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The Galerkin method

I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint bilinear
form, and f a linear functional on V . Assume a is coercive with coercivity
constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma

I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)

= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace Vh.
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Definition of a Finite Element (Ciarlet)

Triplet {K ,P,Σ} where

I K ⊂ Rd : compact, connected Lipschitz domain with non-empty interior
I P: finite dimensional vector space of functions p : K → Rm (mostly,

m = 1,m = d)
I Σ = {σ1 . . . σs} ⊂ L(P,R): set of linear forms defined on P called local

degrees of freedom such that the mapping

ΛΣ : P → Rs

p 7→ (σ1(p) . . . σs(p))

is bijective, i.e. Σ is a basis of L(P,R).
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Local shape functions

I Due to bijectivity of ΛΣ, for any finite element {K ,P,Σ}, there exists a
basis {θ1 . . . θs} ⊂ P such that

σi (θj ) = δij (1 ≤ i , j ≤ s)

I Elements of such a basis are called local shape functions
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Unisolvence

I Bijectivity of ΛΣ is equivalent to the condition

∀(α1 . . . αs) ∈ Rs ∃!p ∈ P such that σi (p) = αi (1 ≤ i ≤ s)

i.e. for any given tuple of values a = (α1 . . . αs) there is a unique
polynomial p ∈ P such that ΛΣ(p) = a.

I Equivalent to unisolvence:

{
dimP = |Σ| = s
∀p ∈ P : σi (p) = 0 (i = 1 . . . s) ⇒ p = 0
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Lagrange finite elements

I A finite element {K ,P,Σ} is called Lagrange finite element (or nodal finite
element) if there exist a set of points {a1 . . . as} ⊂ K such that

σi (p) = p(ai ) 1 ≤ i ≤ s

I {a1 . . . as}: nodes of the finite element
I nodal basis: {θ1 . . . θs} ⊂ P such that

θj (ai ) = δij (1 ≤ i , j ≤ s)
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Local interpolation operator

I Let {K ,P,Σ} be a finite element with shape function bases {θ1 . . . θs}. Let
V (K) be a normed vector space of functions v : K → Rm such that

I P ⊂ V (K)
I The linear forms in Σ can be extended to be defined on V (K)

I local interpolation operator

IK : V (K)→ P

v 7→
s∑

i=1

σi (v)θi

I P is invariant under the action of IK , i.e. ∀p ∈ P, IK (p) = p.
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Local Lagrange interpolation operator

I Let V (K) = (C0(K))m

IK : V (K)→ P

v 7→ IK v =

s∑
i=1

v(ai )θi
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Simplices

I Let {a0 . . . ad} ⊂ Rd such that the d vectors a1 − a0 . . . ad − a0 are linearly
independent. Then the convex hull K of a0 . . . ad is called simplex, and
a0 . . . ad are called vertices of the simplex.

I Unit simplex: a0 = (0...0), a1 = (0, 1 . . . 0) . . . ad = (0 . . . 0, 1).

K =

{
x ∈ Rd : xi ≥ 0 (i = 1 . . . d) and

d∑
i=1

xi ≤ 1

}

I A general simplex can be defined as an image of the unit simplex under
some affine transformation

I Fi : face of K opposite to ai

I ni : outward normal to Fi
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Barycentric coordinates
I Let K be a simplex.
I Functions λi (i = 0 . . . d):

λi : Rd → R

x 7→ λi (x) = 1− (x − ai ) · ni

(aj − ai ) · ni

where aj is any vertex of K situated in Fi .
I For x ∈ K , one has

1− (x − ai ) · ni

(aj − ai ) · ni
=

(aj − ai ) · ni − (x − ai ) · ni

(aj − ai ) · ni

=
(aj − x) · ni

(aj − ai ) · ni
=

dist(x ,Fi )

dist(ai ,Fi )

=
dist(x ,Fi )|Fi |/d
dist(ai ,Fi )|Fi |/d

=
|Ki (x)|
|K |

i.e. λi (x) is the ratio of the volume of the simplex Ki (x) made up of x and
the vertices of Fi to the volume of K .
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Barycentric coordinates II

