PDEs and Finite Volume Discretizations

Scientific Computing Winter 2016/2017

Lecture 14
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap (CG)

Conjugate gradients (Hestenes, Stiefel, 1952)

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

r_{i} : residual, $\left(r_{i}, r_{j}\right)=0$ for $j<i d_{i}$: search direction, $\left(d_{i}, d_{j}\right)=0$ for $j<i$
Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number of A.

Preconditioned CG

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

Properties/issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

Unsymmetric problems

- By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_{0}, perform

$$
\begin{array}{rlrl}
r_{0} & =b-A x_{0} & \begin{array}{l}
\hat{r}_{0}
\end{array}=\hat{b}-\hat{x}_{0} A^{T} \\
p_{0} & =r_{0} & \hat{p}_{0} & =\hat{r}_{0} \\
\alpha_{i} & =\frac{\left(\hat{r}_{i}, r_{i}\right)}{\left(\hat{p}_{i}, A p_{i}\right)} & & \\
x_{i+1} & =x_{i}+\alpha_{i} p_{i} & \hat{x}_{i+1} & =\hat{x}_{i}+\alpha_{i} \hat{p}_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} & \hat{r}_{i+1} & =\hat{r}_{i}-\alpha_{i} \hat{p}_{i} A^{T} \\
\beta_{i} & =\frac{\left(\hat{r}_{i+1}, r_{i+1}\right)}{\left(\hat{r}_{i}, r_{i}\right)} & & \\
p_{i+1} & =r_{i+1}+\beta_{i} p_{i} & \hat{p}_{i+1} & =\hat{r}_{i+1}+\beta_{i} \hat{p}_{i}
\end{array}
$$

The two sequences produced by the algorithm are biorthogonal, i.e., $\left(\hat{p}_{i}, A p_{j}\right)=\left(\hat{r}_{i}, r_{j}\right)=0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable an additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
- "Stabilize" BiCG \rightarrow BiCGstab
- tweak CG \rightarrow Conjugate gradients squared (CGS)
- Error minimization in Krylov subspace \rightarrow Generalized Minimum Residual (GMRES)
- Both CGS and BiCGstab can show rather erratic convergence behavior
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice \Rightarrow restart strategy.
- From my experience, BiCGstab is a good first guess

Recap (Meshing)

Delaunay triangulations

- Given a finite point set $X \subset \mathbb{R}^{d}$. Then there exists simplicial a complex called Delaunay triangulation of this point set such that
- X is the set of vertices of the triangulation
- The union of all its simplices is the convex hull of X.
- (Delaunay property): For any given d-simplex $\Sigma \subset \Omega$ belonging to the triangulation, the interior of its circumsphere does not contain any vertex $x_{k} \in X$.
- Assume that the points of X are in general position, i.e. no $n+2$ points lie on one sphere. Then the Delaunay triangulation is unique.

Voronoi diagram

- Given a finite point set $X \subset \mathbb{R}^{d}$. Then the Voronoi diagram is a partition of \mathbb{R}^{d} into convex nonoverlapping polygonal regions defined as

$$
\begin{aligned}
& \mathbb{R}^{d}=\bigcup_{k=1}^{N_{x}} v_{k} \\
& V_{k}=\left\{x \in \mathbb{R}^{d}:\left\|x-x_{k}\right\|<\left\|x-x_{l}\right\| \forall x_{l} \in X, I \neq k\right\}
\end{aligned}
$$

Voronoi - Delaunay duality

- Given a point set $X \subset \mathbb{R}^{d}$ in general position. Then its Delaunay triangulation and its Voronoi diagram are dual to each other:
- Two Voronoi cells V_{k}, V_{l} have a common facet if and only if $\overline{x_{k} x_{l}}$ is an edge of the triangulation.

