Finite element estimates

Scientific Computing Winter 2016/2017

Lecture 19
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap

The Galerkin method

- Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation:

Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_{h} ?
- Let $v_{h} \in V_{h}$ be arbitrary. Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (Coercivity) } \\
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right) \quad \text { (Galerkin Orthogonality) } \\
& \leq \gamma\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\| \quad \text { (Boundedness) }
\end{aligned}
$$

- As a result

$$
\left\|u-u_{h}\right\| \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|
$$

- Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_{h}.

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $K \subset \mathbb{R}^{d}:$ compact, connected Lipschitz domain with non-empty interior
- P : finite dimensional vector space of functions $p: K \rightarrow \mathbb{R}^{m}$ (mostly, $m=1, m=d$)
- $\Sigma=\left\{\sigma_{1} \ldots \sigma_{s}\right\} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called local degrees of freedom such that the mapping

$$
\begin{aligned}
\Lambda_{\Sigma}: P & \rightarrow \mathbb{R}^{s} \\
p & \mapsto\left(\sigma_{1}(p) \ldots \sigma_{s}(p)\right)
\end{aligned}
$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Local shape functions

- Due to bijectivity of Λ_{Σ}, for any finite element $\{K, P, \Sigma\}$, there exists a basis $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\sigma_{i}\left(\theta_{j}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

- Elements of such a basis are called local shape functions

Unisolvence

- Bijectivity of Λ_{Σ} is equivalent to the condition

$$
\forall\left(\alpha_{1} \ldots \alpha_{s}\right) \in \mathbb{R}^{s} \exists!p \in P \text { such that } \sigma_{i}(p)=\alpha_{i} \quad(1 \leq i \leq s)
$$

i.e. for any given tuple of values $a=\left(\alpha_{1} \ldots \alpha_{s}\right)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p)=a$.

- Equivalent to unisolvence:

$$
\left\{\begin{array}{l}
\operatorname{dim} P=|\Sigma|=s \\
\forall p \in P: \sigma_{i}(p)=0(i=1 \ldots s) \Rightarrow p=0
\end{array}\right.
$$

Lagrange finite elements

- A finite element $\{K, P, \Sigma\}$ is called Lagrange finite element (or nodal finite element) if there exist a set of points $\left\{a_{1} \ldots a_{s}\right\} \subset K$ such that

$$
\sigma_{i}(p)=p\left(a_{i}\right) \quad 1 \leq i \leq s
$$

- $\left\{a_{1} \ldots a_{s}\right\}$: nodes of the finite element
- nodal basis: $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\theta_{j}\left(a_{i}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

Local interpolation operator

- Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\left\{\theta_{1} \ldots \theta_{s}\right\}$. Let $V(K)$ be a normed vector space of functions $v: K \rightarrow \mathbb{R}^{m}$ such that
- $P \subset V(K)$
- The linear forms in Σ can be extended to be defined on $V(K)$
- local interpolation operator

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto \sum_{i=1}^{s} \sigma_{i}(v) \theta_{i}
\end{aligned}
$$

- P is invariant under the action of \mathcal{I}_{K}, i.e. $\forall p \in P, \mathcal{I}_{K}(p)=p$.

Local Lagrange interpolation operator

- Let $V(K)=\left(\mathcal{C}^{0}(K)\right)^{m}$

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto I_{K} v=\sum_{i=1}^{s} v\left(a_{i}\right) \theta_{i}
\end{aligned}
$$

Simplices

- Let $\left\{a_{0} \ldots a_{d}\right\} \subset \mathbb{R}^{d}$ such that the d vectors $a_{1}-a_{0} \ldots a_{d}-a_{0}$ are linearly independent. Then the convex hull K of $a_{0} \ldots a_{d}$ is called simplex, and $a_{0} \ldots a_{d}$ are called vertices of the simplex.
- Unit simplex: $a_{0}=(0 \ldots 0), a_{1}=(0,1 \ldots 0) \ldots a_{d}=(0 \ldots 0,1)$.

$$
K=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0(i=1 \ldots d) \text { and } \sum_{i=1}^{d} x_{i} \leq 1\right\}
$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_{i} : face of K opposite to a_{i}
- \mathbf{n}_{i} : outward normal to F_{i}

Barycentric coordinates

- Let K be a simplex.
- Functions $\lambda_{i}(i=0 \ldots d)$:

$$
\begin{aligned}
\lambda_{i}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \lambda_{i}(x)=1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}
\end{aligned}
$$

where a_{j} is any vertex of K situated in F_{i}.

