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The Galerkin method

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear
form, and f a linear functional on V. Assume a is coercive with coercivity
constant «, and continuity constant ~.

» Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search up € V}, such that

a(uh, Vh) = f(Vh) Yvp, € V,

By Lax-Milgram, this problem has a unique solution as well.



Céa’s lemma

» What is the connection between v and up, ?
> Let v, € V), be arbitrary. Then

IN

allu— up|* < a(u — up, u— up)  (Coercivity)

a(u— up,u—vy) + a(u — un, v — up)

a(u— up,u—vy) (Galerkin Orthogonality)

IN

Y||lu — upl| - ||u— va|] (Boundedness)
> As a result
lu—wll <L inf [ju— v

Q vyeV),

» Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace V.



Definition of a Finite Element (Ciarlet)

Triplet {K, P, X} where

» K C R? compact, connected Lipschitz domain with non-empty interior

> P: finite dimensional vector space of functions p : K — R™ (mostly,
m=1m=d)

> ¥ ={o01...0:} C L(P,R): set of linear forms defined on P called local
degrees of freedom such that the mapping

/\2 P> R
p = (o1(p)---os(p))
is bijective, i.e. X is a basis of L(P,R).



Local shape functions

» Due to bijectivity of Ax, for any finite element {K, P, X}, there exists a
basis {6:...6s} C P such that

oi(0)) =065 (1<i,j<s)

» Elements of such a basis are called local shape functions
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Unisolvence

» Bijectivity of Ay is equivalent to the condition

V(ai...as) € R° Jlp € Psuch thatoi(p) = a; (1 <i<5s)

i.e. for any given tuple of values a = (o ... as) there is a unique
polynomial p € P such that As(p) = a.
» Equivalent to unisolvence:

dmP=1X|=s
VpeP: oi(p)=0(i=1...s) = p=0



Lagrange finite elements

> A finite element {K, P, X} is called Lagrange finite element (or nodal finite
element) if there exist a set of points {a1...as} C K such that

oi(p) =p(ai) 1<i<s
> {a1...as}: nodes of the finite element

» nodal basis: {01 ...6s} C P such that

Oj(ar) =65 (1<i,j<s)
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Local interpolation operator

> Let {K, P, X} be a finite element with shape function bases {61 ...6s}. Let
V(K) be a normed vector space of functions v : K — R" such that

> PC V(K)
> The linear forms in X can be extended to be defined on V(K)

> Jlocal interpolation operator

Tk : V(K) = P
Vi ZU;(V)O,-
i—1

> P is invariant under the action of Zx, i.e. Vp € P,Zk(p) = p.
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Local Lagrange interpolation operator

> Let V(K) = (C°(K))"

Ix : V(K) = P

s

V = IKV = Z v(a,-)@,—

i=1
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Simplices

> Let {ag...aqs} C RY such that the d vectors a; — ag ... a4 — ao are linearly
independent. Then the convex hull K of a ... aq is called simplex, and
ao ... aq are called vertices of the simplex.

> Unit simplex: ap = (0...0),a, = (0,1...0)...a4 = (0...0,1).

d
K= XGRd:X,-EO(i:I...d)and Zx,-gl
i=1

> A general simplex can be defined as an image of the unit simplex under
some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;



Barycentric coordinates

> Let K be a simplex.
» Functions \; (i =0...d):

AR SR

(X — a,-) - n;
x—=Aix)=1—- —%—

(aj — a,-) -n;

where a; is any vertex of K situated in F;.
» For x € K, one has
1_ (x—a,-)~n,- _ (aj—a;)~n;—(x—a;)~n;
(aj —ai) - ni (aj —ai) - ni

o (aj — X) ‘n; diSt(X7 F,')

o (aj — a,-) - n; o dist(a,-, F,‘)

o diSt(X, F,)‘F,|/d

- dist(a,-, F,)|F,‘/d

_IK()]

K]

i.e. \i(x) is the ratio of the volume of the simplex Ki(x) made up of x and
the vertices of F; to the volume of K.
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Barycentric coordinates |l

> Ai(a) = 6

> \i(x)=0Vx € F

» 37 Ai(x) =1Vx € R
(just sum up the volumes)