Boundary conforming Delaunay triangulations

- Domain $\Omega \subset \mathbb{R}^{n}$ (we will discuss only $n=2$) with polygonal boundary $\partial \Omega$.
- Partition (triangulation) $\Omega=\bigcup_{s=1}^{N_{\Sigma}} \Sigma$ into non-overlapping simplices Σ_{s} such that this partition represents a simplicial complex. Regard the set of nodes $X=\left\{x_{1} \ldots x_{N_{x}}\right\}$.
- It induces a partition of the boundary into lower dimensional simplices: $\partial \Omega=\bigcup_{t=1}^{N_{\sigma}} \sigma_{t}$. We assume that in 3D, the set $\left\{\sigma_{t}\right\}_{t=1}^{N_{\sigma}}$ includes all edges of surface triangles as well. For any given lower ($d-1$ or $d-2$) dimensional simplex σ, its diametrical sphere is defined as the smallest sphere containing all its vertices.
- Boundary conforming Delaunay property:
- (Delaunay property): For any given d-simplex $\Sigma_{s} \subset \Omega$, the interior of its circumsphere does not contain any vertex $x_{k} \in X$.
- (Gabriel property) For any simplex $\sigma_{t} \subset \partial \Omega$, the interior of its diametrical sphere does not contain any vertex $x_{k} \in X$.
- Equivalent formulation in 2D:
- For any two triangles with a common edge, the sum of their respective angles opposite to that edge is less or equal to 180°.
- For any triangle sharing an edge with $\partial \Omega$, its angle opposite to that edge is less or equal to 90°.

Restricted Voronoi diagram

- Given a boundary conforming Delaunay discretization of Ω, the restricted Voronoi diagram consists of the restricted Voronoi cells corresponding to the node set X defined by

$$
\omega_{k}=V_{k} \cap \Omega=\left\{x \in \Omega:\left\|x-x_{k}\right\|<\left\|x-x_{\|}\right\| \forall x_{l} \in X, I \neq k\right\}
$$

- These restricted Voronoi cells are used as control volumes in a finite volume discretization

Piecewise linear description of computational domain with given point cloud

Delaunay triangulation of domain and triangle circumcenters.

- Blue: triangle circumcenters
- Some boundary triangles have larger than 90° angles opposite to the boundary \Rightarrow their circumcenters are outside of the domain

Boundary conforming Delaunay triangulation

- Automatically inserted additional points at the boundary (green dots)
- Restricted Voronoi cells (red).

General approach to triangulations

- Obtain piecewise linear descriptiom of domain
- Call mesh generator (triangle, TetGen, NetGen ...) in order to obtain triangulation
- Performe finite volume or finite element discretization of the problem.

Alternative way:

- Construction "by hand" on regular structures

Partial Differential Equations

DIfferential operators

- Bounded domain $\Omega \subset \mathbb{R}^{d}$, with piecewise smooth boundary
- Scalar function $u: \Omega \rightarrow \mathbb{R}$
- Vector function $\mathbf{v}: \Omega \rightarrow \mathbb{R}^{d}$
- Write $\partial_{i} u=\frac{\partial u}{x_{i}}$
- For a multindex $\alpha=\left(\alpha_{1} \ldots \alpha_{d}\right)$, write $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$ and define $\partial^{\alpha} u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots . . \partial x_{d}^{\alpha_{d} d}}$
- Gradient grad $=\nabla: u \mapsto \nabla u=\left(\begin{array}{c}\partial_{1} u \\ \vdots \\ \partial_{d} u\end{array}\right)$
- Divergence div $=\nabla \cdot: \mathbf{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{d}\end{array}\right) \mapsto \nabla \cdot \mathbf{v}=\partial_{1} v_{1}+\cdots+\partial_{d} v_{d}$
- Laplace operator $\Delta=\operatorname{div} \cdot \operatorname{grad}=\nabla \cdot \nabla: u \mapsto \Delta u=\partial_{11} u+\cdots+\partial_{d d} u$

Matrices from PDE revisited

Given:

- Domain $\Omega=(0, X) \times(0, Y) \subset \mathbb{R}^{2}$ with boundary $\Gamma=\partial \Omega$, outer normal \mathbf{n}
- Right hand side $f: \Omega \rightarrow \mathbb{R}$
- "Conductivity" λ
- Boundary value v: $\Gamma \rightarrow \mathbb{R}$
- Transfer coefficient α

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f & & \text { in } \Omega \\
-\lambda \nabla u \cdot \mathbf{n}+\alpha(u-v) & =0 & & \text { on } \Gamma
\end{aligned}
$$

- Example: heat conduction:
- u : temperature
- f : volume heat source
- λ : heat conduction coefficient
- v : Ambient temperature
- α : Heat transfer coefficient

