Finite element construction

Scientific Computing Winter 2016/2017

Lecture 18
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap (Finite Elements)

Heat conduction revisited: Derivation of weak formulation

+ - Sobolev space theory provides the necessary framework to formulate existence and uniqueness of solutions of PDEs.
- Heat conduction equation with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function from $C_{0}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega} \nabla \cdot \lambda \nabla u v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x & =\int_{\Omega} f v d x
\end{aligned}
$$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \lambda \nabla u \nabla v d x
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$.
It is bounded due to Cauchy-Schwarz:

$$
|a(u, v)|=\left|\lambda\left\|\int_{\Omega} \nabla u \nabla v d x \mid \leq\right\| u\left\|_{H_{0}^{1}(\Omega)} \cdot\right\| v \|_{H_{0}^{1}(\Omega)}\right.
$$

- $f(v)=\int_{\Omega} f v d x$ is a linear functional on $H_{0}^{1}(\Omega)$. For Hilbert spaces V the dual space V^{\prime} (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{v}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Heat conduction revisited

Let $\lambda>0$. Then the weak formulation of the heat conduction problem: search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

has an unique solution.
Proof: $a(u, v)$ is cocercive:

$$
a(u, v)=\int_{\Omega} \lambda \nabla u \nabla u d x=\lambda\|u\|_{H_{0}^{1}(\Omega)}^{2}
$$

Weak formulation of inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

If g is smooth enough, there exists a lifting $u_{g} \in H^{1}(\Omega)$ such that $\left.u_{g}\right|_{\partial \Omega}=g$. Then, we can re-formulate:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla\left(u-u_{g}\right) & =f+\nabla \cdot \lambda \nabla u_{g} \text { in } \Omega \\
u-u_{g} & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \\
\int_{\Omega} \lambda \nabla \phi \nabla v d x & =\int_{\Omega} f v d x+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Here, necessarily, $\phi \in H_{0}^{1}(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

Weak formulation of Robin problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g) & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function from $C_{c}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega}(\nabla \cdot \lambda \nabla u) v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega}(\lambda \nabla u \cdot \mathbf{n}) v d s & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega} \alpha u v d s & =\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

Weak formulation of Robin problem II

- Let

$$
\begin{aligned}
a^{R}(u, v) & :=\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega} \alpha u v d s \\
f^{R}(v) & :=\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

The integrals over $\partial \Omega$ must be understood in the sense of the trace space $H^{\frac{1}{2}}(\partial \Omega)$.

- Search $u \in H^{1}(\Omega)$ such that

$$
a^{R}(u, v)=f^{R}(v) \forall v \in H^{1}(\Omega)
$$

- If $\lambda>0$ and $\alpha>0$ then $a^{R}(u, v)$ is cocercive.

Neumann boundary conditions

Homogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=0 \text { on } \partial \Omega
$$

Inhomogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=g \text { on } \partial \Omega
$$

Weak formulation:

- Search $u \in H^{1}(\Omega)$ such that

$$
\int_{\omega} \nabla u \nabla v d x=\int_{\partial \Omega} g v d s \forall v \in H^{1}(\Omega)
$$

Not coercive due to the fact that we can add an arbitrary constant to u and $a(u, u)$ stays the same!

Further discussion on boundary conditions

- Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann These are imposed in a "natural" way in the weak formulation
- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients $\lambda, \alpha \ldots$ can be functions.

The Dirichlet penalty method

- Robin problem: search $u_{\alpha} \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u_{\alpha} \nabla v d x+\int_{\partial \Omega} \alpha u_{\alpha} v d s=\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s \forall v \in H^{1}(\Omega)
$$

- Dirichlet problem: search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \quad \text { where }\left.u_{g}\right|_{\partial \Omega}=g \\
\int_{\Omega} \lambda \nabla \phi \nabla v d x & =\int_{\Omega} f v d x+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

- Penalty limit:

$$
\lim _{\alpha \rightarrow \infty} u_{\alpha}=u
$$

- Formally, the convergence rate is quite low
- Implementing Dirichlet boundary conditions directly leads to a number of technical problems
- Implementing the penalty method is technically much simpler
- Proper way of handling the parameter leads to exact fulfillment of Dirichlet boundary condition in the floating point precision

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The finite volume method provides one possible framework which in many cases is close to physical intuition. However, its error analysis is hard.
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations

The Galerkin method II

- Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation:

Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_{h} ?
- Let $v_{h} \in V_{h}$ be arbitrary. Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (Coercivity) } \\
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right) \quad \text { (Galerkin Orthogonality) } \\
& \leq \gamma\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\| \quad \text { (Boundedness) }
\end{aligned}
$$

- As a result

$$
\left\|u-u_{h}\right\| \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|
$$

- Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_{h}.

