~

Finite element estimates

Scientific Computing Winter 2016/2017

Lecture 19

Jürgen Fuhrmann

juergen. fuhrmann @wias-berlin. de

Recap

The Galerkin method

- ▶ Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- ▶ Continuous problem: search $u \in V$ such that

$$a(u, v) = f(v) \forall v \in V$$

- ▶ Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem ≡ Galerkin approximation: Search u_h ∈ V_h such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- ▶ What is the connection between u and u_h ?
- ▶ Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha||u-u_h||^2 &\leq a(u-u_h,u-u_h) \quad \text{(Coercivity)} \\ &= a(u-u_h,u-v_h) + a(u-u_h,v_h-u_h) \\ &= a(u-u_h,u-v_h) \quad \text{(Galerkin Orthogonality)} \\ &\leq \gamma||u-u_h||\cdot||u-v_h|| \quad \text{(Boundedness)} \end{split}$$

► As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h.

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $ightharpoonup K \subset \mathbb{R}^d$: compact, connected Lipschitz domain with non-empty interior
- ▶ P: finite dimensional vector space of functions $p: K \to \mathbb{R}^m$ (mostly, m = 1, m = d)
- ▶ $\Sigma = \{\sigma_1 \dots \sigma_s\} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called *local degrees of freedom* such that the mapping

$$egin{aligned} \mathsf{\Lambda}_\Sigma : P &
ightarrow \mathbb{R}^s \ p &\mapsto igl(\sigma_1(p) \ldots \sigma_s(p)igr) \end{aligned}$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P,\mathbb{R})$.

Local shape functions

▶ Due to bijectivity of Λ_{Σ} , for any finite element $\{K, P, \Sigma\}$, there exists a basis $\{\theta_1 \dots \theta_s\} \subset P$ such that

$$\sigma_i(\theta_j) = \delta_{ij} \quad (1 \le i, j \le s)$$

▶ Elements of such a basis are called *local shape functions*

Unisolvence

▶ Bijectivity of Λ_{Σ} is equivalent to the condition

$$\forall (\alpha_1 \dots \alpha_s) \in \mathbb{R}^s \; \exists ! p \in P \text{ such that } \sigma_i(p) = \alpha_i \quad (1 \leq i \leq s)$$

i.e. for any given tuple of values $a = (\alpha_1 \dots \alpha_s)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p) = a$.

Equivalent to unisolvence:

$$\begin{cases} \dim P = |\Sigma| = s \\ \forall p \in P : \ \sigma_i(p) = 0 \ (i = 1 \dots s) \ \Rightarrow \ p = 0 \end{cases}$$

Lagrange finite elements

▶ A finite element $\{K, P, \Sigma\}$ is called *Lagrange* finite element (or *nodal* finite element) if there exist a set of points $\{a_1 \dots a_s\} \subset K$ such that

$$\sigma_i(p) = p(a_i) \quad 1 \leq i \leq s$$

- $\{a_1 \dots a_s\}$: nodes of the finite element
- ▶ *nodal basis*: $\{\theta_1 \dots \theta_s\} \subset P$ such that

$$\theta_j(a_i) = \delta_{ij} \quad (1 \le i, j \le s)$$

Local interpolation operator

- ▶ Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let V(K) be a normed vector space of functions $v : K \to \mathbb{R}^m$ such that
 - P ⊂ V(K)
 - ▶ The linear forms in Σ can be extended to be defined on V(K)
- ▶ local interpolation operator

$$\mathcal{I}_{\mathcal{K}}: V(\mathcal{K}) o P$$

$$v \mapsto \sum_{i=1}^{s} \sigma_{i}(v)\theta_{i}$$

▶ P is invariant under the action of \mathcal{I}_K , i.e. $\forall p \in P, \mathcal{I}_K(p) = p$.