The finite volume idea revisited

- Assume Ω is a polygon
- Subdivide the domain Ω into a finite number of control volumes : $\bar{\Omega}=\bigcup_{k \in \mathcal{N}} \bar{\omega}_{k}$ such that
- ω_{k} are open (not containing their boundary) convex domains
- $\omega_{k} \cap \omega_{l}=\emptyset$ if $\omega_{k} \neq \omega_{l}$
- $\sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ are either empty, points or straight lines
- we will write $\left|\sigma_{k l}\right|$ for the length
- if $\left|\sigma_{k l}\right|>0$ we say that ω_{k}, ω_{l} are neigbours
- neigbours of $\omega_{k}: \mathcal{N}_{k}=\left\{I \in \mathcal{N}:\left|\sigma_{k l}\right|>0\right\}$
- To each control volume ω_{k} assign a collocation point: $\mathbf{x}_{k} \in \bar{\omega}_{k}$ such that
- admissibility condition: if $I \in \mathcal{N}_{k}$ then the line $\mathbf{x}_{k} \mathbf{x}_{l}$ is orthogonal to $\sigma_{k l}$
- if ω_{k} is situated at the boundary, i.e. $\gamma_{k}=\partial \omega_{k} \cap \partial \Omega \neq \emptyset$, then $x_{k} \in \partial \Omega$

- Now, we know how to construct this partition
- obtain a boundary conforming Delaunay triangulation
- construct restricted Voronoi cells

Discretization ansatz

- Given control volume ω_{k}, integrate equation over control volume

$$
\begin{align*}
0 & =\int_{\omega_{k}}(-\nabla \cdot \lambda \nabla u-f) d \omega \\
& =-\int_{\partial \omega_{k}} \lambda \nabla u \cdot \mathbf{n}_{k} d \gamma-\int_{\omega_{k}} f d \omega \tag{Gauss}\\
& =-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \lambda \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} \lambda \nabla u \cdot \mathbf{n} d \gamma-\int_{\omega_{k}} f d \omega \\
& \approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{k l}}{h_{k l}}\left(u_{k}-u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-v_{k}\right)-\left|\omega_{k}\right| f_{k}
\end{align*}
$$

- Here,
- $u_{k}=u\left(\mathrm{x}_{k}\right)$
- $v_{k}=v\left(\mathbf{x}_{k}\right)$
- $f_{k}=f\left(\mathbf{x}_{k}\right)$

Solvability of discrete problem

- $N=|\mathcal{N}|$ equations (one for each control volume)
- $N=|\mathcal{N}|$ unknowns (one in each collocation point \equiv control volume)
- Graph of discretzation matrix \equiv edge graph of triangulation \Rightarrow matrix is irreducible
- Matrix is symmetric
- Main diagonal entries are positive, off diagonal entries are non-positive
- The matrix is diagonally dominant
- For positive heat transfer coefficients, the matrix becomes irreducibly diagonally dominant
\Rightarrow the discretization matrix has the M-property.

Note on matrix M property and discretization methods

- Finite volume methods on boundary conforming Delaunay triangulations can be practically constructed on large classes of 2D and 3D polygonal domains using provable algorithms
- Results mostly by J. Shewchuk (triangle) and H. Si (TetGen)
- Later we will discuss the finite element method. It has a significantly simpler convergence theory than the finite volume method.
- For constant heat conduction coefficients, in 2D it yields the same discretization matrix as the finite volume method.
- However this is not true in 3D.
- Consequence: there is no provable mesh construction algorithm which leads to the M-Propertiy of the finite element discretization matrix in 3D.

Convergence theory

For an excurse into convergence theory, we need to recall a number of concepts from functional analysis.

See e.g. Appendix of the book of Ern/Guermond.

