Weak formulations and finite elements Scientific Computing Winter 2016/2017 Lecture 16

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de



# Recap (Delaunay, Sobolev spaces)

# Delaunay triangulations

- Given a finite point set  $X \subset \mathbb{R}^d$ . Then there exists simplicial a complex called *Delaunay triangulation* of this point set such that
  - X is the set of vertices of the triangulation
  - The union of all its simplices is the convex hull of X.
  - (Delaunay property): For any given *d*-simplex Σ ⊂ Ω belonging to the triangulation, the interior of its circumsphere does not contain any vertex x<sub>k</sub> ∈ X.
- Assume that the points of X are in general position, i.e. no n + 2 points lie on one sphere. Then the Delaunay triangulation is unique.

## Voronoi diagram

• Given a finite point set  $X \subset \mathbb{R}^d$ . Then the Voronoi diagram is a partition of  $\mathbb{R}^d$  into convex nonoverlapping polygonal regions defined as

$$\mathbb{R}^{d} = \bigcup_{k=1}^{N_{x}} V_{k}$$
$$V_{k} = \{x \in \mathbb{R}^{d} : ||x - x_{k}|| < ||x - x_{l}|| \forall x_{l} \in X, l \neq k\}$$

## Voronoi - Delaunay duality

- ► Given a point set X ⊂ ℝ<sup>d</sup> in general position. Then its Delaunay triangulation and its Voronoi diagram are dual to each other:
  - Two Voronoi cells V<sub>k</sub>, V<sub>l</sub> have a common facet if and only if x<sub>k</sub>x<sub>l</sub> is an edge of the triangulation.

# Boundary conforming Delaunay triangulations

- Domain  $\Omega \subset \mathbb{R}^n$  (we will discuss only n = 2) with polygonal boundary  $\partial \Omega$ .
- Partition (triangulation) Ω = U<sup>N<sub>Σ</sub></sup><sub>s=1</sub> Σ into non-overlapping simplices Σ<sub>s</sub> such that this partition represents a simplicial complex. Regard the set of nodes X = {x<sub>1</sub>...x<sub>N<sub>x</sub></sub>}.
- It induces a partition of the boundary into lower dimensional simplices:  $\partial \Omega = \bigcup_{t=1}^{N_{\sigma}} \sigma_t$ . We assume that in 3D, the set  $\{\sigma_t\}_{t=1}^{N_{\sigma}}$  includes all edges of surface triangles as well. For any given lower (d-1 or d-2) dimensional simplex  $\sigma$ , its *diametrical sphere* is defined as the smallest sphere containing all its vertices.
- Boundary conforming Delaunay property:
  - Clearing (Delaunay property): For any given *d*-simplex Σ<sub>s</sub> ⊂ Ω, the interior of its circumsphere does not contain any vertex x<sub>k</sub> ∈ X.
  - (Gabriel property) For any simplex σ<sub>t</sub> ⊂ ∂Ω, the interior of its diametrical sphere does not contain any vertex x<sub>k</sub> ∈ X.
- Equivalent formulation in 2D:
  - For any two triangles with a common edge, the sum of their respective angles opposite to that edge is less or equal to 180°.
  - For any triangle sharing an edge with  $\partial\Omega$ , its angle opposite to that edge is less or equal to 90°.

## Restricted Voronoi diagram

 Given a boundary conforming Delaunay discretization of Ω, the *restricted* Voronoi diagram consists of the *restricted Voronoi cells* corresponding to the node set X defined by

$$\omega_k = V_k \cap \Omega = \{x \in \Omega : ||x - x_k|| < ||x - x_l|| \forall x_l \in X, l \neq k\}$$

 These restricted Voronoi cells are used as control volumes in a finite volume discretization

## Piecewise linear description of computational domain with given point cloud



## Delaunay triangulation of domain and triangle circumcenters.



- Blue: triangle circumcenters
- $\blacktriangleright$  Some boundary triangles have larger than 90° angles opposite to the boundary  $\Rightarrow$  their circumcenters are outside of the domain

# Boundary conforming Delaunay triangulation



Automatically inserted additional points at the boundary (green dots)

Restricted Voronoi cells (red).

