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Recap (Delaunay, Sobolev spaces)



Delaunay triangulations

» Given a finite point set X C RY. Then there exists simplicial a complex
called Delaunay triangulation of this point set such that
> X is the set of vertices of the triangulation
> The union of all its simplices is the convex hull of X.
> (Delaunay property): For any given d-simplex X C Q belonging to the
triangulation, the interior of its circumsphere does not contain any vertex
xx € X.

» Assume that the points of X are in general position, i.e. no n+ 2 points lie
on one sphere. Then the Delaunay triangulation is unique.
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Voronoi diagram

» Given a finite point set X C RY. Then the Voronoi diagram is a partition of
R? into convex nonoverlapping polygonal regions defined as

Rd:ka

k=1

Vi = {x € R ||x — x|| < ||x — x1||[Vx € X, 1 # k}
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Voronoi - Delaunay duality

» Given a point set X C R? in general position. Then its Delaunay
triangulation and its Voronoi diagram are dual to each other:

> Two Voronoi cells Vi, V; have a common facet if and only if XX, is an edge
of the triangulation.
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Boundary conforming Delaunay triangulations

Domain Q C R" (we will discuss only n = 2) with polygonal boundary 9.

Partition (triangulation) Q = U:V:ZI Y into non-overlapping simplices ¥
such that this partition represents a simplicial complex. Regard the set of
nodes X = {x1...xn,}.

It induces a partition of the boundary into lower dimensional simplices:

o0 = UCI:"I o¢. We assume that in 3D, the set {0}, includes all edges of
surface triangles as well. For any given lower (d — 1 or d — 2) dimensional
simplex o, its diametrical sphere is defined as the smallest sphere containing
all its vertices.

Boundary conforming Delaunay property:

> (Delaunay property): For any given d-simplex Xs C €, the interior of its
circumsphere does not contain any vertex x; € X.

> (Gabriel property) For any simplex o: C 0%, the interior of its diametrical
sphere does not contain any vertex x; € X.

Equivalent formulation in 2D:

> For any two triangles with a common edge, the sum of their respective angles
opposite to that edge is less or equal to 180°.

> For any triangle sharing an edge with 09, its angle opposite to that edge is
less or equal to 90°.



Restricted Voronoi diagram

» Given a boundary conforming Delaunay discretization of Q, the restricted
Voronoi diagram consists of the restricted Voronoi cells corresponding to
the node set X defined by

we=VieNQ={xe€Q:|lx— x| <|lx —x|Vx € X, # k}

» These restricted Voronoi cells are used as control volumes in a finite volume
discretization
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Piecewise linear description of computational domain with given point cloud




Delaunay triangulation of domain and triangle circumcenters.
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> Blue: triangle circumcenters
» Some boundary triangles have larger than 90° angles opposite to the
boundary = their circumcenters are outside of the domain



Boundary conforming Delaunay triangulation

» Automatically inserted additional points at the boundary (green dots)
> Restricted Voronoi cells (red).
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General approach to triangulations

» Obtain piecewise linear descriptiom of domain

> Call mesh generator (triangle, TetGen, NetGen ...) in order to obtain
triangulation

> Performe finite volume or finite element discretization of the problem.

Alternative way:

» Construction “by hand” on regular structures
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Partial Differential Equations



Dlfferential operators

» Bounded domain Q C R, with piecewise smooth boundary
> Scalar function v: Q — R

» Vector function v : Q — R?

> Write Jju = ‘Z—:’

» For a multindex o = (a1 . .. ag), write |a] = a1 + - - - + g and define

0% = é)){lﬂ%
Oiu
> Gradient grad =V: u— Vu = :
Oqu
Vi
> Divergence div=V-:v= | : —V-v=01vi + -+ Ogvy
Vd

> Laplace operator A =div-grad =V -V: v+ Au=01u+ -+ Odqu
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Lebesgue integral, L1(Q) |

Let © have a boundary which can be represented by continuous, piecewiese
smooth functions in local coordinate systems, without cusps and other+
degeneracies (more precisely: Lipschitz domain).