Local Lagrange interpolation operator

▶ Let
$$V(K) = (C^0(K))^m$$

$$\mathcal{I}_K : V(K) \to P$$

$$v \mapsto I_K v = \sum_{i=1}^s v(a_i)\theta_i$$

Simplices

- ▶ Let $\{a_0 \dots a_d\} \subset \mathbb{R}^d$ such that the d vectors $a_1 a_0 \dots a_d a_0$ are linearly independent. Then the convex hull K of $a_0 \dots a_d$ is called simplex, and $a_0 \dots a_d$ are called vertices of the simplex.
- ▶ Unit simplex: $a_0 = (0...0), a_1 = (0, 1...0) ... a_d = (0...0, 1).$

$$\mathcal{K} = \left\{ x \in \mathbb{R}^d : x_i \geq 0 \; (i = 1 \dots d) \; \mathsf{and} \; \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- $ightharpoonup F_i$: face of K opposite to a_i
- \triangleright \mathbf{n}_i : outward normal to F_i

Barycentric coordinates

- ▶ Let *K* be a simplex.
- ▶ Functions λ_i ($i = 0 \dots d$):

$$\lambda_i : \mathbb{R}^d \to \mathbb{R}$$

$$x \mapsto \lambda_i(x) = 1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$

where a_i is any vertex of K situated in F_i .

 \blacktriangleright For $x \in K$, one has

$$1 - \frac{(x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{(a_j - a_i) \cdot \mathbf{n}_i - (x - a_i) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i}$$

$$= \frac{(a_j - x) \cdot \mathbf{n}_i}{(a_j - a_i) \cdot \mathbf{n}_i} = \frac{\operatorname{dist}(x, F_i)}{\operatorname{dist}(a_i, F_i)}$$

$$= \frac{\operatorname{dist}(x, F_i)|F_i|/d}{\operatorname{dist}(a_i, F_i)|F_i|/d}$$

$$= \frac{|K_i(x)|}{|K|}$$

i.e. $\lambda_i(x)$ is the ratio of the volume of the simplex $K_i(x)$ made up of x and the vertices of F_i to the volume of K.

Barycentric coordinates II

- $\lambda_i(a_j) = \delta_{ij}$
- $\lambda_i(x) = 0 \ \forall x \in F_i$
- $\sum_{i=0}^{d} \lambda_i(x) = 1 \ \forall x \in \mathbb{R}^d$ (just sum up the volumes)
- $\sum_{i=0}^{d} \lambda_i(x)(x-a_i) = 0 \ \forall x \in \mathbb{R}^d$ (due to $\sum_{i=0}^{d} \lambda_i(x)x = x$ and $\sum_{i=0}^{d} \lambda_i a_i = x$ as the vector of linear coordinate functions)
- ▶ Unit simplex:
 - $\lambda_0(x) = 1 \sum_{i=1}^d x_i$
 - $\lambda_i(x) = x_i \text{ for } 1 \le i \le d$

Polynomial space \mathbb{P}_k

▶ Space of polynomials in $x_1 ... x_d$ of total degree $\leq k$ with real coefficients $\alpha_{i_1...i_d}$:

$$\mathbb{P}_k = \left\{ p(x) = \sum_{\substack{0 \leq i_1 \dots i_d \leq k \\ i_1 + \dots + i_d \leq k}} \alpha_{i_1 \dots i_d} x_1^{i_1} \dots x_d^{i_d} \right\}$$

Dimension:

$$\dim \mathbb{P}_k = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$

$$\dim \mathbb{P}_1 = d+1$$

$$\dim \mathbb{P}_2 = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- ▶ $P = \mathbb{P}_k$, such that $s = \dim P_k$
- ▶ For $0 \le i_0 \dots i_d \le k$, $i_0 + \dots + i_d = k$, let the set of nodes be defined by the points $a_{i_1 \dots i_d;k}$ with barycentric coordinates $(\frac{i_0}{k} \dots \frac{i_d}{k})$. Define Σ by $\sigma_{i_1 \dots i_d;k}(p) = p(a_{i_1 \dots i_d;k})$.