- For $x \in K$, one has

$$
\begin{aligned}
1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} & =\frac{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}-\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} \\
& =\frac{\left(a_{j}-x\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}=\frac{\operatorname{dist}\left(x, F_{i}\right)}{\operatorname{dist}\left(a_{i}, F_{i}\right)} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right| / d}{\operatorname{dist}\left(a_{i}, F_{i}\right)\left|F_{i}\right| / d} \\
& =\frac{\left|K_{i}(x)\right|}{|K|}
\end{aligned}
$$

i.e. $\lambda_{i}(x)$ is the ratio of the volume of the simplex $K_{i}(x)$ made up of x and the vertices of F_{i} to the volume of K.

Barycentric coordinates II

- $\lambda_{i}\left(a_{j}\right)=\delta_{i j}$
- $\lambda_{i}(x)=0 \forall x \in F_{i}$
- $\sum_{i=0}^{d} \lambda_{i}(x)=1 \forall x \in \mathbb{R}^{d}$
(just sum up the volumes)
- $\sum_{i=0}^{d} \lambda_{i}(x)\left(x-a_{i}\right)=0 \forall x \in \mathbb{R}^{d}$ (due to $\sum \lambda_{i}(x) x=x$ and $\sum \lambda_{i} a_{i}=x$ as the vector of linear coordinate functions)
- Unit simplex:
- $\lambda_{0}(x)=1-\sum_{i=1}^{d} x_{i}$
- $\lambda_{i}(x)=x_{i}$ for $1 \leq i \leq d$

Polynomial space \mathbb{P}_{k}

- Space of polynomials in $x_{1} \ldots x_{d}$ of total degree $\leq k$ with real coefficients $\alpha_{i_{1} \ldots i_{d}}$:

$$
\mathbb{P}_{k}=\left\{p(x)=\sum_{\substack{0 \leq i_{1} \ldots i_{d} \leq k \\ i_{1}+\cdots+i_{d} \leq k}} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- Dimension:

$$
\begin{aligned}
\operatorname{dim} \mathbb{P}_{k}=\binom{d+k}{k} & = \begin{cases}k+1, & d=1 \\
\frac{1}{2}(k+1)(k+2), & d=2 \\
\frac{1}{6}(k+1)(k+2)(k+3), & d=3\end{cases} \\
\operatorname{dim} \mathbb{P}_{1} & =d+1 \\
\operatorname{dim} \mathbb{P}_{2} & = \begin{cases}3, & d=1 \\
6, & d=2 \\
10, & d=3\end{cases}
\end{aligned}
$$

\mathbb{P}_{k} simplex finite elements

- K: simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{k}$, such that $s=\operatorname{dim} P_{k}$
- For $0 \leq i_{0} \ldots i_{d} \leq k, i_{0}+\cdots+i_{d}=k$, let the set of nodes be defined by the points $a_{i_{1} \ldots i_{d} ; k}$ with barycentric coordinates ($\frac{i_{0}}{k} \ldots \frac{i_{d}}{k}$).
Define Σ by $\sigma_{i_{1} \ldots i_{d} ; k}(p)=p\left(a_{i_{1} \ldots i_{d} ; k}\right)$.

\mathbb{P}_{1} simplex finite elements
- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{1}$, such that $s=d+1$
- Nodes \equiv vertices
- Basis functions \equiv barycentric coordinates

\mathbb{P}_{2} simplex finite elements
- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{2}$, Nodes \equiv vertices + edge midpoints
- Basis functions:

$$
\lambda_{i}\left(2 \lambda_{i}-1\right),(0 \leq i \leq d) ; \quad 4 \lambda_{i} \lambda_{j}, \quad(0 \leq i<j \leq d) \quad(\text { "edge bubbles") }
$$

Cuboids

- Given intervals $I_{i}=\left[c_{i}, d_{i}\right], i=1 \ldots d$ such that $c_{i}<d_{i}$.
- Cuboid:

$$
K=\prod_{i=1}^{d}\left[c_{i}, d_{i}\right]
$$

- Local coordinate vector $\left(t_{1} \ldots t_{d}\right) \in[0,1]^{d}$
- Unique representation of $x \in K: x_{i}=c_{i}+t_{i}\left(d_{i}-c_{i}\right)$ for $i=1 \ldots d$.
- Bijective mapping $[0,1]^{d} \rightarrow K$.

