P1 finite elements: wrap up Scientific Computing Winter 2016/2017 Lecture 21 Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Recap

The Galerkin method

- Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u,v)=f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad \text{(Coercivity)} \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad \text{(Galerkin Orthogonality)} \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad \text{(Boundedness)} \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

• Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h .

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $\mathcal{K} \subset \mathbb{R}^d$: compact, connected Lipschitz domain with non-empty interior
- *P*: finite dimensional vector space of functions $p: K \to \mathbb{R}^m$ (mostly, m = 1, m = d)
- $\Sigma = \{\sigma_1 \dots \sigma_s\} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called *local* degrees of freedom such that the mapping

$$egin{aligned} & \Lambda_{\Sigma}: \mathcal{P} o \mathbb{R}^s \ & p \mapsto (\sigma_1(p) \dots \sigma_s(p)) \end{aligned}$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Due to bijectivity of Λ_Σ, for any finite element {K, P, Σ}, there exists a basis {θ₁...θ_s} ⊂ P such that

$$\sigma_i(heta_j) = \delta_{ij} \quad (1 \leq i, j \leq s)$$

Elements of such a basis are called *local shape functions*

Unisolvence

 \blacktriangleright Bijectivity of Λ_{Σ} is equivalent to the condition

$$\forall (\alpha_1 \dots \alpha_s) \in \mathbb{R}^s \exists ! p \in P \text{ such that } \sigma_i(p) = \alpha_i \quad (1 \leq i \leq s)$$

i.e. for any given tuple of values $a = (\alpha_1 \dots \alpha_s)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p) = a$.

Equivalent to unisolvence:

$$\begin{cases} \dim P = |\Sigma| = s \\ \forall p \in P : \sigma_i(p) = 0 (i = 1 \dots s) \Rightarrow p = 0 \end{cases}$$

Lagrange finite elements

A finite element {K, P, Σ} is called Lagrange finite element (or nodal finite element) if there exist a set of points {a₁...a_s} ⊂ K such that

$$\sigma_i(p) = p(a_i) \quad 1 \leq i \leq s$$

{a₁...a_s}: nodes of the finite element
 nodal basis: {θ₁...θ_s} ⊂ P such that

$$heta_j(a_i) = \delta_{ij} \quad (1 \leq i, j \leq s)$$

Local interpolation operator

• Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let V(K) be a normed vector space of functions $v : K \to \mathbb{R}^m$ such that

• $P \subset V(K)$

• The linear forms in Σ can be extended to be defined on V(K)

Iocal interpolation operator

$$egin{aligned} \mathcal{I}_{\mathcal{K}} &: \mathcal{V}(\mathcal{K}) o \mathcal{P} \ & \mathbf{v} \mapsto \sum_{i=1}^s \sigma_i(\mathbf{v}) heta_i \end{aligned}$$

▶ *P* is invariant under the action of \mathcal{I}_{K} , i.e. $\forall p \in P, \mathcal{I}_{K}(p) = p$.

Local Lagrange interpolation operator

• Let
$$V(K) = (\mathcal{C}^0(K))^m$$

$$\mathcal{I}_{K}: V(K) o P$$

 $v \mapsto I_{K}v = \sum_{i=1}^{s} v(a_{i})\theta_{i}$

Simplices

- Let {a₀... a_d} ⊂ ℝ^d such that the d vectors a₁ − a₀... a_d − a₀ are linearly independent. Then the convex hull K of a₀... a_d is called *simplex*, and a₀... a_d are called *vertices* of the simplex.
- Unit simplex: $a_0 = (0...0), a_1 = (0, 1...0) \dots a_d = (0...0, 1).$

$$\mathcal{K} = \left\{ x \in \mathbb{R}^d : x_i \geq 0 \ (i = 1 \dots d) \ \text{and} \ \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- ► F_i: face of K opposite to a_i
- **n**_i: outward normal to F_i

Barycentric coordinates

- ▶ Let *K* be a simplex.
- Functions λ_i ($i = 0 \dots d$):

$$egin{aligned} \lambda_i : \mathbb{R}^d &
ightarrow \mathbb{R} \ x &\mapsto \lambda_i(x) = 1 - rac{(x-a_i)\cdot \mathbf{n}_i}{(a_j-a_i)\cdot \mathbf{n}_i} \end{aligned}$$

where a_i is any vertex of K situated in F_i .

