Weak formulations and finite elements

Scientific Computing Winter 2016/2017

Lecture 16
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap (Delaunay, Sobolev spaces)

Delaunay triangulations

- Given a finite point set $X \subset \mathbb{R}^{d}$. Then there exists simplicial a complex called Delaunay triangulation of this point set such that
- X is the set of vertices of the triangulation
- The union of all its simplices is the convex hull of X.
- (Delaunay property): For any given d-simplex $\Sigma \subset \Omega$ belonging to the triangulation, the interior of its circumsphere does not contain any vertex $x_{k} \in X$.
- Assume that the points of X are in general position, i.e. no $n+2$ points lie on one sphere. Then the Delaunay triangulation is unique.

Voronoi diagram

- Given a finite point set $X \subset \mathbb{R}^{d}$. Then the Voronoi diagram is a partition of \mathbb{R}^{d} into convex nonoverlapping polygonal regions defined as

$$
\begin{aligned}
& \mathbb{R}^{d}=\bigcup_{k=1}^{N_{x}} v_{k} \\
& V_{k}=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{k}\right\|<\left\|x-x_{l}\right\| \forall x_{l} \in X, I \neq k\right\}
\end{aligned}
$$

Voronoi - Delaunay duality

- Given a point set $X \subset \mathbb{R}^{d}$ in general position. Then its Delaunay triangulation and its Voronoi diagram are dual to each other:
- Two Voronoi cells V_{k}, V_{l} have a common facet if and only if $\overline{x_{k} x_{l}}$ is an edge of the triangulation.

Boundary conforming Delaunay triangulations

- Domain $\Omega \subset \mathbb{R}^{n}$ (we will discuss only $n=2$) with polygonal boundary $\partial \Omega$.
- Partition (triangulation) $\Omega=\bigcup_{s=1}^{N_{\Sigma}} \Sigma$ into non-overlapping simplices Σ_{s} such that this partition represents a simplicial complex. Regard the set of nodes $X=\left\{x_{1} \ldots x_{N_{x}}\right\}$.
- It induces a partition of the boundary into lower dimensional simplices: $\partial \Omega=\bigcup_{t=1}^{N_{\sigma}} \sigma_{t}$. We assume that in 3D, the set $\left\{\sigma_{t}\right\}_{t=1}^{N_{\sigma}}$ includes all edges of surface triangles as well. For any given lower ($d-1$ or $d-2$) dimensional simplex σ, its diametrical sphere is defined as the smallest sphere containing all its vertices.
- Boundary conforming Delaunay property:
- (Delaunay property): For any given d-simplex $\Sigma_{s} \subset \Omega$, the interior of its circumsphere does not contain any vertex $x_{k} \in X$.
- (Gabriel property) For any simplex $\sigma_{t} \subset \partial \Omega$, the interior of its diametrical sphere does not contain any vertex $x_{k} \in X$.
- Equivalent formulation in 2D:
- For any two triangles with a common edge, the sum of their respective angles opposite to that edge is less or equal to 180°.
- For any triangle sharing an edge with $\partial \Omega$, its angle opposite to that edge is less or equal to 90°.

Restricted Voronoi diagram

- Given a boundary conforming Delaunay discretization of Ω, the restricted Voronoi diagram consists of the restricted Voronoi cells corresponding to the node set X defined by

$$
\omega_{k}=V_{k} \cap \Omega=\left\{x \in \Omega:\left\|x-x_{k}\right\|<\left\|x-x_{\|}\right\| \forall x_{l} \in X, I \neq k\right\}
$$

- These restricted Voronoi cells are used as control volumes in a finite volume discretization

Piecewise linear description of computational domain with given point cloud

Delaunay triangulation of domain and triangle circumcenters.

- Blue: triangle circumcenters
- Some boundary triangles have larger than 90° angles opposite to the boundary \Rightarrow their circumcenters are outside of the domain

Boundary conforming Delaunay triangulation

- Automatically inserted additional points at the boundary (green dots)
- Restricted Voronoi cells (red).

General approach to triangulations

- Obtain piecewise linear descriptiom of domain
- Call mesh generator (triangle, TetGen, NetGen ...) in order to obtain triangulation
- Performe finite volume or finite element discretization of the problem.