Polynomial space \mathbb{Q}_{k}

- Space of polynomials of degree at most k in each variable
- $d=1 \Rightarrow \mathbb{Q}_{k}=\mathbb{P}_{k}$
- $d>1$:

$$
\mathbb{Q}_{k}=\left\{p(x)=\sum_{0 \leq i_{1} \ldots i_{d} \leq k} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- $\operatorname{dim} \mathbb{Q}_{k}=(k+1)^{d}$

\mathbb{Q}_{k} cuboid finite elements

- K: cuboid spanned by intervals $\left[c_{i}, d_{i}\right], i=1 \ldots d$
- $P=\mathbb{Q}_{k}$
- For $0 \leq i_{0} \ldots i_{d} \leq k$, let the set of nodes be defined by the points $a_{i_{1} \ldots i_{d} ; k}$ with local coordinates $\left(\frac{i_{0}}{k} \ldots \frac{i_{d}}{k}\right)$.
Define Σ by $\sigma_{i_{1} \ldots i_{d} ; k}(p)=p\left(a_{i_{1} \ldots i_{d} ; k}\right)$.

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- A curved domain Ω may be approximated by a polygonal domain Ω_{h} which is then triangulated. During the course, we will ignore this difference.
- As we have seen, more general elements are possible: cuboids, but and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$ also prismatic elements etc.
- Curved geometries are possible. Isoparametric finite elements use and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$ the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

- Let \mathcal{T}_{h} be a subdivision of the polygonal domain $\Omega \subset \mathbb{R}^{d}$ into non-intersecting compact simplices $K_{m}, m=1 \ldots n_{e}$:

$$
\bar{\Omega}=\bigcup_{m=1}^{n_{e}} K_{m}
$$

- Each simplex can be seen as the image of a affine transormation of a reference (e.g. unit) simplex \widehat{K} :

$$
K_{m}=T_{m}(\widehat{K})
$$

- We assume that it is conformal, i.e. if K_{m}, K_{n} have a $d-1$ dimensional intersection $F=K_{m} \cap K_{n}$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_{n}, K_{m} such that $F=T_{m}(\widehat{F})=T_{n}(\widehat{F})$ and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$

Conformal triangulations II

- $d=1$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex
- $d=2$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge

- $d=3$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge or a common face
- Triangulations corresponding to simplicial complexes are conformal
- Delaunay triangulations are conformal

Reference finite element

- Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element
- Let T_{K} be some affine transformation and $K=T_{K}(\widehat{K})$
- There is a linear bijective mapping ψ_{K} between functions on K and functions on \widehat{K} :

$$
\begin{aligned}
\psi_{K}: V(K) & \rightarrow V(\widehat{K}) \\
f & \mapsto f \circ T_{K}
\end{aligned}
$$

- Let
- $K=T_{K}(\widehat{K}) \$$
- $P_{K}=\left\{\psi_{K}^{-1}(\widehat{p}) ; \widehat{p} \in \widehat{P}\right\}$,
- $\Sigma_{K}=\left\{\sigma_{K, i}, i=1 \ldots s: \sigma_{K, i}(p)=\widehat{\sigma}_{i}\left(\psi_{K}(p)\right)\right\}$ Then $\left\{K, P_{K}, \Sigma_{K}\right\}$ is a finite element.