# General approach to triangulations

- Obtain piecewise linear descriptiom of domain
- ► Call mesh generator (triangle, TetGen, NetGen . . .) in order to obtain triangulation
- Performe finite volume or finite element discretization of the problem.

Alternative way:

Construction "by hand" on regular structures

Partial Differential Equations

### **DIfferential operators**

- ▶ Bounded domain  $\Omega \subset \mathbb{R}^d$ , with piecewise smooth boundary
- Scalar function  $u: \Omega \to \mathbb{R}$
- Vector function  $\mathbf{v}: \Omega \to \mathbb{R}^d$
- Write  $\partial_i u = \frac{\partial u}{x_i}$
- For a multindex  $\alpha = (\alpha_1 \dots \alpha_d)$ , write  $|\alpha| = \alpha_1 + \dots + \alpha_d$  and define  $\partial^{\alpha} u = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$ Gradient grad =  $\nabla$ :  $u \mapsto \nabla u = \begin{pmatrix} \partial_1 u \\ \vdots \\ \partial_d u \end{pmatrix}$ Divergence div =  $\nabla \cdot$ :  $\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \mapsto \nabla \cdot \mathbf{v} = \partial_1 v_1 + \dots + \partial_d v_d$ Laplace exerctor  $\mathbf{A} = \operatorname{div}$  grad =  $\nabla$ .  $\nabla v = \partial_1 v_1 + \dots + \partial_d v_d$

► Laplace operator  $\Delta = \operatorname{div} \cdot \operatorname{grad} = \nabla \cdot \nabla$ :  $u \mapsto \Delta u = \partial_{11}u + \cdots + \partial_{dd}u$ 

# Lebesgue integral, $L^1(\Omega)$ l

- Let Ω have a boundary which can be represented by continuous, piecewiese smooth functions in local coordinate systems, without cusps and other+ degeneracies (more precisely: Lipschitz domain).
  - Polygonal domains are Lipschitz.
- Let  $C_c(\Omega)$  be the set of continuous functions  $f: \Omega \to \mathbb{R}$  with compact support.
- For these functions, the Riemann integral  $\int_{\Omega} f(x) dx$  is well defined, and  $||f|| := \int_{\Omega} |f(x)| dx$  provides a norm, and induces a metric
- ► A Cauchy sequence is a sequence *f<sub>n</sub>* of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall m, n > n, ||f_n - f_m|| < \varepsilon$$

- All convergent sequences of functions are Cauchy sequences
- A metric space is *complete* if all Cauchy sequences of its element have a limit within this space

# Lebesgue integral, $L^1(\Omega)$ II

- Let  $L^1(\Omega)$  be the completion of  $C_c(\Omega)$  with respect to the metric defined by the integral norm, i.e. "include" all limites of Cauchy sequences
- Defined via sequences,  $\int_{\Omega} |f(x)| dx$  is defined for all functions in  $L^{1}(\Omega)$ .
- Equality of L<sup>1</sup> functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- Examples for Lebesgue integrable (measurable) functions:
  - Bounded functions continuous except in a finite number of points
  - Step functions

$$f_{\epsilon}(x) = \begin{cases} 1, & x \ge \epsilon \\ -(\frac{x-\epsilon}{\epsilon})^2 + 1, & 0 \le x < \epsilon \\ (\frac{x+\epsilon}{\epsilon})^2 - 1, & -\epsilon \le x < 0 \\ -1, & x < -\epsilon \end{cases} f(x) = \begin{cases} 1, & x \ge 0 \\ -1, & \text{else} \end{cases}$$