\mathbb{P}_1 simplex finite elements

- ▶ K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- $ightharpoonup P = \mathbb{P}_1$, such that s = d+1
- Nodes ≡ vertices
- ▶ Basis functions ≡ barycentric coordinates

\mathbb{P}_2 simplex finite elements

- K: simplex spanned by $a_0 \dots a_d$ in \mathbb{R}^d
- ▶ $P = \mathbb{P}_2$, Nodes \equiv vertices + edge midpoints
- ▶ Basis functions:

$$\lambda_i(2\lambda_i - 1), (0 \le i \le d); \quad 4\lambda_i\lambda_j, \quad (0 \le i < j \le d)$$
 ("edge bubbles")

Cuboids

- ▶ Given intervals $I_i = [c_i, d_i]$, $i = 1 \dots d$ such that $c_i < d_i$.
- Cuboid:

$$K = \prod_{i=1}^d [c_i, d_i]$$

- ▶ Local coordinate vector $(t_1 ... t_d) \in [0, 1]^d$
- ▶ Unique representation of $x \in K$: $x_i = c_i + t_i(d_i c_i)$ for $i = 1 \dots d$.
- ▶ Bijective mapping $[0,1]^d \to K$.

Polynomial space \mathbb{Q}_k

- ▶ Space of polynomials of degree at most *k* in each variable
- $d=1\Rightarrow \mathbb{Q}_k=\mathbb{P}_k$
- ▶ *d* > 1:

$$\mathbb{Q}_k = \left\{ p(x) = \sum_{0 \leq i_1 \dots i_d \leq k} \alpha_{i_1 \dots i_d} x_1^{i_1} \dots x_d^{i_d} \right\}$$

 $\blacktriangleright \dim \mathbb{Q}_k = (k+1)^d$

\mathbb{Q}_k cuboid finite elements

- K: cuboid spanned by intervals $[c_i, d_i]$, $i = 1 \dots d$
- $ightharpoonup P = \mathbb{Q}_k$
- ▶ For $0 \le i_0 \dots i_d \le k$, let the set of nodes be defined by the points $a_{i_1 \dots i_d;k}$ with local coordinates $(\frac{i_0}{k} \dots \frac{i_d}{k})$. Define Σ by $\sigma_{i_1 \dots i_d;k}(p) = p(a_{i_1 \dots i_d;k})$.

\mathbb{Q}_1	\mathbb{Q}_2	\mathbb{Q}_3

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- A curved domain Ω may be approximated by a polygonal domain Ω_h which is then triangulated. During the course, we will ignore this difference.
- As we have seen, more general elements are possible: cuboids, but and $T_m|_{\widehat{E}} = T_n|_{\widehat{E}}$ also prismatic elements etc.
- ▶ Curved geometries are possible. Isoparametric finite elements use and $T_m|_{\widehat{F}} = T_n|_{\widehat{F}}$ the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

▶ Let \mathcal{T}_h be a subdivision of the polygonal domain $\Omega \subset \mathbb{R}^d$ into non-intersecting compact simplices K_m , $m = 1 \dots n_e$:

$$\overline{\Omega} = \bigcup_{m=1}^{n_e} \mathcal{K}_m$$

▶ Each simplex can be seen as the image of a affine transormation of a reference (e.g. unit) simplex \hat{K} :

$$K_m = T_m(\widehat{K})$$

▶ We assume that it is conformal, i.e. if K_m , K_n have a d-1 dimensional intersection $F = K_m \cap K_n$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_n , K_m such that $F = T_m(\widehat{F}) = T_n(\widehat{F})$ and $T_m|_{\widehat{F}} = T_n|_{\widehat{F}}$

Conformal triangulations II

- ▶ d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- ▶ d=2: Each intersection $F=K_m\cap K_n$ is either empty or a common vertex or a common edge