Commutativity of interpolation and reference mapping

- $\mathcal{I}_{\hat{k}} \circ \psi_{K}=\psi_{K} \circ \mathcal{I}_{K}$,
i.e. the following diagram is commutative:

$$
\begin{array}{ccc}
V(K) \xrightarrow{\psi_{K}} & V(\widehat{K}) \\
\downarrow_{I_{K}} & & I_{I_{\widehat{K}}} \\
P_{K} \xrightarrow{\psi_{K}} & P_{\widehat{K}}
\end{array}
$$

Global interpolation operator \mathcal{I}_{h}

- Let $\left\{K, P_{K}, \Sigma_{K}\right\}_{K \in \mathcal{T}_{h}}$ be a triangulation of Ω.
- Domain:

$$
D\left(\mathcal{I}_{h}\right)=\left\{v \in\left(L^{1}(\Omega)\right)^{m} \text { such that } \forall K \in \mathcal{T}_{h},\left.v\right|_{K} \in V(K)\right\}
$$

- For all $v \in D\left(\mathcal{I}_{h}\right)$, define $\mathcal{I}_{h} v$ via

$$
\left.\mathcal{I}_{h} v\right|_{K}=\mathcal{I}_{K}\left(\left.v\right|_{K}\right)=\sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i} \forall K \in \mathcal{T}_{h}
$$

Assuming $\theta_{K, i}=0$ outside of K, one can write

$$
\mathcal{I}_{h} v=\sum_{K \in \mathcal{T}_{h}} \sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i}
$$

mapping $D\left(\mathcal{I}_{h}\right)$ to the approximation space

$$
W_{h}=\left\{v_{h} \in\left(L^{1}(\Omega)\right)^{m} \text { such that } \forall K \in \mathcal{T}_{h}, v_{h} \mid K \in P_{K}\right\}
$$

H^{1}-Conformal approximation using Lagrangian finite elemenents

- Let V be a Banach space of functions on Ω. The approximation space W_{h} is said to be V-conformal if $W_{h} \subset V$.
- Non-conformal approximations are possible, we will stick to the conformal case.
- Conformal subspace of W_{h} with zero jumps at element faces:

$$
V_{h}=\left\{v_{h} \in W_{h}: \forall n, m, K_{m} \cap K_{n} \neq 0 \Rightarrow\left(v_{h} \mid K_{m}\right)_{K_{m} \cap K_{n}}=\left(v_{h} \mid K_{n}\right)_{K_{m} \cap K_{n}}\right\}
$$

- Then: $V_{h} \subset H^{1}(\Omega)$

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- For any face $F=K_{1} \cap K_{2}$ there are renumberings of the nodes of K_{1} and K_{2} such that for $i=1 \ldots s^{\partial}, a K_{1}, i=a K_{2}, i$
- Then, $\left.v_{h}\right|_{K_{1}}$ and $\left.v_{h}\right|_{K_{2}}$ match at the interface $K_{1} \cap K_{2}$ if and only if they match at the common nodes

$$
v_{h}\left|\kappa_{1}\left(a_{K_{1}, i}\right)=v_{h}\right| \kappa_{2}\left(a_{K_{2}, i}\right) \quad\left(i=1 \ldots s^{\partial}\right)
$$

Global degrees of freedom

- Let $\left\{a_{1} \ldots a_{N}\right\}=\bigcup_{K \in \mathcal{T}_{h}}\left\{a_{K, 1} \ldots a_{K, s}\right\}$
- Degree of freedom map

$$
\begin{aligned}
j: \mathcal{T}_{h} \times\{1 \ldots s\} & \rightarrow\{1 \ldots N\} \\
(K, m) & \mapsto j(K, m) \text { the global degree of freedom number }
\end{aligned}
$$

- Global shape functions $\phi_{1}, \ldots, \phi_{N} \in W_{h}$ defined by

$$
\left.\phi_{i}\right|_{K}\left(a_{K, m}\right)= \begin{cases}\delta_{m n} & \text { if } \exists n \in\{1 \ldots s\}: j(K, n)=i \\ 0 & \text { otherwise }\end{cases}
$$

- Global degrees of freedom $\gamma_{1}, \ldots, \gamma_{N}: V_{h} \rightarrow \mathbb{R}$ defined by

$$
\gamma_{i}\left(v_{h}\right)=v_{h}\left(a_{i}\right)
$$

Lagrange finite element basis

- $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ is a basis of V_{h}, and $\gamma_{1} \ldots \gamma_{N}$ is a basis of $\mathcal{L}\left(V_{h}, \mathbb{R}\right)$.