#### Spaces of integrable functions

• For  $1 \leq p \leq \infty$ , let  $L^{p}(\Omega)$  be the space of measureable functions such that

$$\int_{\Omega} |f(x)|^p dx < \infty$$

equipped with the norm

$$||f||_{p} = \left(\int_{\Omega} |f(x)|^{p} dx\right)^{\frac{1}{p}}$$

- ▶ These spaces are *Banach spaces*, i.e. complete, normed vector spaces.
- The space L<sup>2</sup>(Ω) is a *Hilbert space*, i.e. a Banach space equipped with a scalar product (·, ·) whose norm is induced by that scalar product, i.e. ||u|| = √(u, u). The scalar product in L<sup>2</sup> is

$$(f,g)=\int_{\Omega}f(x)g(x)dx.$$

#### Green's theorem

Green's theorem for smooth functions: Let u, v ∈ C<sup>1</sup>(Ω̄) (continuously differentiable). Then for n = (n<sub>1</sub>...n<sub>d</sub>) being the outward normal to Ω,

$$\int_{\Omega} u\partial_i v dx = \int_{\partial\Omega} uv n_i ds - \int_{\Omega} v\partial_i u dx$$

In particular, if v = 0 on  $\partial \Omega$  one has

$$\int_{\Omega} u \partial_i v dx = -\int_{\Omega} v \partial_i u dx$$

#### Weak derivative

Let L<sup>1</sup><sub>loc</sub>(Ω) the set of functions which are Lebesgue integrable on every compact subset K ⊂ Ω. Let C<sup>∞</sup><sub>0</sub>(Ω) be the set of functions infinitely differentiable with zero values on the boundary.

For  $u \in L^1_{loc}(\Omega)$  we define  $\partial_i u$  by

$$\int_{\Omega} v \partial_i u dx = - \int_{\Omega} u \partial_i v dx \quad \forall v \in C_0^{\infty}(\Omega)$$

and  $\partial^{\alpha} u$  by

$$\int_{\Omega} v \partial^{\alpha} u dx = (-1)^{|\alpha|} \int_{\Omega} u \partial_i v dx \quad \forall v \in C_0^{\infty}(\Omega)$$

if these integrals exist.

#### Sobolev spaces

For k≥ 0 and 1 ≤ p < ∞, the Sobolev space W<sup>k,p</sup>(Ω) is the space functions where all up to the k-th derivatives are in L<sup>p</sup>:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \partial^{\alpha} u \in L^p(\Omega) \; \forall |\alpha| \le k \}$$

with then norm

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

- ▶ Alternatively, they can be defined as the completion of  $C^{\infty}$  in the norm  $||u||_{W^{k,p}(\Omega)}$
- $W_0^{k,p}(\Omega)$  is the completion of  $C_0^{\infty}$  in the norm  $||u||_{W^{k,p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

#### Fractional Sobolev spaces and traces

▶ For 0 < s < 1 define the *fractional Sobolev space* 

$$W^{s,p}(\Omega) = \left\{ u \in L^p(\Omega) : rac{u(x) - u(y)}{||x - y||^{s + rac{d}{p}}} \in L^p(\Omega imes \Omega) 
ight\}$$

- Let  $H^{\frac{1}{2}}(\Omega) = W^{\frac{1}{2},2}(\Omega)$
- A priori it is hard to say what the value of a function from L<sup>p</sup> on the boundary is like.
- ► For Lipschitz domains there exists unique continuous *trace mapping*  $\gamma_0: W^{1,p}(\Omega) \to L^p(\partial\Omega)$  where  $\frac{1}{p} + \frac{1}{p'} = 1$  such that

• 
$$\operatorname{Im}\gamma_0 = W_{p'}^{\frac{1}{p'},p}(\partial\Omega)$$
  
•  $\operatorname{Ker}\gamma_0 = W_0^{1,p}(\Omega)$ 

## Sobolev spaces of square integrable functions

•  $H^k(\Omega) = W^{k,2}(\Omega)$  with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, dx$$

is a Hilbert space.

•  $H^k(\Omega)_0 = W_0^{k,2}(\Omega)$  with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, dx$$

is a Hilbert space as well.