From the Galerkin method to the matrix equation

- Let $\phi_{1} \ldots \phi_{n}$ be a set of basis functions of V_{h}.
- Then, we have the representation $u_{h}=\sum_{j=1}^{n} u_{j} \phi_{j}$
- In order to search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

it is actually sufficient to require

$$
\begin{aligned}
a\left(u_{h}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
a\left(\sum_{j=1}^{n} u_{j} \phi_{j}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
\sum_{j=1}^{n} a\left(\phi_{j}, \phi_{i}\right) u_{j} & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
A U & =F
\end{aligned}
$$

with $A=\left(a_{i j}\right), a_{i j}=a\left(\phi_{i}, \phi_{j}\right), F=\left(f_{i}\right), f_{i}=F\left(\phi_{i}\right), U=\left(u_{i}\right)$.

- Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

- Let $\Omega=(a, b) \subset \mathbb{R}^{1}$
- Let $a(u, v)=\int_{\Omega} \lambda(x) \nabla u \nabla v d x$.
- Analysis I provides a finite dimensional subspace: the space of \sin / \cos functions up to a certain frequency \Rightarrow spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator. .
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients - e.g. "Spectral Einstein Code"

The finite element idea

- Choose basis functions with local support. In this case, the matrix becomes sparse, as only integrals of basis function pairs with overlapping support contribute to the matrix.
- Linear finite elements in $\Omega=(a, b) \subset \mathbb{R}^{1}$:
- Partition $a=x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$
- Basis functions (for $i=1 \ldots n$)

$$
\phi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & i>1, x \in\left(x_{i-1}, x_{i}\right) \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}}, & i<n, x \in\left(x_{i}, x_{i+1}\right) \\ 0, & \text { else }\end{cases}
$$

- Any function $u_{h} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{n}\right\}$ is piecewise linear, and the coefficients in the representation $u_{h}=\sum_{i=1}^{n} u_{i} \phi_{i}$ are the values $u_{h}\left(x_{i}\right)$.
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined!

1D matrix elements

$\left(\lambda=1, x_{i+1}-x_{i}=h\right)$ - The integrals are nonzero for $i=j, i+1=j, i-1=j$ Let $j=i+1$

$$
\begin{aligned}
a_{i j}=a\left(\phi_{i}, \phi_{i+1}\right) & =\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{x_{i}}^{x_{i+1}} \nabla \phi_{i} \nabla \phi_{j} d x=-\int_{x_{i}}^{x_{i+1}} \frac{1}{h^{2}} d x \\
& =\frac{1}{h} d x
\end{aligned}
$$

Similarly, $a\left(\phi_{i}, \phi_{i-1}\right)=-\frac{1}{h}$
For $1<i<N$:

$$
\begin{aligned}
a_{i i}=a\left(\phi_{i}, \phi_{i}\right) & =\int_{\Omega} \nabla \phi_{i} \nabla \phi_{i} d x=\int_{x_{i-1}}^{x_{i+1}} \nabla \phi_{i} \nabla \phi_{i} d x=\int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^{2}} d x \\
& =\frac{2}{h} d x
\end{aligned}
$$

For $i=1$ or $i=N, a\left(\phi_{i}, \phi_{i}\right)=\frac{1}{h}$

1D matrix elements II

Adding the boundary integrals yields

$$
A=\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)
$$

the same matrix as for the finite volume method...