Proof:

- $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ are linearly independent: if $\sum_{j=1}^{N} \alpha_{j} \phi_{j}=0$ then evaluation at $a_{1} \ldots a_{N}$ yields that $\alpha_{1} \ldots \alpha_{N}=0$.
- Let $v_{h} \in V_{h}$. It is single valued in $a_{1} \ldots a_{N}$. Let $w_{h}=\sum_{j=1}^{N} v_{h}\left(a_{j}\right) \phi_{j}$. Then for all $K \in \mathcal{T}_{h},\left.v_{h}\right|_{K}$ and $\left.w_{h}\right|_{K}$ coincide in the local nodes $a_{K, 1} \ldots a_{K, 2}$, and by unisolvence, $\left.v_{h}\right|_{\kappa}=\left.w_{h}\right|_{\kappa}$.

Finite element approximation space

- $P_{c, h}^{k}=P_{h}^{k}=\left\{v_{h} \in \mathcal{C}^{0}\left(\bar{\Omega}_{h}\right): \forall K \in \mathcal{T}_{h}, v_{k} \circ T_{K} \in \mathbb{P}^{k}\right\}$
- $Q_{c, h}^{k}=Q_{h}^{k}=\left\{v_{h} \in \mathcal{C}^{0}\left(\bar{\Omega}_{h}\right): \forall K \in \mathcal{T}_{h}, v_{k} \circ T_{K} \in \mathbb{Q}^{k}\right\}$
- ' c ' for continuity across mesh interfaces. There are also discontinuous FEM spaces which we do not consider here.

d	k	$N=\operatorname{dim} P_{h}^{k}$
1	1	N_{v}
1	2	$N_{v}+N_{e l}$
1	3	$N_{v}+2 N_{e l}$
2	1	N_{v}
2	2	$N_{v}+N_{e d}$
2	3	$N_{v}+2 N_{e d}+N_{e l}$
3	1	N_{v}
3	2	$N_{v}+N_{e d}$
3	3	$N_{v}+2 N_{e d}+N_{f}$

P^{1} global shape functions

P^{2} global shape functions

Node based

Edge based

Global Lagrange interpolation operator

Let $V_{h}=P_{h}^{k}$ or $V_{h}=Q_{h}^{k}$

$$
\begin{aligned}
& \quad \mathcal{I}_{h}: \mathcal{C}^{0}\left(\bar{\Omega}_{h}\right) \rightarrow V_{h} \\
& v \mapsto \sum_{i=1}^{N} v\left(a_{i}\right) \phi_{i}
\end{aligned}
$$

Further finite element constructions

- In the realm considered in this course, we stick to H^{1} conformal finite elements as the weak formulations regarded work in $\left.H^{(} \Omega\right)$.
- With higher regularity, of for more complex problems one can construct H^{2} conformal finite elements etc.
- Further possibilities for vector finite elements (divergence free etc.)

Affine transformation estimates I

- \widehat{K} : reference element
- Let $K \in \mathcal{T}_{h}$. Affine mapping:

$$
\begin{aligned}
T_{K}: \widehat{K} & \rightarrow K \\
\widehat{x} & \mapsto J_{K} \widehat{x}+b_{K}
\end{aligned}
$$

with $J_{K} \in \mathbb{R}^{d, d}, b_{K} \in \mathbb{R}^{d}, J_{K}$ nonsingular

- Diameter of $K: h_{K}=\max _{x_{1}, x_{2} \in K}\left\|x_{1}-x_{2}\right\|$
- ρ_{K} diameter of largest ball that can be inscribed into K
- $\sigma_{K}=\frac{n_{K}}{\rho_{K}}$: local shape regularity

Affine transformation estimates II

Lemma

- $\left|\operatorname{det} J_{K}\right|=\frac{\operatorname{meas}(K)}{\operatorname{meas}(\widehat{K})}$
- $\left\|J_{K}\right\| \leq \frac{h_{K}}{\rho_{\hat{K}}}$
- $\left\|J_{K}^{-1}\right\| \leq \frac{h_{\hat{K}}}{\rho_{K}}$

Proof:

