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Recap (Delaunay, Sobolev spaces)
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Delaunay triangulations

I Given a finite point set X ⊂ Rd . Then there exists simplicial a complex
called Delaunay triangulation of this point set such that

I X is the set of vertices of the triangulation
I The union of all its simplices is the convex hull of X .
I (Delaunay property): For any given d-simplex Σ ⊂ Ω belonging to the

triangulation, the interior of its circumsphere does not contain any vertex
xk ∈ X .

I Assume that the points of X are in general position, i.e. no n + 2 points lie
on one sphere. Then the Delaunay triangulation is unique.
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Voronoi diagram

I Given a finite point set X ⊂ Rd . Then the Voronoi diagram is a partition of
Rd into convex nonoverlapping polygonal regions defined as

Rd =

Nx⋃
k=1

Vk

Vk = {x ∈ Rd : ||x − xk || < ||x − xl ||∀xl ∈ X , l 6= k}
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Voronoi - Delaunay duality

I Given a point set X ⊂ Rd in general position. Then its Delaunay
triangulation and its Voronoi diagram are dual to each other:

I Two Voronoi cells Vk ,Vl have a common facet if and only if xkxl is an edge
of the triangulation.
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Boundary conforming Delaunay triangulations

I Domain Ω ⊂ Rn (we will discuss only n = 2) with polygonal boundary ∂Ω.
I Partition (triangulation) Ω =

⋃NΣ

s=1 Σ into non-overlapping simplices Σs
such that this partition represents a simplicial complex. Regard the set of
nodes X = {x1 . . . xNx }.

I It induces a partition of the boundary into lower dimensional simplices:
∂Ω =

⋃Nσ
t=1 σt . We assume that in 3D, the set {σt}Nσ

t=1 includes all edges of
surface triangles as well. For any given lower (d − 1 or d − 2) dimensional
simplex σ, its diametrical sphere is defined as the smallest sphere containing
all its vertices.

I Boundary conforming Delaunay property:
I (Delaunay property): For any given d-simplex Σs ⊂ Ω, the interior of its

circumsphere does not contain any vertex xk ∈ X .
I (Gabriel property) For any simplex σt ⊂ ∂Ω, the interior of its diametrical

sphere does not contain any vertex xk ∈ X .
I Equivalent formulation in 2D:

I For any two triangles with a common edge, the sum of their respective angles
opposite to that edge is less or equal to 180◦.

I For any triangle sharing an edge with ∂Ω, its angle opposite to that edge is
less or equal to 90◦.

6 / 40



Restricted Voronoi diagram

I Given a boundary conforming Delaunay discretization of Ω, the restricted
Voronoi diagram consists of the restricted Voronoi cells corresponding to
the node set X defined by

ωk = Vk ∩ Ω = {x ∈ Ω : ||x − xk || < ||x − xl ||∀xl ∈ X , l 6= k}

I These restricted Voronoi cells are used as control volumes in a finite volume
discretization
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Piecewise linear description of computational domain with given point cloud
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Delaunay triangulation of domain and triangle circumcenters.

I Blue: triangle circumcenters
I Some boundary triangles have larger than 90◦ angles opposite to the

boundary ⇒ their circumcenters are outside of the domain
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Boundary conforming Delaunay triangulation

I Automatically inserted additional points at the boundary (green dots)
I Restricted Voronoi cells (red).
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General approach to triangulations

I Obtain piecewise linear descriptiom of domain
I Call mesh generator (triangle, TetGen, NetGen . . .) in order to obtain

triangulation
I Performe finite volume or finite element discretization of the problem.

Alternative way:

I Construction “by hand” on regular structures
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Partial Differential Equations
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DIfferential operators

I Bounded domain Ω ⊂ Rd , with piecewise smooth boundary
I Scalar function u : Ω→ R
I Vector function v : Ω→ Rd

I Write ∂iu = ∂u
xi

I For a multindex α = (α1 . . . αd ), write |α| = α1 + · · ·+ αd and define
∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d

I Gradient grad = ∇: u 7→ ∇u =

∂1u...
∂du


I Divergence div = ∇· : v =

v1
...
vd

 7→ ∇ · v = ∂1v1 + · · ·+ ∂dvd

I Laplace operator ∆ = div · grad = ∇ · ∇: u 7→ ∆u = ∂11u + · · ·+ ∂ddu
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Lebesgue integral, L1(Ω) I

I Let Ω have a boundary which can be represented by continuous, piecewiese
smooth functions in local coordinate systems, without cusps and other+
degeneracies (more precisely: Lipschitz domain).