Alternative way:

- Construction "by hand" on regular structures

Partial Differential Equations

DIfferential operators

- Bounded domain $\Omega \subset \mathbb{R}^{d}$, with piecewise smooth boundary
- Scalar function $u: \Omega \rightarrow \mathbb{R}$
- Vector function $\mathbf{v}: \Omega \rightarrow \mathbb{R}^{d}$
- Write $\partial_{i} u=\frac{\partial u}{x_{i}}$
- For a multindex $\alpha=\left(\alpha_{1} \ldots \alpha_{d}\right)$, write $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$ and define $\partial^{\alpha} u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots . . \partial x_{d}^{\alpha_{d} d}}$
- Gradient grad $=\nabla: u \mapsto \nabla u=\left(\begin{array}{c}\partial_{1} u \\ \vdots \\ \partial_{d} u\end{array}\right)$
- Divergence div $=\nabla \cdot: \mathbf{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{d}\end{array}\right) \mapsto \nabla \cdot \mathbf{v}=\partial_{1} v_{1}+\cdots+\partial_{d} v_{d}$
- Laplace operator $\Delta=\operatorname{div} \cdot \operatorname{grad}=\nabla \cdot \nabla: u \mapsto \Delta u=\partial_{11} u+\cdots+\partial_{d d} u$

Lebesgue integral, $L^{1}(\Omega)$ I

- Let Ω have a boundary which can be represented by continuous, piecewiese smooth functions in local coordinate systems, without cusps and other+ degeneracies (more precisely: Lipschitz domain).
- Polygonal domains are Lipschitz.
- Let $C_{c}(\Omega)$ be the set of continuous functions $f: \Omega \rightarrow \mathbb{R}$ with compact support.
- For these functions, the Riemann integral $\int_{\Omega} f(x) d x$ is well defined, and $\|f\|:=\int_{\Omega}|f(x)| d x$ provides a norm, and induces a metric
- A Cauchy sequence is a sequence f_{n} of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$
\forall \varepsilon>0 \exists N \in \mathbb{N}: \forall m, n>n,\left\|f_{n}-f_{m}\right\|<\varepsilon
$$

- All convergent sequences of functions are Cauchy sequences
- A metric space is complete if all Cauchy sequences of its element have a limit within this space

Lebesgue integral, $L^{1}(\Omega)$ II

- Let $L^{1}(\Omega)$ be the completion of $C_{c}(\Omega)$ with respect to the metric defined by the integral norm, i.e. "include" all limites of Cauchy sequences
- Defined via sequences, $\int_{\Omega}|f(x)| d x$ is defined for all functions in $L^{1}(\Omega)$.
- Equality of L^{1} functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- Examples for Lebesgue integrable (measurable) functions:
- Bounded functions continuous except in a finite number of points
- Step functions

$$
f_{\epsilon}(x)=\left\{\begin{array}{ll}
1, & x \geq \epsilon \\
-\left(\frac{x-\epsilon}{\epsilon}\right)^{2}+1, & 0 \leq x<\epsilon \\
\left(\frac{x+\epsilon}{\epsilon}\right)^{2}-1, & -\epsilon \leq x<0 \\
-1, & x<-\epsilon
\end{array} \xrightarrow{\epsilon \rightarrow 0} f(x)= \begin{cases}1, & x \geq 0 \\
-1, & \text { else }\end{cases}\right.
$$

Spaces of integrable functions

- For $1 \leq p \leq \infty$, let $L^{p}(\Omega)$ be the space of measureable functions such that

$$
\int_{\Omega}|f(x)|^{p} d x<\infty
$$

equipped with the norm

$$
\|f\|_{p}=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

- These spaces are Banach spaces, i.e. complete, normed vector spaces.
- The space $L^{2}(\Omega)$ is a Hilbert space, i.e. a Banach space equipped with a scalar product (\cdot, \cdot) whose norm is induced by that scalar product, i.e. $\|u\|=\sqrt{(u, u)}$. The scalar product in L^{2} is

$$
(f, g)=\int_{\Omega} f(x) g(x) d x
$$

Green's theorem

- Green's theorem for smooth functions: Let $u, v \in C^{1}(\bar{\Omega})$ (continuously differentiable). Then for $\mathbf{n}=\left(n_{1} \ldots n_{d}\right)$ being the outward normal to Ω,

$$
\int_{\Omega} u \partial_{i} v d x=\int_{\partial \Omega} u v n_{i} d s-\int_{\Omega} v \partial_{i} u d x
$$

In particular, if $v=0$ on $\partial \Omega$ one has

$$
\int_{\Omega} u \partial_{i} v d x=-\int_{\Omega} v \partial_{i} u d x
$$

Weak derivative

- Let $L_{l o c}^{1}(\Omega)$ the set of functions which are Lebesgue integrable on every compact subset $K \subset \Omega$. Let $C_{0}^{\infty}(\Omega)$ be the set of functions infinitely differentiable with zero values on the boundary.