I λi (aj ) = δij

I λi (x) = 0 ∀x ∈ Fi

I
∑d

i=0 λi (x) = 1 ∀x ∈ Rd

(just sum up the volumes)
I
∑d

i=0 λi (x)(x − ai ) = 0 ∀x ∈ Rd

(due to
∑

λi (x)x = x and
∑

λi ai = x as the vector of linear coordinate
functions)

I Unit simplex:
I λ0(x) = 1−

∑d
i=1 xi

I λi (x) = xi for 1 ≤ i ≤ d
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Polynomial space Pk

I Space of polynomials in x1 . . . xd of total degree ≤ k with real coefficients
αi1...id :

Pk =

p(x) =
∑

0≤i1...id≤k
i1+···+id≤k

αi1...id x i1
1 . . . x

id
d


I Dimension:

dimPk =

(
d + k

k

)
=


k + 1, d = 1
1
2 (k + 1)(k + 2), d = 2
1
6 (k + 1)(k + 2)(k + 3), d = 3

dimP1 = d + 1

dimP2 =


3, d = 1
6, d = 2
10, d = 3
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Pk simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = Pk , such that s = dimPk
I For 0 ≤ i0 . . . id ≤ k, i0 + · · ·+ id = k, let the set of nodes be defined by

the points ai1...id ;k with barycentric coordinates ( i0
k . . .

id
k ).

Define Σ by σi1...id ;k (p) = p(ai1...id ;k ).
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P1 simplex finite elements

I K : simplex spanned by a0 . . . ad in Rd

I P = P1, such that s = d + 1
I Nodes ≡ vertices
I Basis functions ≡ barycentric coordinates

16 / 45



P2 simplex finite elements
I K : simplex spanned by a0 . . . ad in Rd

I P = P2, Nodes ≡ vertices + edge midpoints
I Basis functions:

λi (2λi − 1),(0 ≤ i ≤ d); 4λiλj , (0 ≤ i < j ≤ d) ("edge bubbles")
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Cuboids

I Given intervals Ii = [ci , di ], i = 1 . . . d such that ci < di .
I Cuboid:

K =

d∏
i=1

[ci , di ]

I Local coordinate vector (t1 . . . td ) ∈ [0, 1]d

I Unique representation of x ∈ K : xi = ci + ti (di − ci ) for i = 1 . . . d .
I Bijective mapping [0, 1]d → K .
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Polynomial space Qk

I Space of polynomials of degree at most k in each variable
I d = 1 ⇒ Qk = Pk
I d > 1:

Qk =

{
p(x) =

∑
0≤i1...id≤k

αi1...id x i1
1 . . . x

id
d

}
I dimQk = (k + 1)d
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Qk cuboid finite elements

I K : cuboid spanned by intervals [ci , di ], i = 1 . . . d
I P = Qk
I For 0 ≤ i0 . . . id ≤ k, let the set of nodes be defined by the points ai1...id ;k

with local coordinates ( i0
k . . .

id
k ).

Define Σ by σi1...id ;k (p) = p(ai1...id ;k ).
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General finite elements

I Simplicial finite elements can be defined on triangulations of polygonal
domains. During the course we will stick to this case.

I A curved domain Ω may be approximated by a polygonal domain Ωh which
is then triangulated. During the course, we will ignore this difference.

I As we have seen, more general elements are possible: cuboids, but and
Tm |̂F = Tn |̂Falso prismatic elements etc.