For $x \in K$, one has

$$1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{(a_j - a_i) \cdot \mathbf{n}_i - (x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$
$$= \frac{(a_j - x) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{\operatorname{dist}(x, F_i)}{\operatorname{dist}(a_i, F_i)}$$
$$= \frac{\operatorname{dist}(x, F_i)|F_i|/d}{\operatorname{dist}(a_i, F_i)|F_i|/d}$$
$$= \frac{|K_i(x)|}{|K|}$$

i.e. $\lambda_i(x)$ is the ratio of the volume of the simplex $K_i(x)$ made up of x and the vertices of F_i to the volume of K.

Barycentric coordinates II

- $\triangleright \ \lambda_i(a_j) = \delta_{ij}$
- $\flat \ \lambda_i(x) = 0 \ \forall x \in F_i$
- $\sum_{i=0}^{d} \lambda_i(x) = 1 \ \forall x \in \mathbb{R}^d$ (just sum up the volumes)
- ► $\sum_{i=0}^{d} \lambda_i(x)(x a_i) = 0 \ \forall x \in \mathbb{R}^d$ (due to $\sum_i \lambda_i(x)x = x$ and $\sum_i \lambda_i a_i = x$ as the vector of linear coordinate functions)
- Unit simplex:

$$\lambda_0(x) = 1 - \sum_{i=1}^d x_i$$

$$\lambda_i(x) = x_i \text{ for } 1 \le i \le d$$

Polynomial space \mathbb{P}_k

Space of polynomials in $x_1 \dots x_d$ of total degree $\leq k$ with real coefficients $\alpha_{i_1 \dots i_d}$:

$$\mathbb{P}_{k} = \left\{ p(x) = \sum_{\substack{0 \leq i_{1} \dots i_{d} \leq k \\ i_{1} + \dots + i_{d} \leq k}} \alpha_{i_{1} \dots i_{d}} x_{1}^{i_{1}} \dots x_{d}^{i_{d}} \right\}$$

Dimension:

$$\dim \mathbb{P}_{k} = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$
$$\dim \mathbb{P}_{1} = d+1$$
$$\dim \mathbb{P}_{2} = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_k$, such that $s = \dim P_k$
- ► For $0 \leq i_0 \dots i_d \leq k$, $i_0 + \dots + i_d = k$, let the set of nodes be defined by the points $a_{i_1 \dots i_d;k}$ with barycentric coordinates $(\frac{i_0}{k} \dots \frac{i_d}{k})$. Define Σ by $\sigma_{i_1 \dots i_d;k}(p) = p(a_{i_1 \dots i_d;k})$.

\mathbb{P}_1 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $P = \mathbb{P}_1$, such that s = d + 1
- Nodes \equiv vertices
- ▶ Basis functions ≡ barycentric coordinates

Conformal triangulations

Let *T_h* be a subdivision of the polygonal domain Ω ⊂ ℝ^d into non-intersecting compact simplices *K_m*, *m* = 1 . . . *n_e*:

$$\overline{\Omega} = \bigcup_{m=1}^{n_e} K_m$$

Each simplex can be seen as the image of a affine transormation of a reference (e.g. unit) simplex K:

$$K_m = T_m(\widehat{K})$$

We assume that it is conformal, i.e. if K_m, K_n have a d − 1 dimensional intersection F = K_m ∩ K_n, then there is a face F̂ of K̂ and renumberings of the vertices of K_n, K_m such that F = T_m(F̂) = T_n(F̂) and T_m|_{F̂} = T_n|_{F̂}

Conformal triangulations II

- ▶ d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- ► d = 2: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge

- ► d = 3: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge or a common face
- Triangulations corresponding to simplicial complexes are conformal
- Delaunay triangulations are conformal