For $u \in L_{l o c}^{1}(\Omega)$ we define $\partial_{i} u$ by

$$
\int_{\Omega} v \partial_{i} u d x=-\int_{\Omega} u \partial_{i} v d x \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

and $\partial^{\alpha} u$ by

$$
\int_{\Omega} v \partial^{\alpha} u d x=(-1)^{|\alpha|} \int_{\Omega} u \partial_{i} v d x \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

if these integrals exist.

Sobolev spaces

- For $k \geq 0$ and $1 \leq p<\infty$, the Sobolev space $W^{k, p}(\Omega)$ is the space functions where all up to the k-th derivatives are in L^{p} :

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): \partial^{\alpha} u \in L^{p}(\Omega) \forall|\alpha| \leq k\right\}
$$

with then norm

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

- Alternatively, they can be defined as the completion of C^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- $W_{0}^{k, p}(\Omega)$ is the completion of C_{0}^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Fractional Sobolev spaces and traces

- For $0<s<1$ define the fractional Sobolev space

$$
W^{s, p}(\Omega)=\left\{u \in L^{p}(\Omega): \frac{u(x)-u(y)}{\|x-y\|^{s+\frac{d}{p}}} \in L^{p}(\Omega \times \Omega)\right\}
$$

- Let $H^{\frac{1}{2}}(\Omega)=W^{\frac{1}{2}, 2}(\Omega)$
- A priori it is hard to say what the value of a function from L^{p} on the boundary is like.
- For Lipschitz domains there exists unique continuous trace mapping $\gamma_{0}: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ such that
- $\operatorname{Im} \gamma_{0}=W^{\frac{1}{p^{\prime}, p}}(\partial \Omega)$
- $\operatorname{Ker} \gamma_{0}=W_{0}^{1, p}(\Omega)$

Sobolev spaces of square integrable functions

- $H^{k}(\Omega)=W^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d x
$$

is a Hilbert space.

- $H^{k}(\Omega)_{0}=W_{0}^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d x
$$

is a Hilbert space as well.

- The initally most important:
- $L^{2}(\Omega)$ with the scalar product $(u, v)_{L^{2}(\Omega)}=\int_{\Omega} u v d x$
- $H^{1}(\Omega)$ with the scalar product $(u, v)_{H^{1}(\Omega)}=\int_{\Omega}(u v+\nabla u \cdot \nabla v) d x$
- $H_{0}^{1}(\Omega)$ with the scalar product $(u, v)_{H_{0}^{1}(\Omega)}=\int_{\Omega}(\nabla u \cdot \nabla v) d x$
- Inequalities:

$$
\begin{array}{ll}
|(u, v)|^{2} \leq(u, u)(v, v) & \text { Cauchy-Schwarz } \\
\|u+v\| \leq\|u\|+\|v\| & \text { Triangle inequality }
\end{array}
$$

Heat conduction revisited: Derivation of weak formulation

- Sobolev space theory provides the necessary framework to formulate existence and uniqueness of solutions of PDEs.
- Heat conduction equation with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function from $C_{0}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega} \nabla \cdot \lambda \nabla u v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x & =\int_{\Omega} f v d x
\end{aligned}
$$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \lambda \nabla u \nabla v d x
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$.
It is bounded due to Cauchy-Schwarz:

$$
|a(u, v)|=\left|\lambda\left\|\int_{\Omega} \nabla u \nabla v d x \mid \leq\right\| u\left\|_{H_{0}^{1}(\Omega)} \cdot\right\| v \|_{H_{0}^{1}(\Omega)}\right.
$$

- $f(v)=\int_{\Omega} f v d x$ is a linear functional on $H_{0}^{1}(\Omega)$. For Hilbert spaces V the dual space V^{\prime} (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{v}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Heat conduction revisited