I Curved geometries are possible. Isoparametric finite elements use and
Tm |̂F = Tn |̂F the polynomial space to define a mapping of some polyghedral
reference element to an element with curved boundary
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Conformal triangulations

I Let Th be a subdivision of the polygonal domain Ω ⊂ Rd into
non-intersecting compact simplices Km, m = 1 . . . ne :

Ω =

ne⋃
m=1

Km

I Each simplex can be seen as the image of a affine transormation of a
reference (e.g. unit) simplex K̂ :

Km = Tm(K̂)

I We assume that it is conformal, i.e. if Km, Kn have a d − 1 dimensional
intersection F = Km ∩ Kn, then there is a face F̂ of K̂ and renumberings of
the vertices of Kn,Km such that F = Tm(F̂ ) = Tn(F̂ ) and Tm |̂F = Tn |̂F
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Conformal triangulations II

I d = 1 : Each intersection F = Km ∩ Kn is either empty or a common vertex
I d = 2 : Each intersection F = Km ∩ Kn is either empty or a common vertex

or a common edge

I d = 3 : Each intersection F = Km ∩ Kn is either empty or a common vertex
or a common edge or a common face

I Triangulations corresponding to simplicial complexes are conformal
I Delaunay triangulations are conformal
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Reference finite element

I Let {P̂, K̂ , Σ̂} be a fixed finite element
I Let TK be some affine transformation and K = TK (K̂)
I There is a linear bijective mapping ψK between functions on K and

functions on K̂ :

ψK : V (K)→ V (K̂)

f 7→ f ◦ TK

I Let
I K = TK (K̂)$
I PK = {ψ−1K (p̂); p̂ ∈ P̂},
I ΣK = {σK ,i , i = 1 . . . s : σK ,i (p) = σ̂i (ψK (p))} Then {K ,PK ,ΣK} is a finite

element.
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Commutativity of interpolation and reference mapping

I IK̂ ◦ ψK = ψK ◦ IK ,
i.e. the following diagram is commutative:

V (K)
ψK−−−−−→ V (K̂)yIK

yIK̂

PK
ψK−−−−−→ PK̂
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Global interpolation operator Ih

I Let {K ,PK ,ΣK}K∈Th be a triangulation of Ω.
I Domain:

D(Ih) = {v ∈ (L1(Ω))m such that ∀K ∈ Th, v |K ∈ V (K)}

I For all v ∈ D(Ih), define Ihv via

Ihv |K = IK (v |K ) =

s∑
i=1

σK ,i (v |K )θK ,i ∀K ∈ Th,

Assuming θK ,i = 0 outside of K , one can write

Ihv =
∑
K∈Th

s∑
i=1

σK ,i (v |K )θK ,i ,

mapping D(Ih) to the approximation space

Wh = {vh ∈ (L1(Ω))m such that ∀K ∈ Th, vh|K ∈ PK}
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H1-Conformal approximation using Lagrangian finite elemenents

I Let V be a Banach space of functions on Ω. The approximation space Wh
is said to be V -conformal if Wh ⊂ V .

I Non-conformal approximations are possible, we will stick to the conformal
case.

I Conformal subspace of Wh with zero jumps at element faces:

Vh = {vh ∈Wh : ∀n,m,Km ∩ Kn 6= 0⇒ (vh|Km )Km∩Kn = (vh|Kn )Km∩Kn}

I Then: Vh ⊂ H1(Ω)
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Zero jump at interfaces with Lagrangian finite elements

I Assume geometrically conformal mesh
I Assume all faces of K̂ have the same number of nodes s∂

I For any face F = K1 ∩ K2 there are renumberings of the nodes of K1 and
K2 such that for i = 1 . . . s∂ , aK1,i = aK2,i

I Then, vh|K1 and vh|K2 match at the interface K1 ∩ K2 if and only if they
match at the common nodes

vh|K1(aK1,i ) = vh|K2(aK2,i ) (i = 1 . . . s∂)
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Global degrees of freedom

I Let {a1 . . . aN} =
⋃

K∈Th

{aK ,1 . . . aK ,s}

I Degree of freedom map

j : Th × {1 . . . s} → {1 . . .N}
(K ,m) 7→ j(K ,m) the global degree of freedom number

I Global shape functions φ1, . . . , φN ∈Wh defined by

φi |K (aK ,m) =

{
δmn if ∃n ∈ {1 . . . s} : j(K , n) = i
0 otherwise

I Global degrees of freedom γ1, . . . , γN : Vh → R defined by

γi (vh) = vh(ai )

29 / 45



Lagrange finite element basis

I {φ1, . . . , φN} is a basis of Vh, and γ1 . . . γN is a basis of L(Vh,R).