Reference finite element

• Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element

- Let T_K be some affine transformation and $K = T_K(\widehat{K})$
- ▶ There is a linear bijective mapping $\psi_{\mathcal{K}}$ between functions on \mathcal{K} and functions on $\widehat{\mathcal{K}}$:

$$\psi_{\mathcal{K}}: \mathcal{V}(\mathcal{K})
ightarrow \mathcal{V}(\widehat{\mathcal{K}}) \ f \mapsto f \circ \mathcal{T}_{\mathcal{K}}$$

Let

•
$$K = T_K(\widehat{K})$$

• $P_K = \{\psi_K^{-1}(\widehat{p}); \widehat{p} \in \widehat{P}\},$
• $\Sigma_K = \{\sigma_{K,i}, i = 1 \dots s : \sigma_{K,i}(p) = \widehat{\sigma_i}(\psi_K(p))\}$ Then $\{K, P_K, \Sigma_K\}$ is a finite element.

Commutativity of interpolation and reference mapping

►
$$\mathcal{I}_{\hat{K}} \circ \psi_{K} = \psi_{K} \circ \mathcal{I}_{K}$$
,
i.e. the following diagram is commutative:

$$V(K) \xrightarrow{\psi_{K}} V(\widehat{K})$$

$$\downarrow^{\mathcal{I}_{K}} \qquad \qquad \downarrow^{\mathcal{I}_{\widehat{K}}}$$

$$P_{K} \xrightarrow{\psi_{K}} P_{\widehat{K}}$$

Global interpolation operator \mathcal{I}_h

- Let $\{K, P_K, \Sigma_K\}_{K \in \mathcal{T}_h}$ be a triangulation of Ω .
- ► Domain:

$$D(\mathcal{I}_h) = \{ v \in (L^1(\Omega))^m \text{ such that } orall K \in \mathcal{T}_h, v|_K \in V(K) \}$$

▶ For all $v \in D(\mathcal{I}_h)$, define $\mathcal{I}_h v$ via

$$\mathcal{I}_h \mathbf{v}|_{\mathcal{K}} = \mathcal{I}_{\mathcal{K}}(\mathbf{v}|_{\mathcal{K}}) = \sum_{i=1}^s \sigma_{\mathcal{K},i}(\mathbf{v}|_{\mathcal{K}}) \theta_{\mathcal{K},i} \ \forall \mathcal{K} \in \mathcal{T}_h,$$

Assuming $\theta_{K,i} = 0$ outside of K, one can write

$$\mathcal{I}_h \mathbf{v} = \sum_{\mathbf{K} \in \mathcal{T}_h} \sum_{i=1}^s \sigma_{\mathbf{K},i} (\mathbf{v}|_{\mathbf{K}}) \theta_{\mathbf{K},i},$$

mapping $D(\mathcal{I}_h)$ to the approximation space

$$W_h = \{v_h \in (L^1(\Omega))^m \text{ such that } orall K \in \mathcal{T}_h, v_h|_K \in P_K\}$$

 H^1 -Conformal approximation using Lagrangian finite elemenents

- Let V be a Banach space of functions on Ω . The approximation space W_h is said to be V-conformal if $W_h \subset V$.
- Non-conformal approximations are possible, we will stick to the conformal case.
- Conformal subspace of W_h with zero jumps at element faces:

$$V_h = \{v_h \in W_h : \forall n, m, K_m \cap K_n \neq 0 \Rightarrow (v_h|_{K_m})_{K_m \cap K_n} = (v_h|_{K_n})_{K_m \cap K_n}\}$$

• Then: $V_h \subset H^1(\Omega)$

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- ▶ For any face $F = K_1 \cap K_2$ there are renumberings of the nodes of K_1 and K_2 such that for $i = 1 \dots s^{\partial}$, $a_{K_1,i} = a_{K_2,i}$
- ▶ Then, $v_h|_{K_1}$ and $v_h|_{K_2}$ match at the interface $K_1 \cap K_2$ if and only if they match at the common nodes

$$v_h|_{K_1}(a_{K_1,i}) = v_h|_{K_2}(a_{K_2,i}) \quad (i = 1 \dots s^{\partial})$$