> 3 A(x)(x — ar) = 0 Vx € R?
(due to > Ai(x)x = x and D Aja; = x as the vector of linear coordinate
functions)

> Unit simplex:

> )\o(X) =1- 27:1 Xj
> )\,-(x):x,-forlgigd
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Polynomial space Py

» Space of polynomials in xi ... x4 of total degree < k with real coefficients
Qiy..ig*

P =< p(x) = Z oz,-l,,,,-a,xlf1 ...X"f

0<iy...ig<k
i1t tig <k
» Dimension:
k+1, d=1
. _(d+ k) _ 1 _
dimP, = K = 2(k+1)(k+2), d=2
T(k+1)(k+2)(k+3), d=3
3, d=1
dimP, =¢6, d=2
10, d=3
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Py simplex finite elements

» K: simplex spanned by a...aq in R?

> P =Py, such that s = dim Py

> For0<ig...ig < k, io+ -+ ig = k, let the set of nodes be defined by
the points aj,...i,x with barycentric coordinates (2 ... ).
Define X by oiy._isi(p) = p(ai...izk)-
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Py simplex finite elements

vVvyVvyy

K: simplex spanned by ap ... aq in R

P =P, suchthats=d +1

Nodes = vertices

Basis functions = barycentric coordinates

A £

oo
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P, simplex finite elements

» K: simplex spanned by a...aq in R?
» P =P,, Nodes = vertices 4+ edge midpoints
» Basis functions:

Ai(2Ai —1),(0<i<d); 44X, (0<i<j<d) ("edge bubbles")

17/45



Cuboids

vy

vy

Given intervals [; = [c;, di], i = 1...d such that ¢; < d|.
Cuboid:

d
K= IT[C,'7 d,]
i=1

Local coordinate vector (t; ... ts) € [0,1]¢
Unique representation of x € K: x; = ¢ + ti(di — ¢;) fori=1...d.
Bijective mapping [0,1]¢ = K.
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Polynomial space Qy

v

Space of polynomials of degree at most k in each variable
d=1= Qk = Pk
d>1:

vy

Qk = {P(X) = Z O‘il-»-idxli1 "'Xcifd}

0<iy...ig<k

> dimQx = (k + 1)
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Qg cuboid finite elements

» K: cuboid spanned by intervals [¢;,di], i=1...d

> P=Q
> For 0 <ig...ig < k, let the set of nodes be defined by the points a;. i«

with local coordinates (2 ... ).

Define X by oj,...i;:(p) = p(ai...iik)-

Q Q2 Qs
. “‘.
.
A L] L] “
. .
L] L]




General finite elements

» Simplicial finite elements can be defined on triangulations of polygonal
domains. During the course we will stick to this case.

» A curved domain Q may be approximated by a polygonal domain €, which
is then triangulated. During the course, we will ignore this difference.

» As we have seen, more general elements are possible: cuboids, but and
T’"'? =T, \?also prismatic elements etc.

» Curved geometries are possible. Isoparametric finite elements use and
Tm\/F\ = T,,|/F\the polynomial space to define a mapping of some polyghedral
reference element to an element with curved boundary



Conformal triangulations

> Let 7 be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,, m=1...n.:

Ne
Q=[] Kn
m=1
» Each simplex can be seen as the image of a affine transormation of a
reference (e.g. unit) simplex K:
Km = Tm(K)

» We assume that it is conformal, i.e. if Ky, K, have a d — 1 dimensional
intersection F = K, N K, then there is a face F of K and renumberings of
the vertices of K,, Ky, such that F = T, (F) =T, ( )and Tol> = Tolx



Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common vertex
» d = 2 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge

» d = 3 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge or a common face
» Triangulations corresponding to simplicial complexes are conformal

» Delaunay triangulations are conformal
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Reference finite element

Let {IAD, K, )E} be a fixed finite element

Let Tx be some affine transformation and K = TK(R)

There is a linear bijective mapping 1k between functions on K and
functions on K:

v

vy

Pi : V(K) = V(K)
fisfoTk

> Let
> K = Tk(K)$
> P ={vx'(p)ip € P},

> Yy ={okii=1...5:0ki(p) = 7i(¢¥k(p))} Then {K, Pk, Tk} is a finite
element.
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Commutativity of interpolation and reference mapping

> Ty ok = i o Lk,
i.e. the following diagram is commutative:

V(K) —2 v(K)

JIK lIk

Pc —2 s P
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Global interpolation operator 7,

> Let {K, Pk, Xk}keT;, be a triangulation of €.