- ▶ d=3: Each intersection $F=K_m\cap K_n$ is either empty or a common vertex or a common edge or a common face
- ▶ Triangulations corresponding to simplicial complexes are conformal
- Delaunay triangulations are conformal

Reference finite element

- ▶ Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element
- ▶ Let T_K be some affine transformation and $K = T_K(\widehat{K})$
- ▶ There is a linear bijective mapping ψ_K between functions on \widehat{K} and functions on \widehat{K} :

$$\psi_{\mathcal{K}}: V(\mathcal{K}) \to V(\widehat{\mathcal{K}})$$
$$f \mapsto f \circ T_{\mathcal{K}}$$

- ▶ Let
 - $K = T_K(\widehat{K})$
 - $P_K = \{ \psi_K^{-1}(\widehat{p}); \widehat{p} \in \widehat{P} \},$

Commutativity of interpolation and reference mapping

▶ $\mathcal{I}_{\hat{K}} \circ \psi_{K} = \psi_{K} \circ \mathcal{I}_{K}$, i.e. the following diagram is commutative:

$$V(K) \xrightarrow{\psi_K} V(\widehat{K})$$

$$\downarrow^{\mathcal{I}_K} \qquad \qquad \downarrow^{\mathcal{I}_{\widehat{K}}}$$

$$P_K \xrightarrow{\psi_K} P_{\widehat{K}}$$

Global interpolation operator \mathcal{I}_h

- Let $\{K, P_K, \Sigma_K\}_{K \in \mathcal{T}_h}$ be a triangulation of Ω.
- ► Domain:

$$D(\mathcal{I}_h) = \{ v \in (L^1(\Omega))^m \text{ such that } \forall K \in \mathcal{T}_h, v|_K \in V(K) \}$$

▶ For all $v \in D(\mathcal{I}_h)$, define $\mathcal{I}_h v$ via

$$\mathcal{I}_h v|_{\mathcal{K}} = \mathcal{I}_{\mathcal{K}}(v|_{\mathcal{K}}) = \sum_{i=1}^s \sigma_{\mathcal{K},i}(v|_{\mathcal{K}})\theta_{\mathcal{K},i} \ \forall \mathcal{K} \in \mathcal{T}_h,$$

Assuming $\theta_{K,i} = 0$ outside of K, one can write

$$\mathcal{I}_h v = \sum_{K \in \mathcal{T}_h} \sum_{i=1}^s \sigma_{K,i}(v|\kappa) \theta_{K,i},$$

mapping $D(\mathcal{I}_h)$ to the approximation space

$$W_h = \{v_h \in (L^1(\Omega))^m \text{ such that } \forall K \in \mathcal{T}_h, v_h|_K \in P_K\}$$

H^1 -Conformal approximation using Lagrangian finite elemenents

- Let V be a Banach space of functions on Ω . The approximation space W_h is said to be V-conformal if $W_h \subset V$.
- Non-conformal approximations are possible, we will stick to the conformal case.
- \triangleright Conformal subspace of W_h with zero jumps at element faces:

$$V_h = \{v_h \in W_h : \forall n, m, K_m \cap K_n \neq 0 \Rightarrow (v_h|_{K_m})_{K_m \cap K_n} = (v_h|_{K_n})_{K_m \cap K_n}\}$$

▶ Then: $V_h \subset H^1(\Omega)$

Zero jump at interfaces with Lagrangian finite elements

- Assume geometrically conformal mesh
- Assume all faces of \widehat{K} have the same number of nodes s^{∂}
- ▶ For any face $F = K_1 \cap K_2$ there are renumberings of the nodes of K_1 and K_2 such that for $i = 1 \dots s^{\partial}$, $a_{K_1,i} = a_{K_2,i}$
- ▶ Then, $v_h|_{K_1}$ and $v_h|_{K_2}$ match at the interface $K_1 \cap K_2$ if and only if they match at the common nodes

$$v_h|_{K_1}(a_{K_1,i}) = v_h|_{K_2}(a_{K_2,i}) \quad (i = 1 \dots s^{\partial})$$