Global degrees of freedom

• Let
$$\{a_1 \ldots a_N\} = \bigcup_{K \in \mathcal{T}_h} \{a_{K,1} \ldots a_{K,s}\}$$

Degree of freedom map

 $j: \mathcal{T}_h imes \{1 \dots s\} o \{1 \dots N\}$ $(K, m) \mapsto j(K, m)$ the global degree of freedom number

▶ Global shape functions $\phi_1, \ldots, \phi_N \in W_h$ defined by

$$\phi_i|_{\mathcal{K}}(a_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

▶ Global degrees of freedom $\gamma_1, \ldots, \gamma_N : V_h \to \mathbb{R}$ defined by

$$\gamma_i(\mathbf{v}_h) = \mathbf{v}_h(\mathbf{a}_i)$$

From the Galerkin method to the matrix equation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{i=1}^n u_j \phi_j$
- ▶ In order to search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

Matrix dimension is $n \times n$.

Stiffness matrix calculation for Laplace operator for P1 FEM

$$egin{aligned} m{a}_{ij} &= m{a}(\phi_i,\phi_j) = \int_\Omega
abla \phi_i
abla \phi_j \,\,dx \ &= \int_\Omega \sum_{\kappa \in \mathcal{T}_h}
abla \phi_i |_\kappa
abla \phi_j |_\kappa \,\,dx \end{aligned}$$

Assembly loop: Set $a_{ij} = 0$. For each $K \in \mathcal{T}_h$: For each $m, n = 0 \dots d$:

$$s_{mn} = \int_{K} \nabla \lambda_{m} \nabla \lambda_{n} \, dx$$
$$a_{j_{dof}(K,m), j_{dof}(K,n)} = a_{j_{dof}(K,m), j_{dof}(K,n)} + s_{mn}$$

Local stiffness matrix calculation for P1 FEM

 $a_0 \dots a_d$: vertices of the simplex K, $a \in K$. Barycentric coordinates: $\lambda_j(a) = \frac{|K_j(a)|}{|K|}$ For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{d!} \det \left(a_{j+1} - a_j, \dots a_{j+d} - a_j \right)$$
$$\mathcal{K}_j(a)| = \frac{1}{d!} \det \left(a_{j+1} - a, \dots a_{j+d} - a \right)$$

From this information, we can calculate $\nabla \lambda_j(x)$ (which are constant vectors due to linearity) and the corresponding entries of the local stiffness matrix

$$s_{ij} = \int_{K} \nabla \lambda_i \nabla \lambda_j \, dx$$

Local stiffness matrix calculation for P1 FEM in 2D II

$$s_{ij} = \int_{\mathcal{K}} \nabla \lambda_i \nabla \lambda_j \, dx = \frac{|\mathcal{K}|}{4|\mathcal{K}|^2} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

So, let $\mathcal{V} = \begin{pmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{pmatrix}$
Then

$$\begin{aligned} x_1 - x_2 &= V_{00} - V_{01} \\ y_1 - y_2 &= V_{10} - V_{11} \end{aligned}$$

and

$$2|\mathcal{K}| \nabla \lambda_0 = \begin{pmatrix} y_1 - y_2 \\ x_2 - x_1 \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_1 = \begin{pmatrix} y_2 - y_0 \\ x_0 - x_2 \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_2 = \begin{pmatrix} y_0 - y_1 \\ x_1 - x_0 \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

28 / 47

Local stiffness matrix calculation for P1 FEM in 2D II

$$s_{ij} = \int_{\mathcal{K}} \nabla \lambda_i \nabla \lambda_j \, dx = \frac{|\mathcal{K}|}{4|\mathcal{K}|^2} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

So, let $\mathcal{V} = \begin{pmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{pmatrix}$
Then

$$\begin{aligned} x_1 - x_2 &= V_{00} - V_{01} \\ y_1 - y_2 &= V_{10} - V_{11} \end{aligned}$$

and

$$2|\mathcal{K}| \nabla \lambda_0 = \begin{pmatrix} y_1 - y_2 \\ x_2 - x_1 \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_1 = \begin{pmatrix} y_2 - y_0 \\ x_0 - x_2 \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|\mathcal{K}| \nabla \lambda_2 = \begin{pmatrix} y_0 - y_1 \\ x_1 - x_0 \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