Let $\lambda>0$. Then the weak formulation of the heat conduction problem: search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

has an unique solution.
Proof: $a(u, v)$ is cocercive:

$$
a(u, v)=\int_{\Omega} \lambda \nabla u \nabla u d x=\lambda\|u\|_{H_{0}^{1}(\Omega)}^{2}
$$

Weak formulation of inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

If g is smooth enough, there exists a lifting $u_{g} \in H^{1}(\Omega)$ such that $\left.u_{g}\right|_{\partial \Omega}=g$. Then, we can re-formulate:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla\left(u-u_{g}\right) & =f+\nabla \cdot \lambda \nabla u_{g} \text { in } \Omega \\
u-u_{g} & =0 \text { on } \partial \Omega
\end{aligned}
$$

- Search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \\
\int_{\Omega} \lambda \nabla \phi \nabla v d x & =\int_{\Omega} f v d x+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Here, necessarily, $\phi \in H_{0}^{1}(\Omega)$ and we can apply the theory for the homogeneous Dirichlet problem.

Weak formulation of Robin problem

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
\lambda \nabla u \cdot \mathbf{n}+\alpha(u-g) & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function from $C_{c}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega}(\nabla \cdot \lambda \nabla u) v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega}(\lambda \nabla u \cdot \mathbf{n}) v d s & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega} \alpha u v d s & =\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

Weak formulation of Robin problem II

- Let

$$
\begin{aligned}
a^{R}(u, v) & :=\int_{\Omega} \lambda \nabla u \nabla v d x+\int_{\partial \Omega} \alpha u v d s \\
f^{R}(v) & :=\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s
\end{aligned}
$$

The integrals over $\partial \Omega$ must be understood in the sense of the trace space $H^{\frac{1}{2}}(\partial \Omega)$.

- Search $u \in H^{1}(\Omega)$ such that

$$
a^{R}(u, v)=f^{R}(v) \forall v \in H^{1}(\Omega)
$$

- If $\lambda>0$ and $\alpha>0$ then $a^{R}(u, v)$ is cocercive.

Neumann boundary conditions

Homogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=0 \text { on } \partial \Omega
$$

Inhomogeneous Neumann:

$$
\lambda \nabla u \cdot \mathbf{n}=g \text { on } \partial \Omega
$$

Weak formulation:

- Search $u \in H^{1}(\Omega)$ such that

$$
\int_{\omega} \nabla u \nabla v d x=\int_{\partial \Omega} g v d s \forall v \in H^{1}(\Omega)
$$

Not coercive due to the fact that we can add an arbitrary constant to u and $a(u, u)$ stays the same!

Further discussion on boundary conditions

- Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann These are imposed in a "natural" way in the weak formulation
- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients $\lambda, \alpha \ldots$ can be functions.

The Dirichlet penalty method

- Robin problem: search $u_{\alpha} \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u_{\alpha} \nabla v d x+\int_{\partial \Omega} \alpha u_{\alpha} v d s=\int_{\Omega} f v d x+\int_{\partial \Omega} \alpha g v d s \forall v \in H^{1}(\Omega)
$$

- Dirichlet problem: search $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \quad \text { where }\left.u_{g}\right|_{\partial \Omega}=g \\
\int_{\Omega} \lambda \nabla \phi \nabla v d x & =\int_{\Omega} f v d x+\int_{\Omega} \lambda \nabla u_{g} \nabla v \quad \forall v \in H_{0}^{1}(\Omega)
\end{aligned}
$$

- Penalty limit:

$$
\lim _{\alpha \rightarrow \infty} u_{\alpha}=u
$$

- Formally, the convergence rate is quite low
- Implementing Dirichlet boundary conditions directly leads to a number of technical problems
- Implementing the penalty method is technically much simpler
- Proper way of handling the parameter leads to exact fulfillment of Dirichlet boundary condition in the floating point precision

The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- For computer representations we need finite dimensional approximations
- The finite volume method provides one possible framework which in many cases is close to physical intuition. However, its error analysis is hard.
- The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations

The Galerkin method II

- Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

- Let $V_{h} \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation:

Search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_{h} ?
- Let $v_{h} \in V_{h}$ be arbitrary. Then

$$
\begin{aligned}
\alpha\left\|u-u_{h}\right\|^{2} & \leq a\left(u-u_{h}, u-u_{h}\right) \quad \text { (Coercivity) } \\
& =a\left(u-u_{h}, u-v_{h}\right)+a\left(u-u_{h}, v_{h}-u_{h}\right) \\
& =a\left(u-u_{h}, u-v_{h}\right) \quad \text { (Galerkin Orthogonality) } \\
& \leq \gamma\left\|u-u_{h}\right\| \cdot\left\|u-v_{h}\right\| \quad \text { (Boundedness) }
\end{aligned}
$$

- As a result

$$
\left\|u-u_{h}\right\| \leq \frac{\gamma}{\alpha} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|
$$

- Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_{h}.