I Polygonal domains are Lipschitz.
I Let Cc (Ω) be the set of continuous functions f : Ω→ R with compact

support.
I For these functions, the Riemann integral

∫
Ω
f (x)dx is well defined, and

||f || :=
∫

Ω
|f (x)|dx provides a norm, and induces a metric

I A Cauchy sequence is a sequence fn of functions where the norm of the
difference between two elements can be made arbitrarily small by increasing
the element numbers:

∀ε > 0 ∃N ∈ N : ∀m, n > n, ||fn − fm|| < ε

I All convergent sequences of functions are Cauchy sequences
I A metric space is complete if all Cauchy sequences of its element have a

limit within this space
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Lebesgue integral, L1(Ω) II
I Let L1(Ω) be the completion of Cc (Ω) with respect to the metric defined by

the integral norm, i.e. “include” all limites of Cauchy sequences
I Defined via sequences,

∫
Ω
|f (x)|dx is defined for all functions in L1(Ω).

I Equality of L1 functions is elusive as they are not necessarily continuous:
best what we can say is that they are equal “almost everywhere”.

I Examples for Lebesgue integrable (measurable) functions:
I Bounded functions continuous except in a finite number of points
I Step functions

fε(x) =


1, x ≥ ε
−( x−ε

ε
)2 + 1, 0 ≤ x < ε

( x+ε
ε

)2 − 1, −ε ≤ x < 0
−1, x < −ε

ε→0−→ f (x) =

{
1, x ≥ 0
−1, else
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Spaces of integrable functions

I For 1 ≤ p ≤ ∞, let Lp(Ω) be the space of measureable functions such that

∫
Ω

|f (x)|pdx <∞

equipped with the norm

||f ||p =

(∫
Ω

|f (x)|pdx
) 1

p

I These spaces are Banach spaces, i.e. complete, normed vector spaces.
I The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped with a

scalar product (·, ·) whose norm is induced by that scalar product, i.e.
||u|| =

√
(u, u). The scalar product in L2 is

(f , g) =

∫
Ω

f (x)g(x)dx .
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Green’s theorem

I Green’s theorem for smooth functions: Let u, v ∈ C1(Ω) (continuously
differentiable). Then for n = (n1 . . . nd ) being the outward normal to Ω,

∫
Ω

u∂ivdx =

∫
∂Ω

uvnids −
∫

Ω

v∂iudx

In particular, if v = 0 on ∂Ω one has

∫
Ω

u∂ivdx = −
∫

Ω

v∂iudx
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Weak derivative

I Let L1loc(Ω) the set of functions which are Lebesgue integrable on every
compact subset K ⊂ Ω. Let C∞0 (Ω) be the set of functions infinitely
differentiable with zero values on the boundary.

For u ∈ L1loc (Ω) we define ∂iu by

∫
Ω

v∂iudx = −
∫

Ω

u∂ivdx ∀v ∈ C∞0 (Ω)

and ∂αu by

∫
Ω

v∂αudx = (−1)|α|
∫

Ω

u∂ivdx ∀v ∈ C∞0 (Ω)

if these integrals exist.
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Sobolev spaces

I For k ≥ 0 and 1 ≤ p <∞, the Sobolev space W k,p(Ω) is the space
functions where all up to the k-th derivatives are in Lp:

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k}

with then norm

||u||W k,p(Ω) =

∑
|α|≤k

||∂αu||pLp(Ω)

 1
p

I Alternatively, they can be defined as the completion of C∞ in the norm
||u||W k,p(Ω)

I W k,p
0 (Ω) is the completion of C∞0 in the norm ||u||W k,p(Ω)

I The Sobolev spaces are Banach spaces.
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Fractional Sobolev spaces and traces

I For 0 < s < 1 define the fractional Sobolev space

W s,p(Ω) =

{
u ∈ Lp(Ω) :

u(x)− u(y)

||x − y ||s+ d
p
∈ Lp(Ω× Ω)

}

I Let H 1
2 (Ω) = W 1

2 ,2(Ω)
I A priori it is hard to say what the value of a function from Lp on the

boundary is like.
I For Lipschitz domains there exists unique continuous trace mapping
γ0 : W 1,p(Ω)→ Lp(∂Ω) where 1

p + 1
p′ = 1 such that

I Imγ0 = W
1

p′ ,p(∂Ω)
I Kerγ0 = W 1,p

0 (Ω)
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Sobolev spaces of square integrable functions
I Hk (Ω) = W k,2(Ω) with the scalar product

(u, v)Hk (Ω) =
∑
|α|≤k

∫
Ω

∂αu∂αv dx

is a Hilbert space.
I Hk (Ω)0 = W k,2

0 (Ω) with the scalar product

(u, v)Hk (Ω) =
∑
|α|≤k

∫
Ω

∂αu∂αv dx

is a Hilbert space as well.
I The initally most important:

I L2(Ω) with the scalar product (u, v)L2(Ω) =
∫

Ω
uv dx

I H1(Ω) with the scalar product (u, v)H1(Ω) =
∫

Ω
(uv +∇u · ∇v) dx

I H1
0 (Ω) with the scalar product (u, v)H1

0 (Ω) =
∫

Ω
(∇u · ∇v) dx

I Inequalities:

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u||+ ||v || Triangle inequality
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Heat conduction revisited: Derivation of weak formulation

I Sobolev space theory provides the necessary framework to formulate
existence and uniqueness of solutions of PDEs.