Finite Elements in higher dimensions

(after Ern/Guermond)

Definition of a Finite Element (Ciarlet)

Triplet $\{K, P, \Sigma\}$ where

- $K \subset \mathbb{R}^{d}:$ compact, connected Lipschitz domain with non-empty interior
- P : finite dimensional vector space of functions $p: K \rightarrow \mathbb{R}^{m}$ (mostly, $m=1, m=d$)
- $\Sigma=\left\{\sigma_{1} \ldots \sigma_{s}\right\} \subset \mathcal{L}(P, \mathbb{R})$: set of linear forms defined on P called local degrees of freedom such that the mapping

$$
\begin{aligned}
\Lambda_{\Sigma}: P & \rightarrow \mathbb{R}^{s} \\
p & \mapsto\left(\sigma_{1}(p) \ldots \sigma_{s}(p)\right)
\end{aligned}
$$

is bijective, i.e. Σ is a basis of $\mathcal{L}(P, \mathbb{R})$.

Local shape functions

- Due to bijectivity of Λ_{Σ}, for any finite element $\{K, P, \Sigma\}$, there exists a basis $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\sigma_{i}\left(\theta_{j}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

- Elements of such a basis are called local shape functions

Unisolvence

- Bijectivity of Λ_{Σ} is equivalent to the condition

$$
\forall\left(\alpha_{1} \ldots \alpha_{s}\right) \in \mathbb{R}^{s} \exists!p \in P \text { such that } \sigma_{i}(p)=\alpha_{i} \quad(1 \leq i \leq s)
$$

i.e. for any given tuple of values $a=\left(\alpha_{1} \ldots \alpha_{s}\right)$ there is a unique polynomial $p \in P$ such that $\Lambda_{\Sigma}(p)=a$.

- Equivalent to unisolvence:

$$
\left\{\begin{array}{l}
\operatorname{dim} P=|\Sigma|=s \\
\forall p \in P: \sigma_{i}(p)=0(i=1 \ldots s) \Rightarrow p=0
\end{array}\right.
$$

Lagrange finite elements

- A finite element $\{K, P, \Sigma\}$ is called Lagrange finite element (or nodal finite element) if there exist a set of points $\left\{a_{1} \ldots a_{s}\right\} \subset K$ such that

$$
\sigma_{i}(p)=p\left(a_{i}\right) \quad 1 \leq i \leq s
$$

- $\left\{a_{1} \ldots a_{s}\right\}$: nodes of the finite element
- *nodal basis: $\left\{\theta_{1} \ldots \theta_{s}\right\} \subset P$ such that

$$
\theta_{j}\left(a_{i}\right)=\delta_{i j} \quad(1 \leq i, j \leq s)
$$

Hermite finite elements

- All or a part of degrees of freedoms defined by derivatives of p in some points

Local interpolation operator

- Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\left\{\theta_{1} \ldots \theta_{s}\right.$. Let $V(K)$ be a normed vector space of functions $v: K \rightarrow \mathbb{R}^{m}$ such that
- $P \subset V(K)$
- The linear forms in Σ can be extended to be defined on $V(K)$
- local interpolation operator

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto \sum_{i=1}^{s} \sigma_{i}(v) \theta_{i}
\end{aligned}
$$

- P is invariant under the action of \mathcal{I}_{K}, i.e. $\forall p \in P, \mathcal{I}_{K}(p)=p$:
- Let $p=\sum_{j=1}^{s} \alpha_{j} \theta_{j}$ Then,

$$
\begin{aligned}
\mathcal{I}_{K}(p) & =\sum_{i=1}^{s} \sigma_{i}(p) \theta_{i}=\sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j} \sigma_{i}\left(\theta_{j}\right) \theta_{i} \\
& =\sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j} \delta_{i j} \theta_{i}=\sum_{j=1}^{s} \alpha_{j} \theta_{j}
\end{aligned}
$$

Local Lagrange interpolation operator

- Let $V(K)=\left(\mathcal{C}^{0}(K)\right)^{m}$

$$
\begin{aligned}
\mathcal{I}_{K}: V(K) & \rightarrow P \\
v & \mapsto I_{K} v=\sum_{i=1}^{s} v\left(a_{i}\right) \theta_{i}
\end{aligned}
$$