» Domain:

D(Zy) = {v € (L*(R))™ such that VK € T, v|x € V(K)}
> For all v € D(Z4), define Z,v via

Ihle—IK V| ZO’K,(V|K)0K,VK€777,

i=1

Assuming 6 ; = 0 outside of K, one can write

Ihv = Z iGK,i(WK)@K,i,

KeTy i=1

mapping D(Z) to the approximation space

Wi = {vs € (L'(Q))" such that YK € T, vi|x € Pk}

26
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H'-Conformal approximation using Lagrangian finite elemenents

» Let V be a Banach space of functions on Q. The approximation space W,
is said to be V-conformal if W, C V.

» Non-conformal approximations are possible, we will stick to the conformal
case.

» Conformal subspace of W}, with zero jumps at element faces:

Vi = {vn € Wy : VY0, m, K 0 Ky # 0 = (Vi K ) Kk = (Vhl Ky ) Ko }

> Then: Vi, C HY(Q)
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Zero jump at interfaces with Lagrangian finite elements

» Assume geometrically conformal mesh
» Assume all faces of K have the same number of nodes s°

» For any face F = K1 N K3 there are renumberings of the nodes of Ki and
K> such that for i =1...5%, ax, ; = ak,.i

» Then, vi|k, and vi|k, match at the interface K1 N K if and only if they
match at the common nodes

Vil (ar.1) = vhli(ar,)) (I =1...5%)
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Global degrees of freedom

> Let {a1...an} = | {ak1---aks}
KET,
> Degree of freedom map
J:Tax{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number
> Global shape functions ¢1,...,on € W), defined by
_ Jomn f3dne {1...s}:j(K,n)=i
dilk(ak.m) = {0 otherwise
> Global degrees of freedom 71, ...,vnv : V4 — R defined by

i(vn) = va(ai)
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Lagrange finite element basis

> {¢1,...,¢n} is a basis of V4, and 41...yn is a basis of L( Vi, R).
Proof:

> {¢1,...,¢n} are linearly independent: if ZJN:1 aj¢; = 0 then evaluation at
ai...ay yields that ag ...any = 0.

> Let vy € Vj. Itis single valued in a1 ...an. Let wy = E,N:l vh(aj)¢;. Then
for all K € Th, va|k and wp|k coincide in the local nodes ak 1 ... ak2, and
by unisolvence, vk = wh|«k.
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Finite element approximation space

> Pf:(,h = P;: = {Vh c CO(Qh) VK € 77,7 vio Tk € ]Pk}
> Q= QF ={vh €C'(Q): VK € Th, vk o Tk € Q*}

» ‘c' for continuity across mesh interfaces. There are also discontinuous FEM
spaces which we do not consider here.

d k N=dimPf

1 1 N

12 N+ Ne

1 3 N+ 2Ny

2 1 N,

2 2 Nv + Ned

2 3 Nv + 2I\Ied + Nel
31 N,

3 2 Nv + Ned

3 3  Ny+2Ne + N
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P! global shape functions
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P? global shape functions

Node based Edge based
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Global Lagrange interpolation operator

Let Vi, = Pf or Vi, = QF

34 /45



Further finite element constructions

> In the realm considered in this course, we stick to H* conformal finite
elements as the weak formulations regarded work in H(Q).

» With higher regularity, of for more complex problems one can construct H?
conformal finite elements etc.

> Further possibilities for vector finite elements (divergence free etc.)
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Affine transformation estimates |

» K: reference element
Let K € Tp. Affine mapping:

v

Tk K=K
/)ZHJKS(\+bK

with Jx € R%?, bx € RY, Jx nonsingular

v

Diameter of K: hx = max, ek ||x1 — x|

\4

pk diameter of largest ball that can be inscribed into K

v

h .
oKk = ﬁ: local shape regularity
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Affine transformation estimates I

Lemma
> | det Jy| = meal)
meas(K)

h
> |l <

< 2

PK
Proof:
> | det Jx| = ™= basic property of affine mappings
meas(K)
» Further:

Ik X 1 ~
eIl 1 sl
[1%]] Pk 11%]1=pg

[ k|| = sup
%40

Set X = X1 — X2 with X1, % € K. Then JxX = TxX1 — TkX2 and one can
estimate ||JkX|| < hk.