29 / 47

Degree of freedom map representation for P1 finite elements

- List of global nodes a₀...a_N: two dimensional array of coordinate values with N rows and d columns
- ▶ Local-global degree of freedom map: two-dimensional array C of index values with N_{el} rows and d + 1 columns such that $C(i, m) = j_{dof}(K_i, m)$.
- The mesh generator triangle generates this information directly

Finite element assembly loop

```
for (int icell=0: icell<ncells: icell++)</pre>
Ł
 // Fill matrix V
 V(0,0) = points(cells(icell,1),0) - points(cells(icell,0),0);
 V(0,1)= points(cells(icell,2),0)- points(cells(icell,0),0);
 V(1,0)= points(cells(icell,1),1)- points(cells(icell,0),1);
 V(1,1)= points(cells(icell,2),1)- points(cells(icell,0),1);
 // Compute determinant
 double det=V(0,0)*V(1,1) - V(0,1)*V(1,0);
 double invdet = 1.0/det;
 // Compute entris of local stiffness matrix
 SLocal(0,0) = invdet * ( ( V(1,0)-V(1,1) )*( V(1,0)-V(1,1) )
                         +(V(0,1)-V(0,0))*(V(0,1)-V(0,0));
 SLocal(0,1)= invdet * ( (V(1,0)-V(1,1) )* V(1,1) - (V(0,1)-V(0,0) )*V(0,1) );
 SLocal(0,2) = invdet * (-(V(1,0)-V(1,1)) * V(1,0) + (V(0,1)-V(0,0)) * V(0,0));
 SLocal(1,1) = invdet * ( V(1,1)*V(1,1) + V(0,1)*V(0,1) );
 SLocal(1,2) = invdet * (-V(1,1)*V(1,0) - V(0,1)*V(0,0));
 SLocal(2,2) = invdet * (V(1,0)*V(1,0)+V(0,0)*V(0,0));
 SLocal(1,0)=SLocal(0,1);
 SLocal(2,0)=SLocal(0,2);
 SLocal(2,1)=SLocal(1,2);
 // Assemble into global stiffness matrix
 for (int i=0:i<=ndim:i++)</pre>
   for (int j=0; j<=ndim; j++)</pre>
     SGlobal(cells(icell,i),cells(icell,j))+=SLocal(i,j);
}
```

Affine transformation estimates I

- \widehat{K} : reference element
- Let $K \in \mathcal{T}_h$. Affine mapping:

$$egin{array}{ll} T_{\mathcal{K}}:\widehat{\mathcal{K}}
ightarrow \mathcal{K}\ \widehat{x}\mapsto J_{\mathcal{K}}\widehat{x}+b_{\mathcal{K}} \end{array}$$

with $J_{\mathcal{K}} \in \mathbb{R}^{d,d}, b_{\mathcal{K}} \in \mathbb{R}^{d}$, $J_{\mathcal{K}}$ nonsingular

- Diameter of K: $h_K = \max_{x_1, x_2 \in K} ||x_1 x_2||$
- ρ_K diameter of largest ball that can be inscribed into K

•
$$\sigma_K = \frac{h_K}{\rho_K}$$
: local shape regularity

Lemma

$$|\det J_{\mathcal{K}}| = \frac{meas(\mathcal{K})}{meas(\mathcal{K})}$$
$$||J_{\mathcal{K}}|| \le \frac{h_{\mathcal{K}}}{\rho_{\mathcal{K}}}$$
$$||J_{\mathcal{K}}^{-1}|| \le \frac{h_{\mathcal{K}}}{\rho_{\mathcal{K}}}$$

Local interpolation I

For $w \in H^{s}(K)$ recall the H^{s} seminorm $|w|_{s,K}^{2} = \sum_{|\beta|=s} ||\partial^{\beta}w||_{L^{2}(K)}^{2}$