Global degrees of freedom

- $\blacktriangleright \ \mathsf{Let} \ \{ a_1 \dots a_N \} = \bigcup_{K \in \mathcal{T}_h} \{ a_{K,1} \dots a_{K,s} \}$
- ▶ Degree of freedom map

$$j:\mathcal{T}_h imes\{1\dots s\} o\{1\dots N\}$$

$$(K,m)\mapsto j(K,m) ext{ the global degree of freedom number}$$

▶ Global shape functions $\phi_1, \ldots, \phi_N \in W_h$ defined by

$$\phi_i|_{\mathcal{K}}(a_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

▶ Global degrees of freedom $\gamma_1, \ldots, \gamma_N : V_h \to \mathbb{R}$ defined by

$$\gamma_i(v_h)=v_h(a_i)$$

Lagrange finite element basis

• $\{\phi_1, \ldots, \phi_N\}$ is a basis of V_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(V_h, \mathbb{R})$.

Proof:

- $\{\phi_1,\ldots,\phi_N\}$ are linearly independent: if $\sum_{j=1}^N \alpha_j\phi_j=0$ then evaluation at $a_1\ldots a_N$ yields that $\alpha_1\ldots\alpha_N=0$.
- ▶ Let $v_h \in V_h$. It is single valued in $a_1 \dots a_N$. Let $w_h = \sum_{j=1}^N v_h(a_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $a_{K,1} \dots a_{K,2}$, and by unisolvence, $v_h|_K = w_h|_K$.

Finite element approximation space

- $\blacktriangleright \ P_{c,h}^k = P_h^k = \{v_h \in \mathcal{C}^0(\bar{\Omega}_h) : \forall K \in \mathcal{T}_h, v_k \circ \mathcal{T}_K \in \mathbb{P}^k\}$
- $\qquad \qquad \boldsymbol{Q}_{c,h}^{k} = \boldsymbol{Q}_{h}^{k} = \{\boldsymbol{v}_{h} \in \mathcal{C}^{0}(\bar{\Omega}_{h}) : \forall K \in \mathcal{T}_{h}, \boldsymbol{v}_{k} \circ \mathcal{T}_{K} \in \mathbb{Q}^{k}\}$
- 'c' for continuity across mesh interfaces. There are also discontinuous FEM spaces which we do not consider here.

d	k	$N = \dim P_h^k$
1	1	N_{ν}
1	2	$N_v + N_{el}$
1	3	$N_v + 2N_{el}$
2	1	N_{ν}
2	2	$N_v + N_{ed}$
2	3	$N_v + 2N_{ed} + N_{el}$
3	1	N_{ν}
3	2	$N_v + N_{ed}$
3	3	$N_v + 2N_{ed} + N_f$

 P^1 global shape functions

P^2 global shape functions

Global Lagrange interpolation operator

Let
$$V_h = P_h^k$$
 or $V_h = Q_h^k$

$$egin{aligned} \mathcal{I}_h : \mathcal{C}^0(ar{\Omega}_h) &
ightarrow V_h \ v &\mapsto \sum_{i=1}^N v(a_i) \phi_i \end{aligned}$$

Further finite element constructions

- ▶ In the realm considered in this course, we stick to H^1 conformal finite elements as the weak formulations regarded work in $H^{(\Omega)}$.
- With higher regularity, of for more complex problems one can construct H² conformal finite elements etc.
- ► Further possibilities for vector finite elements (divergence free etc.)