I Heat conduction equation with homogeneous Dirichlet boundary conditions:

−∇ · λ∇u = f in Ω

u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function from C∞0 (Ω):

−
∫

Ω

∇ · λ∇uv dx =

∫
Ω

fv dx∫
Ω

λ∇u∇v dx =

∫
Ω

fv dx
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Weak formulation of homogeneous Dirichlet problem
I Search u ∈ H1

0 (Ω) such that∫
Ω

λ∇u∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω)

I Then,

a(u, v) :=

∫
Ω

λ∇u∇v dx

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

It is bounded due to Cauchy-Schwarz:

|a(u, v)| = |λ||
∫

Ω

∇u∇v dx | ≤ ||u||H1
0 (Ω) · ||v ||H1

0 (Ω)

I f (v) =
∫

Ω
fv dx is a linear functional on H1

0 (Ω). For Hilbert spaces V the
dual space V ′ (the space of linear functionals) can be identified with the
space itself.
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The Lax-Milgram lemma

Let V be a Hilbert space. Let a : V × V → R be a self-adjoint bilinear form,
and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′
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Heat conduction revisited

Let λ > 0. Then the weak formulation of the heat conduction problem: search
u ∈ H1

0 (Ω) such that

∫
Ω

λ∇u∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω)

has an unique solution.

Proof: a(u, v) is cocercive:

a(u, v) =

∫
Ω

λ∇u∇u dx = λ||u||2H1
0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ∇u = f in Ω

u = g on ∂Ω

If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that ug |∂Ω = g .
Then, we can re-formulate:

−∇ · λ∇(u − ug ) = f +∇ · λ∇ug in Ω

u − ug = 0 on ∂Ω

I Search u ∈ H1(Ω) such that

u = ug + φ∫
Ω

λ∇φ∇v dx =

∫
Ω

fv dx +

∫
Ω

λ∇ug∇v ∀v ∈ H1
0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Weak formulation of Robin problem

−∇ · λ∇u = f in Ω

λ∇u · n + α(u − g) = 0 on ∂Ω

Multiply and integrate with an arbitrary test function from C∞c (Ω):

−
∫

Ω

(∇ · λ∇u)v dx =

∫
Ω

fv dx∫
Ω

λ∇u∇v dx +

∫
∂Ω

(λ∇u · n)vds =

∫
Ω

fv dx∫
Ω

λ∇u∇v dx +

∫
∂Ω

αuv ds =

∫
Ω

fv dx +

∫
∂Ω

αgv ds
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Weak formulation of Robin problem II

I Let

aR (u, v) :=

∫
Ω

λ∇u∇v dx +

∫
∂Ω

αuv ds

f R (v) :=

∫
Ω

fv dx +

∫
∂Ω

αgv ds

The integrals over ∂Ω must be understood in the sense of the trace space
H 1

2 (∂Ω).
I Search u ∈ H1(Ω) such that

aR (u, v) = f R (v) ∀v ∈ H1(Ω)

I If λ > 0 and α > 0 then aR (u, v) is cocercive.
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Neumann boundary conditions
Homogeneous Neumann:

λ∇u · n = 0 on ∂Ω

Inhomogeneous Neumann:

λ∇u · n = g on ∂Ω

Weak formulation:

I Search u ∈ H1(Ω) such that∫
ω

∇u∇vdx =

∫
∂Ω

gvds ∀v ∈ H1(Ω)

Not coercive due to the fact that we can add an arbitrary constant to u and
a(u, u) stays the same!
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Further discussion on boundary conditions

I Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero, the
binlinear form becomes coercive.

I Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

I Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

I Coefficients λ, α . . . can be functions.
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The Dirichlet penalty method
I Robin problem: search uα ∈ H1(Ω) such that∫

Ω

λ∇uα∇v dx +

∫
∂Ω

αuαv ds =

∫
Ω

fv dx +

∫
∂Ω

αgv ds∀v ∈ H1(Ω)

I Dirichlet problem: search u ∈ H1(Ω) such that

u = ug + φ where ug |∂Ω = g∫
Ω

λ∇φ∇v dx =

∫
Ω

fv dx +

∫
Ω

λ∇ug∇v ∀v ∈ H1
0 (Ω)

I Penalty limit:

lim
α→∞

uα = u

I Formally, the convergence rate is quite low
I Implementing Dirichlet boundary conditions directly leads to a number of

technical problems
I Implementing the penalty method is technically much simpler
I Proper way of handling the parameter leads to exact fulfillment of Dirichlet

boundary condition in the floating point precision
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The Galerkin method I

I Weak formulations “live” in Hilbert spaces which essentially are infinite
dimensional

I For computer representations we need finite dimensional approximations
I The finite volume method provides one possible framework which in many

cases is close to physical intuition. However, its error analysis is hard.
I The Galerkin method and its modifications provide a general scheme for the

derivation of finite dimensional appoximations
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The Galerkin method II

I Let V be a Hilbert space. Let a : V × V → R be a self-adjoint bilinear
form, and f a linear functional on V . Assume a is coercive with coercivity
constant α, and continuity constant γ.

I Continuous problem: search u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

I Let Vh ⊂ V be a finite dimensional subspace of V
I “Discrete” problem ≡ Galerkin approximation:

Search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

By Lax-Milgram, this problem has a unique solution as well.
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Céa’s lemma

I What is the connection between u and uh ?
I Let vh ∈ Vh be arbitrary. Then

α||u − uh||2 ≤ a(u − uh, u − uh) (Coercivity)
= a(u − uh, u − vh) + a(u − uh, vh − uh)

= a(u − uh, u − vh) (Galerkin Orthogonality)
≤ γ||u − uh|| · ||u − vh|| (Boundedness)

I As a result

||u − uh|| ≤
γ

α
inf

vh∈Vh
||u − vh||

I Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace Vh.
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From the Galerkin method to the matrix equation
I Let φ1 . . . φn be a set of basis functions of Vh.
I Then, we have the representation uh =

∑n
j=1 ujφj

I In order to search uh ∈ Vh such that

a(uh, vh) = f (vh) ∀vh ∈ Vh

it is actually sufficient to require

a(uh, φi ) = f (φi ) (i = 1 . . . n)

a

(
n∑

j=1

ujφj , φi

)
= f (φi ) (i = 1 . . . n)

n∑
j=1

a(φj , φi )uj = f (φi ) (i = 1 . . . n)

AU = F

with A = (aij ), aij = a(φi , φj ), F = (fi ), fi = F (φi ), U = (ui ).
I Matrix dimension is n × n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

I Let Ω = (a, b) ⊂ R1

I Let a(u, v) =
∫

Ω
λ(x)∇u∇vdx .

I Analysis I provides a finite dimensional subspace: the space of sin/cos
functions up to a certain frequency ⇒ spectral method

I Ansatz functions have global support ⇒ full n × n matrix
I OTOH: rather fast convergence for smooth data
I Generalization to higher dimensions possible
I Big problem in irregular domains: we need the eigenfunction basis of some

operator. . .
I Spectral methods are successful in cases where one has regular geometry

structures and smooth/constant coefficients – e.g. “Spectral Einstein Code”
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The finite element idea

I Choose basis functions with local support. In this case, the matrix becomes
sparse, as only integrals of basis function pairs with overlapping support
contribute to the matrix.

I Linear finite elements in Ω = (a, b) ⊂ R1:
I Partition a = x1 ≤ x2 ≤ · · · ≤ xn = b
I Basis functions (for i = 1 . . . n)

φi (x) =


x−xi−1
xi−xi−1

, i > 1, x ∈ (xi−1, xi )
xi+1−x
xi+1−xi

, i < n, x ∈ (xi , xi+1)

0, else

I Any function uh ∈ Vh = span{φ1 . . . φn} is piecewise linear, and the
coefficients in the representation uh =

∑n
i=1 uiφi are the values uh(xi ).

I Fortunately, we are working with a weak formulation, and weak derivatives
are well defined !
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1D matrix elements
(λ = 1, xi+1 − xi = h) - The integrals are nonzero for i = j, i + 1 = j, i − 1 = j
Let j = i + 1

aij = a(φi , φi+1) =

∫
Ω

∇φi∇φjdx =

∫ xi+1

xi

∇φi∇φjdx = −
∫ xi+1

xi

1
h2 dx

=
1
hdx

Similarly, a(φi , φi−1) = − 1
h

For 1 < i < N:

aii = a(φi , φi ) =

∫
Ω

∇φi∇φidx =

∫ xi+1

xi−1

∇φi∇φidx =

∫ xi+1

xi−1

1
h2 dx

=
2
hdx

For i = 1 or i = N, a(φi , φi ) = 1
h
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1D matrix elements II

Adding the boundary integrals yields

A =



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α


. . . the same matrix as for the finite volume method. . .
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Where to go from here

I Higher space dimensions
I Piecewise polynomials instead of piecewise linear functions
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