Lemma: Let $w \in H^{s}(K)$ and $\widehat{w} = w \circ T_{K}$. There exists a constant c such that

$$\begin{split} |\hat{w}|_{s,\hat{K}} &\leq c ||J_{\mathcal{K}}||^{s} |\det J_{\mathcal{K}}|^{-\frac{1}{2}} |w|_{s,\mathcal{K}} \\ |w|_{s,\mathcal{K}} &\leq c ||J_{\mathcal{K}}^{-1}||^{s} |\det J_{\mathcal{K}}|^{\frac{1}{2}} |\hat{w}|_{s,\hat{\mathcal{K}}} \end{split}$$

Local interpolation II

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume there exists k such that

$$\mathbb{P}_{K}\subset \widehat{P}\subset H^{k+1}(\widehat{K})\subset V(\widehat{K})$$

and $H^{l+1}(\widehat{K}) \subset V(\widehat{K})$ for $0 \leq l \leq k$. There exists c > 0 such that for all $m = 0 \dots l + 1$, $K \in \mathcal{T}_h$, $v \in H^{l+1}(K)$:

$$|\mathbf{v} - \mathcal{I}_{K}^{k}\mathbf{v}|_{m,K} \leq ch_{K}^{l+1-m}\sigma_{K}^{m}|\mathbf{v}|_{l+1,K}$$

Local interpolation: special cases for Lagrange finite elements

Shape regularity

- ▶ Now we discuss a family of meshes T_h for $h \rightarrow 0$. We want to estimate global interpolation errors and see how they possibly diminuish
- For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_j$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = \frac{h_K}{\rho_K} \leq \sigma_0$$

ln 1D,
$$\sigma_K = 1$$

▶ In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Global interpolation error estimate

Theorem Let Ω be polyhedral, and let \mathcal{T}_h be a shape regular family of affine meshes. Then there exists *c* such that for all *h*, $v \in H^{l+1}(\Omega)$,

$$||v - \mathcal{I}_{h}^{k}v||_{L^{2}(\Omega)} + \sum_{m=1}^{l+1} h^{m} \left(\sum_{K \in \mathcal{T}_{h}} |v - \mathcal{I}_{h}^{k}v|_{m,K}^{2}\right)^{rac{1}{2}} \leq c h^{l+1} |v|_{l+1,\Omega}$$

and

$$\lim_{h\to 0} \left(\inf_{v_h \in V_h^k} ||v - v_h||_{L^2(\Omega)} \right) = 0$$

Global interpolation error estimate for Lagrangian finite elements, k = 1

• Assume $v \in H^2(\Omega)$

$$\begin{split} ||v - \mathcal{I}_h^k v||_{0,\Omega} + h|v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch^2 |v|_{2,\Omega} \\ |v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch |v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_h \in V_h^k} |v - v_h|_{1,\Omega} \right) &= 0 \end{split}$$

- If v ∈ H²(Ω) cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \ dx = \int_{\Omega} f v \ dx \ \forall v \in H^1_0(\Omega)$$

• Then,
$$\lim_{h\to 0} ||u - u_h||_{1,\Omega} = 0.$$

▶ If $u \in H^2(\Omega)$ (e.g. convex domain, smooth coefficients), then

$$\begin{aligned} ||u - u_h||_{1,\Omega} &\leq ch|u|_{2,\Omega} \leq c'h|f|_{0,\Omega} \\ ||u - u_h||_{0,\Omega} &\leq ch^2|u|_{2,\Omega} \leq c'h^2|f|_{0,\Omega} \end{aligned}$$

and ("Aubin-Nitsche-Lemma")

$$||u - u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

H^2 -Regularity

• $u \in H^2(\Omega)$ may be *not* fulfilled e.g.