Proof:

I {φ1, . . . , φN} are linearly independent: if
∑N

j=1 αjφj = 0 then evaluation at
a1 . . . aN yields that α1 . . . αN = 0.

I Let vh ∈ Vh. It is single valued in a1 . . . aN . Let wh =
∑N

j=1 vh(aj )φj . Then
for all K ∈ Th, vh|K and wh|K coincide in the local nodes aK ,1 . . . aK ,2, and
by unisolvence, vh|K = wh|K .
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Finite element approximation space

I Pk
c,h = Pk

h = {vh ∈ C0(Ω̄h) : ∀K ∈ Th, vk ◦ TK ∈ Pk}
I Qk

c,h = Qk
h = {vh ∈ C0(Ω̄h) : ∀K ∈ Th, vk ◦ TK ∈ Qk}

I ‘c’ for continuity across mesh interfaces. There are also discontinuous FEM
spaces which we do not consider here.

d k N = dimPk
h

1 1 Nv
1 2 Nv + Nel
1 3 Nv + 2Nel
2 1 Nv
2 2 Nv + Ned
2 3 Nv + 2Ned + Nel
3 1 Nv
3 2 Nv + Ned
3 3 Nv + 2Ned + Nf
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P1 global shape functions
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P2 global shape functions

Node based Edge based
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Global Lagrange interpolation operator

Let Vh = Pk
h or Vh = Qk

h

Ih : C0(Ω̄h)→ Vh

v 7→
N∑

i=1

v(ai )φi
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Further finite element constructions

I In the realm considered in this course, we stick to H1 conformal finite
elements as the weak formulations regarded work in H(Ω).

I With higher regularity, of for more complex problems one can construct H2

conformal finite elements etc.
I Further possibilities for vector finite elements (divergence free etc.)
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Affine transformation estimates I

I K̂ : reference element
I Let K ∈ Th. Affine mapping:

TK : K̂ → K
x̂ 7→ JK x̂ + bK

with JK ∈ Rd,d , bK ∈ Rd , JK nonsingular
I Diameter of K : hK = maxx1,x2∈K ||x1 − x2||
I ρK diameter of largest ball that can be inscribed into K
I σK = hK

ρK
: local shape regularity
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Affine transformation estimates II

Lemma

I | det JK | = meas(K)

meas(K̂)

I ||JK || ≤ hK
ρK̂

I ||J−1K || ≤
hK̂
ρK

Proof:

I | det JK | = meas(K)

meas(K̂)
: basic property of affine mappings

I Further:

||JK || = sup
x̂ 6=0

||JK x̂ ||
||x̂ || =

1
ρK̂

sup
||x̂||=ρK̂

||JK x̂ ||

Set x̂ = x̂1 − x̂2 with x̂1, x̂2 ∈ K̂ . Then JK x̂ = TK x̂1 − TK x̂2 and one can
estimate ||JK x̂ || ≤ hK .

I For ||J−1K || regard the inverse mapping �
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Local interpolation I
I For w ∈ Hs(K) recall the Hs seminorm |w |2s,K =

∑
|β|=s ||∂

βw ||2L2(K)

Lemma: Let w ∈ Hs(K) and ŵ = w ◦ TK . There exists a constant c such that

|ŵ |s,K̂ ≤ c||JK ||s | det JK |−
1
2 |w |s,K

|w |s,K ≤ c||J−1K ||
s | det JK |

1
2 |ŵ |s,K̂

Proof: Let |α| = s. By affinity and chain rule one obtains

||∂αŵ ||L(K̂) ≤ c||JK ||s
∑
|β=s|

||∂βw ◦ TK ||L2(K)

Changing variables yields

||∂αŵ ||L(K̂) ≤ c||JK ||s | det JK |−
1
2 |w |s,K

Summation over α yields the first inequality. Regarding the inverse mapping
yields the second one. �
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Local interpolation II
Theorem: Let {K̂ , P̂, Σ̂} be a finite element with associated normed vector
space V (K̂). Assume there exists k such that

