
~

First steps to python
Scientific Computing Winter 2016/2017

Lecture 15

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

1 / 7



Compiled high level languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Translated to machine code (resp. assembler) by compiler

#include <stdio.h>
int main (int argc, char *argv[])
{

printf("Hello world");
}

I “Far away” from CPU ⇒ the compiler is responsible for creation of
optimized machine code

I Fortran, COBOL, C, Pascal, Ada, Modula2, C++, Go, Rust, Swift
I Strongly typed
I Tedious workflow: compile - link - run

source3.c

source2.c

source1.c

source3.o

source2.o

source1.o

executable output

compile

compile

compile

link run as system executable

2 / 7



High level scripting languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Need intepreter in order to be executed

print("Hello world")

I Very far away from CPU ⇒ usually significantly slower compared to
compiled languages

I Matlab, Python, Lua, perl, R, Java, javascript
I Less strict type checking, often simple syntax, powerful introspection

capabilities
I Immediate workflow: “just run”

I in fact: first compiled to bytecode which can be interpreted more efficiently

module1.py

module2.py

module3.py

main.py output
import run in interpreter

3 / 7



Python

I Developed since 1989, led by Guido van Rossum
I Can be seen as “open source” matlab
I Main advantage: huge ecosystem of packages for scientific computing
I Some use cases:

I matlab replacement
I glue language for different tools
I system independent implementation of tools (e.g. mercurial)
I driver language for software written in C/C++

I quickly change parameters without recompiling etc.
I make use of plotting capabilities

I Documentation: https://docs.python.org
I current versions around: 2.7, 3.x
I most python3 code works with 2.7

I Tutorial: https://docs.python.org/3/tutorial/

4 / 7

https://docs.python.org/3.4/
https://docs.python.org/3/tutorial/


Numpy / Scipy /matplotlib

I numpy: add-on of an efficient array class for numerical computations,
written in C

I Python lists would be too slow
I Interfacing to lapack etc. need dense arrays
I scipy: Scientific computation package with LAPACK etc.
I matplotlib: data plotting + visualization

5 / 7



Python and C++

I Architecture of python
I Interpreter
I Application programming interface (API) for interaction of C/C++ with

python interpreter
I register wrapper function with name
I wrapper function knows how to fetch parameters/return values from/to python

interpreter
I wrapper function calls C++ function

I Wrapper code with code to be wrapped linked to a “shared object” (UNIX),
“dylib” (Mac), “DLL” (Windows)

I Import of wrapper code makes it available in python
I Automatic tools for accessing API

6 / 7



SWIG

I Several possibilities
I Cython (python dialect with possible inclusion of C)
I pybind11 (C++11 classes for wrapping python)
I SWIG (“classical tool” for wrapping interpreter)

I Simplified Wrapper and Interface Generator:
I Tool to automatically create wrapper code from C++ style description
I Create wrapper code in C++ which is linked together with library to be

wrapped

7 / 7