- The initally most important:
  - $L^2(\Omega)$  with the scalar product  $(u, v)_{L^2(\Omega)} = \int_{\Omega} uv \ dx$
  - $H^1(\Omega)$  with the scalar product  $(u, v)_{H^1(\Omega)} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) dx$
  - $H_0^1(\Omega)$  with the scalar product  $(u, v)_{H_0^1(\Omega)} = \int_{\Omega} (\nabla u \cdot \nabla v) dx$

Inequalities:

$$\begin{split} |(u,v)|^2 &\leq (u,u)(v,v) \quad \text{Cauchy-Schwarz} \\ ||u+v|| &\leq ||u||+||v|| \quad \text{Triangle inequality} \end{split}$$

### Heat conduction revisited: Derivation of weak formulation

- Sobolev space theory provides the necessary framework to formulate existence and uniqueness of solutions of PDEs.
- Heat conduction equation with homogeneous Dirichlet boundary conditions:

 $-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$  $u = 0 \text{ on } \partial \Omega$ 

Multiply and integrate with an arbitrary *test function* from  $C_0^{\infty}(\Omega)$ :

$$-\int_{\Omega} \nabla \cdot \lambda \nabla uv \, dx = \int_{\Omega} fv \, dx$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} fv \, dx$$

## Weak formulation of homogeneous Dirichlet problem

• Search  $u \in H_0^1(\Omega)$  such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} fv \, dx \, \forall v \in H^1_0(\Omega)$$

► Then,

$$a(u,v) := \int_{\Omega} \lambda \nabla u \nabla v \, dx$$

is a self-adjoint bilinear form defined on the Hilbert space  $H_0^1(\Omega)$ .

It is bounded due to Cauchy-Schwarz:

$$|\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v})| = |\lambda||\int_{\Omega} 
abla \boldsymbol{u} 
abla \boldsymbol{v} \, \boldsymbol{d} \boldsymbol{x}| \leq ||\boldsymbol{u}||_{H^1_0(\Omega)} \cdot ||\boldsymbol{v}||_{H^1_0(\Omega)}$$

f(v) = ∫<sub>Ω</sub> fv dx is a linear functional on H<sup>1</sup><sub>0</sub>(Ω). For Hilbert spaces V the dual space V' (the space of linear functionals) can be identified with the space itself.

#### The Lax-Milgram lemma

Let V be a Hilbert space. Let  $a: V \times V \to \mathbb{R}$  be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$\exists \alpha > 0 : \forall u \in V, a(u, u) \geq \alpha ||u||_{V}^{2}.$$

Then the problem: find  $u \in V$  such that

$$a(u,v)=f(v) \ \forall v \in V$$

admits one and only one solution with an a priori estimate

$$||u||_V \le \frac{1}{\alpha} ||f||_{V'}$$

#### Heat conduction revisited

Let  $\lambda > 0$ . Then the weak formulation of the heat conduction problem: search  $u \in H^1_0(\Omega)$  such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} f v \, dx \, \forall v \in H^1_0(\Omega)$$

has an unique solution.

**Proof**: a(u, v) is cocercive:

$$a(u, v) = \int_{\Omega} \lambda \nabla u \nabla u \, dx = \lambda ||u||_{H_0^1(\Omega)}^2$$

#### Weak formulation of inhomogeneous Dirichlet problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

If g is smooth enough, there exists a lifting  $u_g \in H^1(\Omega)$  such that  $u_g|_{\partial\Omega} = g$ . Then, we can re-formulate:

$$abla 
abla 
abla 
abla 
abla (u - u_g) = f + 
abla \cdot \lambda 
abla u_g \text{ in } \Omega$$
  
 $u - u_g = 0 \text{ on } \partial \Omega$ 

• Search  $u \in H^1(\Omega)$  such that

$$u = u_{g} + \phi$$

$$\int_{\Omega} \lambda \nabla \phi \nabla v \, dx = \int_{\Omega} f v \, dx + \int_{\Omega} \lambda \nabla u_{g} \nabla v \; \forall v \in H^{1}_{0}(\Omega)$$

Here, necessarily,  $\phi \in H^1_0(\Omega)$  and we can apply the theory for the homogeneous Dirichlet problem.