> For ||J,!|| regard the inverse mapping OJ
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Local interpolation |
» For w € H*(K) recall the H® seminorm |w|? x = ZW:S |‘6BWHi2(K)

Lemma: Let w € H°(K) and w = w o Tk. There exists a constant ¢ such that

_1
Wl g < cllJxl | det Jic| 2 [wls,k

—1s LN
Wlsk < clldic " |1 det k|2 | W, &
Proof: Let || = s. By affinity and chain rule one obtains
Wz < clldell® Y 1107w o Ticll i)
1o )
|B=s]|

Changing variables yields

1
0% W|[ gy < cl|Jk|[’] det Ik |2 [wls,k

Summation over « yields the first inequality. Regarding the inverse mapping
yields the second one. [J
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Local interpolation Il

Theorem: Let {R,f’,)ﬁ} be a finite element with associated normed vector
space V/(K). Assume there exists k such that

Px C P c HY(K) c V(K)

and H"(K) C V(K) for 0 < | < k. There exists ¢ > 0 such that for all
m=0...1+1, K€ TpveHK):

I+1—m
hK

v — Zgv|mk < c oK |V]i+1,k

Draft of Proof Estimate using deeper results from functional analysis:

W—Tpwl, g < clW|

(From Poincare like inequality, e.g. for v € H3(Q), c||v||2 < ||V V||2: under
certain circumstances, we can can estimate the norms of lower dervivatives by
those of the higher ones)
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Local interpolation Il

(Proof, continued)
Let v € H"(K) and set ¥ = v o Tk. We know that (Zfv)o Tx = ZL0.

K
We have

v — Thvlmk < cllJt||™| det Jx 20 — TL0,, z
1 N
< el M| det Ik | (0], &
< el el vk
—1 m I+1—m
(1l D™ 1k 1 v 1,

ch Mok v i1k

INIA



Local interpolation: special cases for Lagrange finite elements

> k=1,1=1,m=0: |v—Tiv|ox < chi|v|sx

» k=1,/=1m=1: |v—Tgv| « < chkox|v|,k
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Shape regularity

» Now we discuss a family of meshes 7, for h — 0. We want to estimate
global interpolation errors and see how they possibly diminuish

v

For given Ty, assume that h = maxkeT;, h;

v

A family of meshes is called shape regular if

h
Vh,VK € T, ok = — < 0o
PK

> In 1D, OK 1

2

> In 2D, ok Snox where Ok is the smallest angle

IN



Global interpolation error estimate

Theorem Let Q be polyhedral, and let 7, be a shape regular family of affine
meshes. Then there exists ¢ such that for all h, v € H"™(Q),

[T

1+1
v — Zvll2 +Zh'"<Z|v—I,,v|mK> < ch"™ Vi1

KeTh

and

lim ( inf HV*Vh”LZ ) =0
h—=0 \ v,ev
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Global interpolation error estimate for Lagrangian finite elements, k =1

> Assume v € H*(Q), e.g. if problem coefficients are smooth and the domain

is convex

v = Zivllon + hlv — Thvlia < ch’|v]oa
v —Zivliae < chlvae

lim inf [v—wi10] =0
h—0 V),GV:

> If v € H*(Q) cannot be guaranteed, estimates become worse. Example:
L-shaped domain.

» These results immediately can be applied in Cea’s lemma.
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Error estimates for homogeneous Dirichlet problem

» Search u € H3(Q) such that

//\Vqu dx = / fv dx Vv € Hy ()
Q Q

Then, limy_o ||t — up||l1,0 = 0. If v € H*(Q) (e.g. on convex domains) then

[lu— unl|1,0 < chlulra

Under certain conditions (convex domain, smooth coefficients) one has

[lu— unllo,e < chlulie

(“Aubin-Nitsche-Lemma")
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