> Polygonal domains are Lipschitz.
Let C(Q2) be the set of continuous functions f : Q — R with compact
support.
For these functions, the Riemann integral fQ f(x)dx is well defined, and
[If]] == fQ |f(x)|dx provides a norm, and induces a metric

A Cauchy sequence is a sequence f, of functions where the norm of the
difference between two elements can be made arbitrarily small by increasing
the element numbers:

Ve >03IN eN:Vm,n>n,||fa —fal| <e

All convergent sequences of functions are Cauchy sequences

A metric space is complete if all Cauchy sequences of its element have a
limit within this space



Lebesgue integral, L1(Q) II

> Let L'(Q) be the completion of C.(Q) with respect to the metric defined by

the integral norm, i.e. “include” all limites of Cauchy sequences
Defined via sequences, fQ |f(x)|dx is defined for all functions in L}(Q).

Equality of L! functions is elusive as they are not necessarily continuous:
best what we can say is that they are equal "almost everywhere”.
Examples for Lebesgue integrable (measurable) functions:

> Bounded functions continuous except in a finite number of points
> Step functions

1, X > €
—(X=£)2 41, 0<x<€ 0 1, x>0
fe = € f(x) =
<) (%’“)271, —e<x<0 — f(x) 1, else
-1, x < —€

— =01

— =0.05
— =0.01
J — e=0.005
/o — =000
/1 =0.0001
035 —0.05 610 —0.05 0600 005

-10

010 015 020 025

15 /40



Spaces of integrable functions
> For 1 < p < o0, let LP(Q2) be the space of measureable functions such that

/Q|f(x)|”dx < oo

equipped with the norm

|mp=(1;am”w)”

> These spaces are Banach spaces, i.e. complete, normed vector spaces.

» The space L2(Q) is a Hilbert space, i.e. a Banach space equipped with a
scalar product (-, ) whose norm is induced by that scalar product, i.e.

[lu]| = v/(u, u). The scalar product in L? is
(r.) = | fdaton.
Q
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Green's theorem

> Green's theorem for smooth functions: Let u,v € C(Q) (continuously
differentiable). Then for n = (n; ... ny4) being the outward normal to €,

/ua,-vdX:/ uvn,-ds—/v&udx
Q o9 Q

In particular, if v =0 on 02 one has

/u&-vdxz —/ vOjudx
Q Q

17 /40



Weak derivative

» Let Lj,.(Q) the set of functions which are Lebesgue integrable on every
compact subset K C Q. Let C5°(2) be the set of functions infinitely
differentiable with zero values on the boundary.

For u € Li,.(Q) we define O;u by

/v@;udxz —/u@,-vdx Vv e GP(Q)
Q Q

and 0%u by

/v@audx:(—l)‘al/uafvdx Vv e G°(2)
Q Q

if these integrals exist.



Sobolev spaces

» For k>0 and 1 < p < oo, the Sobolev space W*P(Q) is the space
functions where all up to the k-th derivatives are in LP:

WHP(Q) = {u € LP(Q) : °u € LP(Q) V]a| < k}

with then norm

||U||vvk,p(n) = Z ||6a“||fp(n)

|| <k

» Alternatively, they can be defined as the completion of C* in the norm
||UHW‘<»P(Q)
> WJP(Q) is the completion of C§° in the norm [lullwr.p(q)

» The Sobolev spaces are Banach spaces.
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Fractional Sobolev spaces and traces

» For 0 < s < 1 define the fractional Sobolev space
WP(Q) = {u € LP(9Q) : L”(ﬁ € LP(Q x Q)}
[Ix = yl[*"
> Let H2(Q) = W22(Q)

» A priori it is hard to say what the value of a function from L on the
boundary is like.

For Lipschitz domains there exists unique continuous trace mapping
Yo : WHP(Q) — LP(9Q) where % 4 - = 1 such that

p

v

1
> Imy = W# P (6Q)
> Keryy = Wol‘p(Q)



Sobolev spaces of square integrable functions
> HY(Q) = W5?(Q) with the scalar product

(U, V) (e Z /8%8% dx
Q

|| <k

is a Hilbert space.
> H*(Q)o = W,**(Q) with the scalar product

(U, V) Z /a‘“ua“v dx
Q

|| <k

is a Hilbert space as well.