## Weak formulation of Robin problem

$$-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$$
$$\lambda \nabla u \cdot \mathbf{n} + \alpha (u - g) = 0 \text{ on } \partial \Omega$$

Multiply and integrate with an arbitrary *test function* from  $C_c^{\infty}(\Omega)$ :

$$-\int_{\Omega} (\nabla \cdot \lambda \nabla u) v \, dx = \int_{\Omega} f v \, dx$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, dx + \int_{\partial \Omega} (\lambda \nabla u \cdot \mathbf{n}) v ds = \int_{\Omega} f v \, dx$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, dx + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, dx + \int_{\partial \Omega} \alpha g v \, ds$$

## Weak formulation of Robin problem II

Let

$$a^{R}(u, v) := \int_{\Omega} \lambda \nabla u \nabla v \, dx + \int_{\partial \Omega} \alpha u v \, ds$$
  
 $f^{R}(v) := \int_{\Omega} fv \, dx + \int_{\partial \Omega} \alpha gv \, ds$ 

The integrals over  $\partial \Omega$  must be understood in the sense of the trace space  $H^{\frac{1}{2}}(\partial \Omega)$ .

• Search  $u \in H^1(\Omega)$  such that

$$a^{R}(u,v) = f^{R}(v) \ \forall v \in H^{1}(\Omega)$$

• If  $\lambda > 0$  and  $\alpha > 0$  then  $a^{R}(u, v)$  is cocercive.

#### Neumann boundary conditions

Homogeneous Neumann:

 $\lambda \nabla u \cdot \mathbf{n} = 0 \text{ on } \partial \Omega$ 

Inhomogeneous Neumann:

 $\lambda \nabla u \cdot \mathbf{n} = g \text{ on } \partial \Omega$ 

Weak formulation:

• Search  $u \in H^1(\Omega)$  such that

$$\int_{\omega} 
abla u 
abla extsf{vdx} = \int_{\partial \Omega} extsf{gvds} \ orall extsf{v} \in H^1(\Omega)$$

Not coercive due to the fact that we can add an arbitrary constant to u and a(u, u) stays the same!

# Further discussion on boundary conditions

Mixed boundary conditions:

One can have differerent boundary conditions on different parts of the boundary. In particular, if Dirichlet or Robin boundary conditions are applied on at least a part of the boundary of measure larger than zero, the binlinear form becomes coercive.

- Natural boundary conditions: Robin, Neumann These are imposed in a "natural" way in the weak formulation
- Essential boundary conditions: Dirichlet Explicitely imposed on the function space
- Coefficients  $\lambda, \alpha \dots$  can be functions.

#### The Dirichlet penalty method

▶ Robin problem: search  $u_{\alpha} \in H^1(\Omega)$  such that

$$\int_{\Omega} \lambda \nabla u_{\alpha} \nabla v \, dx + \int_{\partial \Omega} \alpha u_{\alpha} v \, ds = \int_{\Omega} f v \, dx + \int_{\partial \Omega} \alpha g v \, ds \forall v \in H^{1}(\Omega)$$

• Dirichlet problem: search  $u \in H^1(\Omega)$  such that

$$u = u_g + \phi \quad \text{where } u_g|_{\partial\Omega} = g$$
$$\int_{\Omega} \lambda \nabla \phi \nabla v \, dx = \int_{\Omega} f v \, dx + \int_{\Omega} \lambda \nabla u_g \nabla v \quad \forall v \in H^1_0(\Omega)$$

Penalty limit:

$$\lim_{\alpha\to\infty} u_\alpha = u$$

- Formally, the convergence rate is quite low
- Implementing Dirichlet boundary conditions directly leads to a number of technical problems
- Implementing the penalty method is technically much simpler
- Proper way of handling the parameter leads to exact fulfillment of Dirichlet boundary condition in the floating point precision

# The Galerkin method I

- Weak formulations "live" in Hilbert spaces which essentially are infinite dimensional
- ▶ For computer representations we need finite dimensional approximations
- The finite volume method provides one possible framework which in many cases is close to physical intuition. However, its error analysis is hard.
- ► The Galerkin method and its modifications provide a general scheme for the derivation of finite dimensional appoximations