- if Ω has re-entrant corners
- if on a smooth part of the domain, the boundary condition type changes
- if problem coefficients (λ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence ratw
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - using a posteriori error estimators + automatic refinement of discretizatiom mesh

Higher regularity

- If $u \in H^s(\Omega)$ for s > 2, convergence order estimates become even better for P^k finite elements of order k > 1.
- Depending on the regularity of the solution the combination of grid adaptation and higher oder ansatz functions may be successful

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient κ.
- Right hand side integrals

$$f_i = \int_K f(x)\lambda_i(x) \, dx$$

P¹ stiffness matrix elements

$$a_{ij} = \int_K \kappa(x) \, \nabla \lambda_i \, \nabla \lambda_j \, dx$$

▶ *P^k* stiffness matrix elements created from higher order ansatz functions

Quadrature rules

Quadrature rule:

$$\int_{K} g(x) \, dx \approx |K| \sum_{l=1}^{l_q} \omega_l g(\xi_l)$$

- ξ_l : nodes, Gauss points
- $\blacktriangleright \omega_l$: weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_q of the quadrature rule, i.e.

$$\forall k \leq k_q, \forall p \in \mathbb{P}^k \int_{K} p(x) \ dx = |K| \sum_{l=1}^{l_q} \omega_l p(\xi_l)$$

Error estimate:

$$\forall \phi \in \mathcal{C}^{k_q+1}(K), \left| \frac{1}{|K|} \int_K \phi(x) \, dx - \sum_{l=1}^{l_q} \omega_l g(\xi_l) \right| \leq ch_K^{k_q+1} \sup_{x \in K, |\alpha| = k_q+1} |\partial^{\alpha} \phi(x)|$$

Some common quadrature rules

d	k _q	I_q	Nodes	Weights
1	1	1	$\left(\frac{1}{2},\frac{1}{2}\right)$	1
	1	2	$(\bar{1},\bar{0}),(0,1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$(\frac{1}{2} + \frac{\sqrt{3}}{6}, \frac{1}{2} - \frac{\sqrt{3}}{6}), (\frac{1}{2} - \frac{\sqrt{3}}{6}, \frac{1}{2} + \frac{\sqrt{3}}{6})$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$(\frac{1}{2},),(\frac{1}{2}+\sqrt{\frac{3}{20}},\frac{1}{2}-\sqrt{\frac{3}{20}}),(\frac{1}{2}-\sqrt{\frac{3}{20}},\frac{1}{2}+\sqrt{\frac{3}{20}})$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	1
	1	3	(1, 0, 0), (0, 1, 0), (0, 0, 1)	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{5}, \frac{1}{5}, \frac{3}{5}), (\frac{1}{5}, \frac{3}{5}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{5}, \frac{1}{5}),$	$-\frac{9}{16}, \frac{25}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$	1
	1	4	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3\sqrt{5}}{20}\right)\dots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Nodes are characterized by the barycentric coordinates

Matching of approximation order and quadrature order

"Variational crime": instead of

$$a(u_h, v_h) = f(v_h) \; \forall v_h \in V_h$$

we solve

$$a_h(u_h, v_h) = f_h(v_h) \ \forall v_h \in V_h$$

where a_h , f_h are derived from their exact counterparts by quadrature

- ▶ For P¹ finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

Practical realization of integrals

Integral over barycentric coordinate function

$$\int_{K} \lambda_i(x) \, dx = \frac{1}{3}|K|$$

Right hand side integrals. Assume f(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$f_i = \int_K f(x)\lambda_i(x) \ dx \approx \frac{1}{3}|K|f_i(a_i)$$

Integral over space dependent heat conduction coefficient: Assume κ(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$a_{ij} = \int_{\mathcal{K}} \kappa(x) \nabla \lambda_i \nabla \lambda_j \ dx = \frac{1}{3} (\kappa(a_0) + \kappa(a_1) + \kappa(a_2)) \int_{\mathcal{K}} \kappa(x) \nabla \lambda_i \nabla \lambda_j \ dx$$

Practical realization of boundary conditions

Robin boundary value problem

$$-\nabla \cdot \kappa \nabla u = f \quad \text{in } \Omega$$

$$\kappa \nabla u + \alpha (u - g) = 0 \quad \text{on } \partial \Omega$$

• Weak formulation: search $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \kappa \nabla u \nabla v \, dx + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, dx + \int_{\partial \Omega} \alpha g v \, ds \, \forall v \in H^{1}(\Omega)$$

► In 2D, for P¹ FEM, boundary integrals can be calculated by trapezoidal rule without sacrificing approximation order