Simplices

- Let $\left\{a_{0} \ldots a_{d}\right\} \subset \mathbb{R}^{d}$ such that the d vectors $a_{1}-a_{0} \ldots a_{d}-a_{0}$ are linearly independent. Then the convex hull K of $a_{0} \ldots a_{d}$ is called simplex, and $a_{0} \ldots a_{d}$ are called vertices of the simplex.
- Unit simplex: $a_{0}=(0 \ldots 0), a_{1}=(0,1 \ldots 0) \ldots a_{d}=(0 \ldots 0,1)$.

$$
K=\left\{x \in \mathbb{R}^{d}: x_{i} \geq 0(i=1 \ldots d) \text { and } \sum_{i=1}^{d} x_{i} \leq 1\right\}
$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_{i} : face of K opposite to a_{i}
- \mathbf{n}_{i} : outward normal to F_{i}

Barycentric coordinates

- Let K be a simplex.
- Functions $\lambda_{i}(i=0 \ldots d)$:

$$
\begin{aligned}
\lambda_{i}: \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto \lambda_{i}(x)=1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}
\end{aligned}
$$

where a_{j} is any vertex of K situated in F_{i}.

- For $x \in K$, one has

$$
\begin{aligned}
1-\frac{\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} & =\frac{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}-\left(x-a_{i}\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}} \\
& =\frac{\left(a_{j}-x\right) \cdot \mathbf{n}_{i}}{\left(a_{j}-a_{i}\right) \cdot \mathbf{n}_{i}}=\frac{\operatorname{dist}\left(x, F_{i}\right)}{\operatorname{dist}\left(a_{i}, F_{i}\right)} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right| / d}{\operatorname{dist}\left(a_{i}, F_{i}\right)\left|F_{i}\right| / d} \\
& =\frac{\operatorname{dist}\left(x, F_{i}\right)\left|F_{i}\right|}{|K|}
\end{aligned}
$$

i.e. $\lambda_{i}(x)$ is the ratio of the volume of the simplex $K_{i}(x)$ made up of x and the vertices of F_{i} to the volume of K.

Barycentric coordinates II

- $\lambda_{i}\left(a_{j}\right)=\delta_{i j}$
- $\lambda_{i}(x)=0 \forall x \in F_{i}$
- $\sum_{i=0}^{d} \lambda_{i}(x)=1 \forall x \in \mathbb{R}^{d}$
(just sum up the volumes)
- $\sum_{i=0}^{d} \lambda_{i}(x)\left(x-a_{i}\right)=0 \forall x \in \mathbb{R}^{d}$ (due to $\sum \lambda_{i}(x) x=x$ and $\sum \lambda_{i} a_{i}=x$ as the vector of linear coordinate functions)
- Unit simplex:
- $\lambda_{0}(x)=1-\sum_{i=1}^{d} x_{i}$
- $\lambda_{i}(x)=x_{i}$ for $1 \leq i \leq d$

Polynomial space \mathbb{P}_{k}

- Space of polynomials in $x_{1} \ldots x_{d}$ of total degree $\leq k$ with real coefficients $\alpha_{i_{1} \ldots i_{d}}$:

$$
\mathbb{P}_{k}=\left\{p(x)=\sum_{\substack{0 \leq i_{1} \ldots i_{d} \leq k \\ i_{1}+\cdots+i_{d} \leq k}} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- Dimension:

$$
\begin{aligned}
\operatorname{dim} \mathbb{P}_{k}=\binom{d+k}{k} & = \begin{cases}k+1, & d=1 \\
\frac{1}{2}(k+1)(k+2), & d=2 \\
\frac{1}{6}(k+1)(k+2)(k+3), & d=3\end{cases} \\
\operatorname{dim} \mathbb{P}_{1} & =d+1 \\
\operatorname{dim} \mathbb{P}_{2} & = \begin{cases}3, & d=1 \\
6, & d=2 \\
10, & d=3\end{cases}
\end{aligned}
$$

\mathbb{P}_{k} simplex finite elements

- K: simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{k}$, such that $s=\operatorname{dim} P_{k}$
- For $0 \leq i_{0} \ldots i_{d} \leq k, i_{0}+\cdots+i_{d}=k$, let the set of nodes be defined by the points $a_{i_{1} \ldots i_{d} ; k}$ with barycentric coordinates ($\frac{i_{0}}{k} \ldots \frac{i_{d}}{k}$).
Define Σ by $\sigma_{i_{1} \ldots i_{d} ; k}(p)=p\left(a_{i_{1} \ldots i_{d} ; k}\right)$.