Affine transformation estimates I

- \triangleright \widehat{K} : reference element
- ▶ Let $K \in \mathcal{T}_h$. Affine mapping:

$$T_K: \widehat{K} \to K$$

 $\widehat{x} \mapsto J_K \widehat{x} + b_K$

with $J_K \in \mathbb{R}^{d,d}$, $b_K \in \mathbb{R}^d$, J_K nonsingular

- ▶ Diameter of *K*: $h_K = \max_{x_1, x_2 \in K} ||x_1 x_2||$
- \triangleright ρ_K diameter of largest ball that can be inscribed into K
- $\sigma_K = \frac{h_K}{\rho_K}$: local shape regularity

Affine transformation estimates II

Lemma

- ► $|\det J_K| = \frac{meas(K)}{meas(\widehat{K})}$ ► $||J_K|| \le \frac{h_K}{\rho_{\widehat{\nu}}}$
- $||J_{\kappa}^{-1}|| \leq \frac{h_{\hat{K}}}{2\pi}$

Proof:

- ▶ $|\det J_K| = \frac{meas(K)}{masc(K)}$: basic property of affine mappings
- Further:

$$||J_{\mathcal{K}}|| = \sup_{\hat{\mathbf{x}} \neq \mathbf{0}} \frac{||J_{\mathcal{K}}\hat{\mathbf{x}}||}{||\hat{\mathbf{x}}||} = \frac{1}{\rho_{\hat{\mathcal{K}}}} \sup_{||\hat{\mathbf{x}}|| = \rho_{\hat{\mathcal{K}}}} ||J_{\mathcal{K}}\hat{\mathbf{x}}||$$

Set $\hat{x} = \hat{x}_1 - \hat{x}_2$ with $\hat{x}_1, \hat{x}_2 \in \hat{K}$. Then $J_K \hat{x} = T_K \hat{x}_1 - T_K \hat{x}_2$ and one can estimate $||J_K \hat{x}|| \leq h_K$.

▶ For $||J_{\kappa}^{-1}||$ regard the inverse mapping \Box

Local interpolation I

▶ For $w \in H^s(K)$ recall the H^s seminorm $|w|_{s,K}^2 = \sum_{|\beta|=s} ||\partial^\beta w||_{L^2(K)}^2$

Lemma: Let $w \in H^s(K)$ and $\widehat{w} = w \circ T_K$. There exists a constant c such that

$$\begin{aligned} |\hat{w}|_{s,\hat{K}} &\leq c||J_{K}||^{s}|\det J_{K}|^{-\frac{1}{2}}|w|_{s,K} \\ |w|_{s,K} &\leq c||J_{K}^{-1}||^{s}|\det J_{K}|^{\frac{1}{2}}|\hat{w}|_{s,\hat{K}} \end{aligned}$$

Proof: Let $|\alpha| = s$. By affinity and chain rule one obtains

$$||\partial^{\alpha} \hat{w}||_{L^{(\hat{K})}} \leq c||J_{K}||^{s} \sum_{|\beta=s|} ||\partial^{\beta} w \circ T_{K}||_{L^{2}(K)}$$

Changing variables yields

$$||\partial^{\alpha}\hat{w}||_{L(\hat{K})} \leq c||J_{K}||^{s}|\det J_{K}|^{-\frac{1}{2}}|w|_{s,K}$$

Summation over α yields the first inequality. Regarding the inverse mapping yields the second one. \square

Local interpolation II

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume there exists k such that

$$\mathbb{P}_K \subset \widehat{P} \subset H^{k+1}(\widehat{K}) \subset V(\widehat{K})$$

and $H^{l+1}(\widehat{K}) \subset V(\widehat{K})$ for $0 \le l \le k$. There exists c > 0 such that for all $m = 0 \dots l + 1$, $K \in \mathcal{T}_h$, $v \in H^{l+1}(K)$:

$$|v - \mathcal{I}_K^k v|_{m,K} \le c h_K^{l+1-m} \sigma_K^m |v|_{l+1,K}$$

Draft of Proof Estimate using deeper results from functional analysis:

$$|\hat{w} - \mathcal{I}_{\hat{K}}^k \hat{w}|_{m,\hat{K}} \le c|\hat{w}|_{l+1,\hat{K}}$$

(From Poincare like inequality, e.g. for $v \in H_0^1(\Omega)$, $c||v||_{L^2} \le ||\nabla v||_{L^2}$: under certain circumstances, we can can estimate the norms of lower dervivatives by those of the higher ones)

Local interpolation III

(Proof, continued)

Let $v \in H^{l+1}(K)$ and set $\hat{v} = v \circ T_K$. We know that $(\mathcal{I}_K^k v) \circ T_K = \mathcal{I}_{\hat{K}}^k \hat{v}$.