- $\left|\operatorname{det} J_{K}\right|=\frac{\operatorname{meas}(K)}{\operatorname{meas}(\widehat{K})}$: basic property of affine mappings
- Further:

$$
\left\|J_{K}\right\|=\sup _{\hat{x} \neq 0} \frac{\left\|J_{K} \hat{x}\right\|}{\|\hat{x}\|}=\frac{1}{\rho_{\hat{K}}} \sup _{\|\hat{x}\|=\rho_{\hat{K}}}\left\|J_{K} \hat{x}\right\|
$$

Set $\hat{x}=\hat{x}_{1}-\hat{x}_{2}$ with $\hat{x}_{1}, \hat{x}_{2} \in \widehat{K}$. Then $J_{K} \hat{x}=T_{K} \hat{x}_{1}-T_{K} \hat{x}_{2}$ and one can estimate $\left\|J_{K} \hat{x}\right\| \leq h_{K}$.

- For $\left\|J_{K}^{-1}\right\|$ regard the inverse mapping \square

Local interpolation I

- For $w \in H^{s}(K)$ recall the H^{s} seminorm $|w|_{s, K}^{2}=\sum_{|\beta|=s}\left\|\partial^{\beta} w\right\|_{L^{2}(K)}^{2}$

Lemma: Let $w \in H^{s}(K)$ and $\widehat{w}=w \circ T_{K}$. There exists a constant c such that

$$
\begin{aligned}
& |\hat{w}|_{s, K} \leq c| | J_{K}| |^{s}\left|\operatorname{det} J_{K}\right|^{-\frac{1}{2}}|w|_{s, K} \\
& |w|_{s, K} \leq c| | J_{K}^{-1} \|^{s}\left|\operatorname{det} J_{K}\right|^{\frac{1}{2}}|\hat{w}|_{s, \hat{K}}
\end{aligned}
$$

Proof: Let $|\alpha|=s$. By affinity and chain rule one obtains

$$
\left\|\partial^{\alpha} \hat{w}\right\|_{L(\hat{K})} \leq c \mid\left\|J_{K}\right\|^{s} \sum_{|\beta=s|}\left\|\partial^{\beta} w \circ T_{K}\right\|_{L^{2}(K)}
$$

Changing variables yields

$$
\left\|\partial^{\alpha} \hat{w}\right\|_{L(\hat{K})} \leq c| | J_{K} \|^{s}\left|\operatorname{det} J_{K}\right|^{-\frac{1}{2}}|w|_{s, K}
$$

Summation over α yields the first inequality. Regarding the inverse mapping yields the second one.

Local interpolation II

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume there exists k such that

$$
\mathbb{P}_{K} \subset \widehat{P} \subset H^{k+1}(\widehat{K}) \subset V(\widehat{K})
$$

and $H^{\prime+1}(\widehat{K}) \subset V(\widehat{K})$ for $0 \leq I \leq k$. There exists $c>0$ such that for all $m=0 \ldots I+1, K \in \mathcal{T}_{h}, v \in H^{I+1}(K):$

$$
\left|v-\mathcal{I}_{K}^{k} v\right|_{m, K} \leq c h_{K}^{\prime+1-m} \sigma_{K}^{m}|v|_{1+1, K}
$$

Draft of Proof Estimate using deeper results from functional analysis:

$$
\left|\hat{w}-\mathcal{I}_{\hat{K}}^{k} \hat{w}\right|_{m, \hat{K}} \leq c|\hat{w}|_{1+1, \hat{K}}
$$

(From Poincare like inequality, e.g. for $v \in H_{0}^{1}(\Omega), c\|v\|_{L^{2}} \leq\|\nabla v\|_{L^{2}}$: under certain circumstances, we can can estimate the norms of lower dervivatives by those of the higher ones)