PK ⊂ P̂ ⊂ Hk+1(K̂) ⊂ V (K̂)

and H l+1(K̂) ⊂ V (K̂) for 0 ≤ l ≤ k. There exists c > 0 such that for all
m = 0 . . . l + 1, K ∈ Th, v ∈ H l+1(K):

|v − Ik
K v |m,K ≤ chl+1−m

K σm
K |v |l+1,K

Draft of Proof Estimate using deeper results from functional analysis:

|ŵ − Ik
K̂ ŵ |m,K̂ ≤ c|ŵ |l+1,K̂

(From Poincare like inequality, e.g. for v ∈ H1
0 (Ω), c||v ||L2 ≤ ||∇v ||L2 : under

certain circumstances, we can can estimate the norms of lower dervivatives by
those of the higher ones)
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Local interpolation III

(Proof, continued)

Let v ∈ H l+1(K) and set v̂ = v ◦ TK . We know that (Ik
K v) ◦ TK = Ik

K̂ v̂ .

We have

|v − Ik
K v |m,K ≤ c||J−1K ||

m| det JK |
1
2 |v̂ − Ik

K̂ v̂ |m,K̂
≤ c||J−1K ||

m| det JK |
1
2 |v̂ |l+1,K̂

≤ c||J−1K ||
m||JK ||l+1|v |l+1,K

≤ c(||JK ||||J−1K ||)
m||JK ||l+1−m|v |l+1,K

≤ chl+1−m
K σm

K |v |l+1,K
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Local interpolation: special cases for Lagrange finite elements

I k = 1, l = 1,m = 0: |v − Ik
K v |0,K ≤ ch2

K |v |2,K
I k = 1, l = 1,m = 1: |v − Ik

K v |1,K ≤ chKσK |v |2,K
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Shape regularity

I Now we discuss a family of meshes Th for h→ 0. We want to estimate
global interpolation errors and see how they possibly diminuish

I For given Th, assume that h = maxK∈Th hj

I A family of meshes is called shape regular if

∀h, ∀K ∈ Th, σK =
hK

ρK
≤ σ0

I In 1D, σK = 1
I In 2D, σK ≤ 2

sin θK
where θK is the smallest angle
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Global interpolation error estimate

Theorem Let Ω be polyhedral, and let Th be a shape regular family of affine
meshes. Then there exists c such that for all h, v ∈ H l+1(Ω),

||v − Ik
h v ||L2(Ω) +

l+1∑
m=1

hm

(∑
K∈Th

|v − Ik
h v |2m,K

) 1
2

≤ chl+1|v |l+1,Ω

and

lim
h→0

(
inf

vh∈V k
h

||v − vh||L2(Ω)

)
= 0
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Global interpolation error estimate for Lagrangian finite elements, k = 1

I Assume v ∈ H2(Ω), e.g. if problem coefficients are smooth and the domain
is convex

||v − Ik
h v ||0,Ω + h|v − Ik

h v |1,Ω ≤ ch2|v |2,Ω
|v − Ik

h v |1,Ω ≤ ch|v |2,Ω

lim
h→0

(
inf

vh∈V k
h

|v − vh|1,Ω

)
= 0

I If v ∈ H2(Ω) cannot be guaranteed, estimates become worse. Example:
L-shaped domain.

I These results immediately can be applied in Cea’s lemma.
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Error estimates for homogeneous Dirichlet problem

I Search u ∈ H1
0 (Ω) such that

∫
Ω

λ∇u∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω)

Then, limh→0 ||u − uh||1,Ω = 0. If u ∈ H2(Ω) (e.g. on convex domains) then

||u − uh||1,Ω ≤ ch|u|2,Ω

Under certain conditions (convex domain, smooth coefficients) one has

||u − uh||0,Ω ≤ ch|u|1,Ω

(“Aubin-Nitsche-Lemma”)
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