\mathbb{P}_{1} simplex finite elements
- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{1}$, such that $s=d+1$
- Nodes \equiv vertices
- Basis functions \equiv barycentric coordinates

\mathbb{P}_{2} simplex finite elements
- K : simplex spanned by $a_{0} \ldots a_{d}$ in \mathbb{R}^{d}
- $P=\mathbb{P}_{2}$, Nodes \equiv vertices + edge midpoints
- Basis functions:

$$
\lambda_{i}\left(2 \lambda_{i}-1\right),(0 \leq i \leq d) ; \quad 4 \lambda_{i} \lambda_{j}, \quad(0 \leq i<j \leq d) \quad(\text { "edge bubbles") }
$$

Cuboids

- Given intervals $I_{i}=\left[c_{i}, d_{i}\right], i=1 \ldots d$ such that $c_{i}<d_{i}$.
- Cuboid:

$$
K=\prod_{i=1}^{d}\left[c_{i}, d_{i}\right]
$$

- Local coordinate vector $\left(t_{1} \ldots t_{d}\right) \in[0,1]^{d}$
- Unique representation of $x \in K: x_{i}=c_{i}+t_{i}\left(d_{i}-c_{i}\right)$ for $i=1 \ldots d$.
- Bijective mapping $[0,1]^{d} \rightarrow K$.

Polynomial space \mathbb{Q}_{k}

- Space of polynomials of degree at most k in each variable
- $d=1 \Rightarrow \mathbb{Q}_{k}=\mathbb{P}_{k}$
- $d>1$:

$$
\mathbb{Q}_{k}=\left\{p(x)=\sum_{0 \leq i_{1} \ldots i_{d} \leq k} \alpha_{i_{1} \ldots i_{d}} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}\right\}
$$

- $\operatorname{dim} \mathbb{Q}_{k}=(k+1)^{d}$

\mathbb{Q}_{k} cuboid finite elements

- K: cuboid spanned by intervals $\left[c_{i}, d_{i}\right], i=1 \ldots d$
- $P=\mathbb{Q}_{k}$
- For $0 \leq i_{0} \ldots i_{d} \leq k$, let the set of nodes be defined by the points $a_{i_{1} \ldots i_{d} ; k}$ with local coordinates $\left(\frac{i_{0}}{k} \ldots \frac{i_{d}}{k}\right)$.
Define Σ by $\sigma_{i_{1} \ldots i_{d} ; k}(p)=p\left(a_{i_{1} \ldots i_{d} ; k}\right)$.

General finite elements

- Simplicial finite elements can be defined on triangulations of polygonal domains. During the course we will stick to this case.
- A curved domain Ω may be approximated by a polygonal domain Ω_{h} which is then triangulated. During the course, we will ignore this difference.
- As we have seen, more general elements are possible: cuboids, but and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$ also prismatic elements etc.
- Curved geometries are possible. Isoparametric finite elements use and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$ the polynomial space to define a mapping of some polyghedral reference element to an element with curved boundary

Conformal triangulations

- Let \mathcal{T}_{h} be a subdivision of the polygonal domain $\Omega \subset \mathbb{R}^{d}$ into non-intersecting compact simplices $K_{m}, m=1 \ldots n_{e}$:

$$
\bar{\Omega}=\bigcup_{m=1}^{n_{e}} K_{m}
$$

- Each simplex can be seen as the image of a affine transormation of a reference (e.g. unit) simplex \widehat{K} :

$$
K_{m}=T_{m}(\widehat{K})
$$

- We assume that it is conformal, i.e. if K_{m}, K_{n} have a $d-1$ dimensional intersection $F=K_{m} \cap K_{n}$, then there is a face \widehat{F} of \widehat{K} and renumberings of the vertices of K_{n}, K_{m} such that $F=T_{m}(\widehat{F})=T_{n}(\widehat{F})$ and $\left.T_{m}\right|_{\widehat{F}}=\left.T_{n}\right|_{\widehat{F}}$