We have

$$\begin{split} |v - \mathcal{I}_{K}^{k} v|_{m,K} &\leq c ||J_{K}^{-1}||^{m} |\det J_{K}|^{\frac{1}{2}} |\hat{v} - \mathcal{I}_{\hat{K}}^{k} \hat{v}|_{m,\hat{K}} \\ &\leq c ||J_{K}^{-1}||^{m} |\det J_{K}|^{\frac{1}{2}} |\hat{v}|_{l+1,\hat{K}} \\ &\leq c ||J_{K}^{-1}||^{m} ||J_{K}||^{l+1} |v|_{l+1,K} \\ &\leq c (||J_{K}||||J_{K}^{-1}||)^{m} ||J_{K}||^{l+1-m} |v|_{l+1,K} \\ &\leq c h_{K}^{l+1-m} \sigma_{K}^{m} |v|_{l+1,K} \end{split}$$

Local interpolation: special cases for Lagrange finite elements

▶
$$k = 1, l = 1, m = 0$$
: $|v - \mathcal{I}_{K}^{k}v|_{0,K} \le ch_{K}^{2}|v|_{2,K}$

$$\blacktriangleright \ k=1, l=1, m=1 \colon |v-\mathcal{I}_{K}^{k}v|_{1,K} \leq ch_{K}\sigma_{K}|v|_{2,K}$$

Shape regularity

- ▶ Now we discuss a family of meshes \mathcal{T}_h for $h \to 0$. We want to estimate global interpolation errors and see how they possibly diminuish
- ▶ For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_j$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = \frac{h_K}{\rho_K} \leq \sigma_0$$

- ▶ In 1D, $\sigma_K = 1$
- ▶ In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Global interpolation error estimate

Theorem Let Ω be polyhedral, and let \mathcal{T}_h be a shape regular family of affine meshes. Then there exists c such that for all h, $v \in H^{l+1}(\Omega)$,

$$||v - \mathcal{I}_h^k v||_{L^2(\Omega)} + \sum_{m=1}^{l+1} h^m \left(\sum_{K \in \mathcal{T}_h} |v - \mathcal{I}_h^k v|_{m,K}^2 \right)^{\frac{1}{2}} \leq ch^{l+1} |v|_{l+1,\Omega}$$

and

$$\lim_{h\to 0} \left(\inf_{v_h \in V_h^k} ||v - v_h||_{L^2(\Omega)}\right) = 0$$

Global interpolation error estimate for Lagrangian finite elements, k=1

▶ Assume $v \in H^2(\Omega)$, e.g. if problem coefficients are smooth and the domain is convex

$$\begin{split} ||v - \mathcal{I}_h^k v||_{0,\Omega} + h|v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch^2 |v|_{2,\Omega} \\ |v - \mathcal{I}_h^k v|_{1,\Omega} &\leq ch|v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_h \in V_h^k} |v - v_h|_{1,\Omega}\right) &= 0 \end{split}$$

- ▶ If $v \in H^2(\Omega)$ cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- ▶ These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

▶ Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} \mathsf{f} v \, dx \, \forall v \in H^1_0(\Omega)$$

Then, $\lim_{h\to 0} ||u-u_h||_{1,\Omega}=0$. If $u\in H^2(\Omega)$ (e.g. on convex domains) then

$$||u-u_h||_{1,\Omega} \leq ch|u|_{2,\Omega}$$

Under certain conditions (convex domain, smooth coefficients) one has

$$||u-u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")