From the Galerkin method to the matrix equation

- Let $\phi_{1} \ldots \phi_{n}$ be a set of basis functions of V_{h}.
- Then, we have the representation $u_{h}=\sum_{j=1}^{n} u_{j} \phi_{j}$
- In order to search $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

it is actually sufficient to require

$$
\begin{aligned}
a\left(u_{h}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
a\left(\sum_{j=1}^{n} u_{j} \phi_{j}, \phi_{i}\right) & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
\sum_{j=1}^{n} a\left(\phi_{j}, \phi_{i}\right) u_{j} & =f\left(\phi_{i}\right)(i=1 \ldots n) \\
A U & =F
\end{aligned}
$$

with $A=\left(a_{i j}\right), a_{i j}=a\left(\phi_{i}, \phi_{j}\right), F=\left(f_{i}\right), f_{i}=F\left(\phi_{i}\right), U=\left(u_{i}\right)$.

- Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

- Let $\Omega=(a, b) \subset \mathbb{R}^{1}$
- Let $a(u, v)=\int_{\Omega} \lambda(x) \nabla u \nabla v d x$.
- Analysis I provides a finite dimensional subspace: the space of \sin / \cos functions up to a certain frequency \Rightarrow spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator. .
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients - e.g. "Spectral Einstein Code"

The finite element idea

- Choose basis functions with local support. In this case, the matrix becomes sparse, as only integrals of basis function pairs with overlapping support contribute to the matrix.
- Linear finite elements in $\Omega=(a, b) \subset \mathbb{R}^{1}$:
- Partition $a=x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$
- Basis functions (for $i=1 \ldots n$)

$$
\phi_{i}(x)= \begin{cases}\frac{x-x_{i-1}}{x_{i}-x_{i-1}}, & i>1, x \in\left(x_{i-1}, x_{i}\right) \\ \frac{x_{i+1}-x}{x_{i+1}-x_{i}}, & i<n, x \in\left(x_{i}, x_{i+1}\right) \\ 0, & \text { else }\end{cases}
$$

- Any function $u_{h} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{n}\right\}$ is piecewise linear, and the coefficients in the representation $u_{h}=\sum_{i=1}^{n} u_{i} \phi_{i}$ are the values $u_{h}\left(x_{i}\right)$.
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined!

1D matrix elements

$\left(\lambda=1, x_{i+1}-x_{i}=h\right)$ - The integrals are nonzero for $i=j, i+1=j, i-1=j$ Let $j=i+1$

$$
\begin{aligned}
a_{i j}=a\left(\phi_{i}, \phi_{i+1}\right) & =\int_{\Omega} \nabla \phi_{i} \nabla \phi_{j} d x=\int_{x_{i}}^{x_{i+1}} \nabla \phi_{i} \nabla \phi_{j} d x=-\int_{x_{i}}^{x_{i+1}} \frac{1}{h^{2}} d x \\
& =\frac{1}{h} d x
\end{aligned}
$$

Similarly, $a\left(\phi_{i}, \phi_{i-1}\right)=-\frac{1}{h}$
For $1<i<N$:

$$
\begin{aligned}
a_{i i}=a\left(\phi_{i}, \phi_{i}\right) & =\int_{\Omega} \nabla \phi_{i} \nabla \phi_{i} d x=\int_{x_{i-1}}^{x_{i+1}} \nabla \phi_{i} \nabla \phi_{i} d x=\int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^{2}} d x \\
& =\frac{2}{h} d x
\end{aligned}
$$

For $i=1$ or $i=N, a\left(\phi_{i}, \phi_{i}\right)=\frac{1}{h}$

1D matrix elements II

Adding the boundary integrals yields

$$
A=\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)
$$

the same matrix as for the finite volume method...

Where to go from here

- Higher space dimensions
- Piecewise polynomials instead of piecewise linear functions