Conformal triangulations II

- $d=1$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex
- $d=2$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge

- $d=3$: Each intersection $F=K_{m} \cap K_{n}$ is either empty or a common vertex or a common edge or a common face
- Triangulations corresponding to simplicial complexes are conformal
- Delaunay triangulations are conformal

Reference finite element

- Let $\{\widehat{P}, \widehat{K}, \widehat{\Sigma}\}$ be a fixed finite element
- Let T_{K} be some affine transformation and $K=T_{K}(\widehat{K})$
- There is a linear bijective mapping ψ_{K} between functions on K and functions on \widehat{K} :

$$
\begin{aligned}
\psi_{K}: V(K) & \rightarrow V(\widehat{K}) \\
f & \mapsto f \circ T_{K}
\end{aligned}
$$

- Let
- $K=T_{K}(\widehat{K}) \$$
- $P_{K}=\left\{\psi_{K}^{-1}(\widehat{p}) ; \widehat{p} \in \widehat{P}\right\}$,
- $\Sigma_{K}=\left\{\sigma_{K, i}, i=1 \ldots s: \sigma_{K, i}(p)=\widehat{\sigma}_{i}\left(\psi_{K}(p)\right)\right\}$ Then $\left\{K, P_{K}, \Sigma_{K}\right\}$ is a finite element.

Commutativity of interpolation and reference mapping

- $\mathcal{I}_{\hat{k}} \circ \psi_{K}=\psi_{K} \circ \mathcal{I}_{K}$,
i.e. the following diagram is commutative:

$$
\begin{array}{ccc}
V(K) \xrightarrow{\psi_{K}} & V(\widehat{K}) \\
\downarrow_{I_{K}} & & I_{I_{\widehat{K}}} \\
P_{K} \xrightarrow{\psi_{K}} & P_{\widehat{K}}
\end{array}
$$

Global interpolation operator \mathcal{I}_{h}

- Let $\left\{K, P_{K}, \Sigma_{K}\right\}_{K \in \mathcal{T}_{h}}$ be a triangulation of Ω.
- Domain:

$$
D\left(\mathcal{I}_{h}\right)=\left\{v \in\left(L^{1}(\Omega)\right)^{m} \text { such that } \forall K \in \mathcal{T}_{h},\left.v\right|_{K} \in V(K)\right\}
$$

- For all $v \in D\left(\mathcal{I}_{h}\right)$, define $\mathcal{I}_{h} v$ via

$$
\left.\mathcal{I}_{h} v\right|_{K}=\mathcal{I}_{K}\left(\left.v\right|_{K}\right)=\sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i} \forall K \in \mathcal{T}_{h}
$$

Assuming $\theta_{K, i}=0$ outside of K, one can write

$$
\mathcal{I}_{h} v=\sum_{K \in \mathcal{T}_{h}} \sum_{i=1}^{s} \sigma_{K, i}\left(\left.v\right|_{K}\right) \theta_{K, i}
$$

mapping $D\left(\mathcal{I}_{h}\right)$ to the approximation space

$$
W_{h}=\left\{v_{h} \in\left(L^{1}(\Omega)\right)^{m} \text { such that } \forall K \in \mathcal{T}_{h}, v_{h} \mid K \in P_{K}\right\}
$$

H^{1}-Conformal approximation using Lagrangian finite elemenents

- Let V be a Banach space of functions on Ω. The approximation space W_{h} is said to be V-conformal if $W_{h} \subset V$.
- Non-conformal approximations are possible, we will stick to the conformal case.
- Conformal subspace of W_{h} with zero jumps at element faces:

$$
V_{h}=\left\{v_{h} \in W_{h}: \forall n, m, K_{m} \cap K_{n} \neq 0 \Rightarrow\left(v_{h} \mid K_{m}\right)_{K_{m} \cap K_{n}}=\left(v_{h} \mid K_{n}\right)_{K_{m} \cap K_{n}}\right\}
$$

- Then: $V_{h} \subset H^{1}(\Omega)$.

Happy Holidays!

Next lecture: Jan. 5, 2017