Local interpolation III

(Proof, continued)
Let $v \in H^{\prime+1}(K)$ and set $\hat{v}=v \circ T_{K}$. We know that $\left(\mathcal{I}_{K}^{k} v\right) \circ T_{K}=\mathcal{I}_{\hat{K}}^{k} \hat{v}$.
We have

$$
\begin{aligned}
\left|v-\mathcal{I}_{K}^{k} v\right|_{m, K} & \leq c\left\|J_{K}^{-1}\right\|^{m}\left|\operatorname{det} J_{K}\right|^{\frac{1}{2}}\left|\hat{v}-\mathcal{I}_{\hat{K}}^{k} \hat{v}\right|_{m, \hat{K}} \\
& \leq c\left\|J_{K}^{-1}\right\|^{m}\left|\operatorname{det} J_{K}\right|^{\frac{1}{2}}|\hat{v}|_{I+1, \hat{K}} \\
& \leq c\left\|J_{K}^{-1}\right\|^{m}\left\|J_{K}\right\|^{I+1}|v|_{I+1, K} \\
& \leq c\left(\left\|J_{K} \mid\right\|\left\|J_{K}^{-1}\right\|\right)^{m}| | J_{K} \|^{I+1-m}|v|_{I+1, K} \\
& \leq c h_{K}^{I+1-m} \sigma_{K}^{m}|v|_{I+1, K}
\end{aligned}
$$

Local interpolation: special cases for Lagrange finite elements

- $k=1, I=1, m=0:\left|v-\mathcal{I}_{K}^{k} v\right|_{0, K} \leq c h_{k}^{2}|v|_{2, K}$
- $k=1, I=1, m=1:\left|v-\mathcal{I}_{K}^{k} v\right|_{1, K} \leq c h_{\kappa} \sigma_{K}|v|_{2, K}$

Shape regularity

- Now we discuss a family of meshes \mathcal{T}_{h} for $h \rightarrow 0$. We want to estimate global interpolation errors and see how they possibly diminuish
- For given \mathcal{T}_{h}, assume that $h=\max _{K \in \mathcal{T}_{h}} h_{j}$
- A family of meshes is called shape regular if

$$
\forall h, \forall K \in \mathcal{T}_{h}, \sigma_{K}=\frac{h_{K}}{\rho_{K}} \leq \sigma_{0}
$$

- $\ln 1 \mathrm{D}, \sigma_{K}=1$
- In 2D,$\sigma_{K} \leq \frac{2}{\sin \theta_{K}}$ where θ_{K} is the smallest angle

Global interpolation error estimate

Theorem Let Ω be polyhedral, and let \mathcal{T}_{h} be a shape regular family of affine meshes. Then there exists c such that for all $h, v \in H^{I+1}(\Omega)$,

$$
\left\|v-\mathcal{I}_{h}^{k} v\right\|_{L^{2}(\Omega)}+\sum_{m=1}^{\prime+1} h^{m}\left(\sum_{K \in \mathcal{T}_{h}}\left|v-\mathcal{I}_{h}^{k} v\right|_{m, K}^{2}\right)^{\frac{1}{2}} \leq c h^{\prime+1}|v|_{\not+1, \Omega}
$$

and

$$
\lim _{h \rightarrow 0}\left(\inf _{v_{h} \in v_{h}^{k}}\left\|v-v_{h}\right\|_{L^{2}(\Omega)}\right)=0
$$

Global interpolation error estimate for Lagrangian finite elements, $k=1$

- Assume $v \in H^{2}(\Omega)$, e.g. if problem coefficients are smooth and the domain is convex

$$
\begin{aligned}
\left\|v-\mathcal{I}_{h}^{k} v\right\|_{0, \Omega}+h\left|v-\mathcal{I}_{h}^{k} v\right|_{1, \Omega} & \leq c h^{2}|v|_{2, \Omega} \\
\left|v-\mathcal{I}_{h}^{k} v\right|_{1, \Omega} & \leq c h|v|_{2, \Omega} \\
\lim _{h \rightarrow 0}\left(\inf _{v_{h} \in V_{h}^{k}}\left|v-v_{h}\right|_{1, \Omega}\right) & =0
\end{aligned}
$$

- If $v \in H^{2}(\Omega)$ cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

Then, $\lim _{h \rightarrow 0}\left\|u-u_{h}\right\|_{1, \Omega}=0$. If $u \in H^{2}(\Omega)$ (e.g. on convex domains) then

$$
\left\|u-u_{h}\right\|_{1, \Omega} \leq c h|u|_{2, \Omega}
$$

Under certain conditions (convex domain, smooth coefficients) one has

$$
\left\|u-u_{h}\right\|_{0, \Omega} \leq c h|u|_{1, \Omega}
$$

("Aubin-Nitsche-Lemma")

