crime”: instead of

a(uh, Vh) = f(vh) Yvp, € V,
we solve
ah(uh, Vh) = fh(Vh) Yv, € Vh
where ap, f, are derived from their exact counterparts by quadrature

» For P! finite elements, zero order quadrature for volume integrals and first
order quadrature for surface intergals is sufficient to keep the convergence
order estimates stated before

» The rule of thumb for the volume quadrature is that the highest order terms
must be evaluated exactly if the coefficients of the PDE are constant.
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Practical realization of integrals

> Integral over barycentric coordinate function

/)\,-(X) dx = 1\K|
P 3

» Right hand side integrals. Assume f(x) is given as a piecewise linear
function with given values in the nodes of the triangulation

1
fi = / f(x)Ai(x) dx = Z|K|fai)
K 3
> Integral over space dependent heat conduction coefficient: Assume k(x) is

given as a piecewise linear function with given values in the nodes of the
triangulation

1
aj = /K,%(X) VAi VX dx = 5(:‘%(20)-}—&(21)4—%(32)) /K K(x) Vi Vj dx

46

47



Practical realization of boundary conditions

» Robin boundary value problem

—V-kVu=f inQ
kVu+a(u—g)=0 on 0Q

» Weak formulation: search u € H'(Q) such that

/r-cVqudx—i—/ auv ds=/fvdx+/ agvds Vv € H'(Q)
Q 89 Q a9

> In 2D, for P* FEM, boundary integrals can be calculated by trapezoidal rule
without sacrificing approximation order
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