## The Galerkin method II

- Let V be a Hilbert space. Let  $a: V \times V \to \mathbb{R}$  be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant  $\alpha$ , and continuity constant  $\gamma$ .
- Continuous problem: search  $u \in V$  such that

$$a(u,v) = f(v) \ \forall v \in V$$

- Let  $V_h \subset V$  be a finite dimensional subspace of V
- "Discrete" problem  $\equiv$  Galerkin approximation: Search  $u_h \in V_h$  such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

# Céa's lemma

- What is the connection between u and  $u_h$ ?
- Let  $v_h \in V_h$  be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad \text{(Coercivity)} \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad \text{(Galerkin Orthogonality)} \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad \text{(Boundedness)} \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

• Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace  $V_h$ .

#### From the Galerkin method to the matrix equation

- Let  $\phi_1 \dots \phi_n$  be a set of basis functions of  $V_h$ .
- Then, we have the representation  $u_h = \sum_{i=1}^n u_i \phi_i$
- ▶ In order to search  $u_h \in V_h$  such that

$$a(u_h,v_h)=f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with 
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$
  
Matrix dimension is  $n \times n$ . Matrix sparsity ?

## Obtaining a finite dimensional subspace

- Let  $\Omega = (a, b) \subset \mathbb{R}^1$
- Let  $a(u, v) = \int_{\Omega} \lambda(x) \nabla u \nabla v dx$ .
- ► Analysis I provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support  $\Rightarrow$  full  $n \times n$  matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

## The finite element idea

- Choose basis functions with local support. In this case, the matrix becomes sparse, as only integrals of basis function pairs with overlapping support contribute to the matrix.
- Linear finite elements in  $\Omega = (a, b) \subset \mathbb{R}^1$ :
- Partition  $a = x_1 \leq x_2 \leq \cdots \leq x_n = b$
- Basis functions (for i = 1...n)

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & i > 1, x \in (x_{i-1}, x_i) \\ \frac{x_{i+1} - x_i}{x_{i+1} - x_i}, & i < n, x \in (x_i, x_{i+1}) \\ 0, & \text{else} \end{cases}$$

- Any function u<sub>h</sub> ∈ V<sub>h</sub> = span{φ<sub>1</sub>...φ<sub>n</sub>} is piecewise linear, and the coefficients in the representation u<sub>h</sub> = ∑<sup>n</sup><sub>i=1</sub> u<sub>i</sub>φ<sub>i</sub> are the values u<sub>h</sub>(x<sub>i</sub>).
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined !

#### 1D matrix elements

 $(\lambda = 1, x_{i+1} - x_i = h)$  - The integrals are nonzero for i = j, i + 1 = j, i - 1 = jLet j = i + 1

$$egin{aligned} a_{ij} &= a(\phi_i, \phi_{i+1}) = \int_\Omega 
abla \phi_i 
abla \phi_j dx = \int_{x_i}^{x_{i+1}} 
abla \phi_i 
abla \phi_j dx = -\int_{x_i}^{x_{i+1}} rac{1}{h^2} dx \ &= rac{1}{h} dx \end{aligned}$$

Similarly, 
$$a(\phi_i, \phi_{i-1}) = -\frac{1}{h}$$
  
For  $1 < i < N$ :

$$\begin{aligned} a_{ii} &= a(\phi_i, \phi_i) = \int_{\Omega} \nabla \phi_i \nabla \phi_i dx = \int_{x_{i-1}}^{x_{i+1}} \nabla \phi_i \nabla \phi_i dx = \int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^2} dx \\ &= \frac{2}{h} dx \end{aligned}$$

For i = 1 or i = N,  $a(\phi_i, \phi_i) = \frac{1}{h}$ 

# 1D matrix elements II

Adding the boundary integrals yields

$$A = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \end{pmatrix}$$

... the same matrix as for the finite volume method...

# Where to go from here

- Higher space dimensions
- Piecewise polynomials instead of piecewise linear functions