> The initally most important:
> [2(Q) with the scalar product (u, v)i2() = fQ uv dx

> H(Q) with the scalar product (u, Vi) = fQ(uv + Vu-Vv)dx
> H}(Q) with the scalar product (u, Vi) = fQ(Vu - Vv) dx
o

> Inequalities:
|(u, v)]* < (u,u)(v,v) Cauchy-Schwarz

[lu+ v|| <||ul| +||v|| Triangle inequality
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Heat conduction revisited: Derivation of weak formulation

> Sobolev space theory provides the necessary framework to formulate
existence and uniqueness of solutions of PDEs.

» Heat conduction equation with homogeneous Dirichlet boundary conditions:

-V - AXNVu=finQ
u=0o0n 0

Multiply and integrate with an arbitrary test function from C5°(Q):

—/V~>\Vuvdxz fv dx
Q

/)\VUVV dx = fv dx
Q

S— 55—
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Weak formulation of homogeneous Dirichlet problem
> Search u € H}(Q) such that

/)\Vqudx = / fvdx Vv € Hy(Q)
Q

Q
» Then,

a(u,v) = / AVuVv dx
Q
is a self-adjoint bilinear form defined on the Hilbert space Hg(%).

It is bounded due to Cauchy-Schwarz:

|a(u, v)| = \MI/VqudXI < Hullbz) - VIl
Q

> f(v) = fQ fv dx is a linear functional on H}(f2). For Hilbert spaces V the
dual space V' (the space of linear functionals) can be identified with the
space itself.
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The Lax-Milgram lemma

Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear form,
and f a linear functional on V. Assume a is coercive, i.e.

o> 0:Vue V,a(u,u) > al|ul}.

Then the problem: find u € V such that

a(u,v) =f(v)VvevVv

admits one and only one solution with an a priori estimate

1
llullv < =[]y
«
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Heat conduction revisited

Let A > 0. Then the weak formulation of the heat conduction problem: search
u € H}(Q) such that

/)\Vqudx: / fv dx Vv € Hp(Q)
Q

Q

has an unique solution.

Proof: a(u, v) is cocercive:

a(u,v) = / AVuVudx = /\”u"i/é(ﬂ)
Q
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Weak formulation of inhomogeneous Dirichlet problem

V- AVu=finQ
u=gond

If g is smooth enough, there exists a lifting uy, € H'(Q) such that ug|aq = g.

Then, we can re-formulate:

—V - AV(u—ug)=Ff+ V- AV inQ
u—ug=0o0n 09N

» Search u € H'(Q) such that

u=tug+¢
/)\V(;SVvdx:/fvder/)\Vung Vv € Hy(Q)
Q Q Q

Here, necessarily, ¢ € Hy(Q) and we can apply the theory for the
homogeneous Dirichlet problem.



Weak formulation of Robin problem

-V -AVu=finQ
AVu-n+a(u—g)=00n9Q

Multiply and integrate with an arbitrary test function from CZ°(Q):

—/(V~)\Vu)vdx:/fvdx
Q

/AVqudx—F/ (AVu-n vds—/

Q Fole}
/AVqudx—i—/ auv ds—/
Q

fv dx

fvdx + / agv ds
aQ
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Weak formulation of Robin problem Il

> Let

a®(u,v) ::/AVUVde—}—/ auv ds
Q

a0
fR(v) ::/fvdx—l—/ agv ds
Q Folo)

The integrals over 9Q must be understood in the sense of the trace space
H2(09).
» Search u € H'(Q) such that
a®(u,v) = FR(v) Vv € H}(Q)

> If A\ >0 and a > 0 then a”(u, v) is cocercive.



Neumann boundary conditions
Homogeneous Neumann:

AVu-n=0o0n09N

Inhomogeneous Neumann:

AVu-n=gondQ

Weak formulation:

> Search u € H'(Q) such that

/Vqudx:/ gvds Vv € H'(Q)
w o0

Not coercive due to the fact that we can add an arbitrary constant to u and
a(u, u) stays the same!
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Further discussion on boundary conditions

» Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero, the
binlinear form becomes coercive.

» Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

» Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

» Coefficients A\, «... can be functions.



The Dirichlet penalty method
» Robin problem: search u, € H'(Q) such that

/)\VuaVvdx+/ AUy V ds:/fvdx+/ agvdvaeHl(Q)
Q a9 Q 9

» Dirichlet problem: search u € H*(Q) such that

u=uz+¢ whereuglon =g
//\vwvdx = / fvdXJr/)\Vung Vv € Hy(Q)
Q Q Q

> Penalty limit:

lim ua =u
a—r 00
> Formally, the convergence rate is quite low
> Implementing Dirichlet boundary conditions directly leads to a number of
technical problems
» Implementing the penalty method is technically much simpler
» Proper way of handling the parameter leads to exact fulfillment of Dirichlet
boundary condition in the floating point precision



The Galerkin method |

» Weak formulations “live” in Hilbert spaces which essentially are infinite
dimensional

» For computer representations we need finite dimensional approximations

» The finite volume method provides one possible framework which in many
cases is close to physical intuition. However, its error analysis is hard.

» The Galerkin method and its modifications provide a general scheme for the
derivation of finite dimensional appoximations



The Galerkin method Il

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear
form, and f a linear functional on V. Assume a is coercive with coercivity
constant «, and continuity constant ~.

» Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search up € V}, such that

a(uh, Vh) = f(Vh) Vv, € V,

By Lax-Milgram, this problem has a unique solution as well.



Céa’s lemma

» What is the connection between v and up, ?
> Let v, € V), be arbitrary. Then

IN

allu— up|* < a(u — up, u— up)  (Coercivity)

a(u— up,u—vy) + a(u — un, v — up)

a(u— up,u—vy) (Galerkin Orthogonality)

IN

Y||lu — upl| - ||u— va|] (Boundedness)
> As a result
lu—wll <L inf [ju— v

Q vyeV),

» Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace V.
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From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
> Then, we have the representation up = )" | uj¢;
» In order to search up € V}, such that

a(uh, Vh) = f(vh) Yvp, € V)

it is actually sufficient to require
a(un, ¢i) = f(¢1) (i=1...n)

a (Z Uj¢j7¢f> =f(¢i)(i=1...n)
Za(d)jvd)i)uj =f(¢:))(i=1...n)
AU=F

with A = (a;), ay = a(¢i, ¢;), F = (f),fi = F(¢:), U=
» Matrix dimension is n X n. Matrix sparsity ?

(ui).

35

40



Obtaining a finite dimensional subspace

> Let Q= (a,b) CR!
> Let a(u,v) = fn A(x)VuVvdx.

> Analysis | provides a finite dimensional subspace: the space of sin/cos
functions up to a certain frequency = spectral method

» Ansatz functions have global support = full n x n matrix
» OTOH: rather fast convergence for smooth data
» Generalization to higher dimensions possible

» Big problem in irregular domains: we need the eigenfunction basis of some
operator. ..

> Spectral methods are successful in cases where one has regular geometry
structures and smooth/constant coefficients — e.g. “Spectral Einstein Code
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The finite element idea

Choose basis functions with local support. In this case, the matrix becomes
sparse, as only integrals of basis function pairs with overlapping support
contribute to the matrix.

Linear finite elements in Q = (a, b) C R:
Partition a=x1 < x <---<x,=0b

Basis functions (for i =1...n)

::i);_—ll’ i> 1,X S (X,',l,X,')
p— Xj. —X .
di(x) = ﬁv i< n,x € (xi,xis1)
0, else

Any function uy € Vi, = span{¢i ... ¢n} is piecewise linear, and the
coefficients in the representation uy = | | uj¢; are the values up(x;).

Fortunately, we are working with a weak formulation, and weak derivatives
are well defined !



1D matrix elements

(A =1, xiz1 — xi = h) - The integrals are nonzero for i = j,i+1=ji—1=j
Letj=i+1

Xit1 X+ q
aj = a(¢i, pit1) = / V§iVejdx = / ViVedx = _/ ﬁdx
Q x %

i i

= %dx

Similarly, a(¢,,¢,71) — _%

For1<i<N:
Xi+1 Xi+1 1
dij = a(gb,‘,d),') /qu,'Vd);dX = / V¢;V¢;dx = / ﬁdX
Q Xi—1 Xi—1
= %dx

Fori=1ori=N, a(¢i, ¢:) = 7



1D matrix elements Il

Adding the boundary integrals yields

ot} -}
1 2 _1
h h h
_1 2 _1
h h h
A: -
_1 2 _1
h h h
_1 2
h _hl
h

. the same matrix as for the finite volume method. ..

Bl

==
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Where to go from here

» Higher space dimensions
> Piecewise polynomials instead of piecewise linear functions