Lebesgue integral, $L^{1}(\Omega)$ I

- Let Ω have a boundary which can be represented by continuous, piecewiese smooth functions in local coordinate systems, without cusps and other+ degeneracies (more precisely: Lipschitz domain).
- Polygonal domains are Lipschitz.
- Let $C_{c}(\Omega)$ be the set of continuous functions $f: \Omega \rightarrow \mathbb{R}$ with compact support.
- For these functions, the Riemann integral $\int_{\Omega} f(x) d x$ is well defined, and $\|f\|:=\int_{\Omega}|f(x)| d x$ provides a norm, and induces a metric
- A Cauchy sequence is a sequence f_{n} of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$
\forall \varepsilon>0 \exists N \in \mathbb{N}: \forall m, n>n,\left\|f_{n}-f_{m}\right\|<\varepsilon
$$

- All convergent sequences of functions are Cauchy sequences
- A metric space is complete if all Cauchy sequences of its element have a limit within this space

Lebesgue integral, $L^{1}(\Omega)$ II

- Let $L^{1}(\Omega)$ be the completion of $C_{c}(\Omega)$ with respect to the metric defined by the integral norm, i.e. "include" all limites of Cauchy sequences
- Defined via sequences, $\int_{\Omega}|f(x)| d x$ is defined for all functions in $L^{1}(\Omega)$.
- Equality of L^{1} functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- Examples for Lebesgue integrable (measurable) functions:
- Step functions
- Bounded functions continuous except in a finite number of points

Spaces of integrable functions

- For $1 \leq p \leq \infty$, let $L^{p}(\Omega)$ be the space of measureable functions such that

$$
\int_{\Omega}|f(x)|^{p} d x<\infty
$$

equipped with the norm

$$
\|f\|_{p}=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

- These spaces are Banach spaces, i.e. complete, normed vector spaces.
- The space $L^{2}(\Omega)$ is a Hilbert space, i.e. a Banach space equipped with a scalar product (\cdot, \cdot) whose norm is induced by that scalar product, i.e. $\|u\|=\sqrt{(u, u)}$. The scalar product in L^{2} is

$$
(f, g)=\int_{\Omega} f(x) g(x) d x
$$

Green's theorem

- Green's theorem for smooth functions: Let $u, v \in C^{1}(\bar{\Omega})$ (continuously differentiable). Then for $\mathbf{n}=\left(n_{1} \ldots n_{d}\right)$ being the outward normal to Ω,

$$
\int_{\Omega} u \partial_{i} v d x=\int_{\partial \Omega} u v n_{i} d s-\int_{\Omega} v \partial_{i} u d x
$$

In particular, if $v=0$ on $\partial \Omega$ one has

$$
\int_{\Omega} u \partial_{i} v d x=-\int_{\Omega} v \partial_{i} u d x
$$

Weak derivative

- Let $L_{l o c}^{1}(\Omega)$ the set of functions which are Lebesgue integrable on every compact subset $K \subset \Omega$. Let $C_{0}^{\infty}(\Omega)$ be the set of functions infinitely differentiable with zero values on the boundary.

For $u \in L_{l o c}^{1}(\Omega)$ we define $\partial_{i} u$ by

$$
\int_{\Omega} v \partial_{i} u d x=-\int_{\Omega} u \partial_{i} v d x \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

and $\partial^{\alpha} u$ by

$$
\int_{\Omega} v \partial^{\alpha} u d x=(-1)^{|\alpha|} \int_{\Omega} u \partial_{i} v d x \quad \forall v \in C_{0}^{\infty}(\Omega)
$$

if these integrals exist.

Sobolev spaces

- For $k \geq 0$ and $1 \leq p<\infty$, the Sobolev space $W^{k, p}(\Omega)$ is the space functions where all up to the k-th derivatives are in L^{p} :

$$
W^{k, p}(\Omega)=\left\{u \in L^{p}(\Omega): \partial^{\alpha} u \in L^{p}(\Omega) \forall|\alpha| \leq k\right\}
$$

with then norm

$$
\|u\|_{W^{k, p}(\Omega)}=\left(\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

- Alternatively, they can be defined as the completion of C^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- $W_{0}^{k, p}(\Omega)$ is the completion of C_{0}^{∞} in the norm $\|u\|_{W^{k, p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Fractional Sobolev spaces and traces

- For $0<s<1$ define the fractional Sobolev space

$$
W^{s, p}(\Omega)=\left\{u \in L^{p}(\Omega): \frac{u(x)-u(y)}{\|x-y\|^{s+\frac{d}{p}}} \in L^{p}(\Omega \times \Omega)\right\}
$$

- Let $H^{\frac{1}{2}}(\Omega)=W^{\frac{1}{2}, 2}(\Omega)$
- A priori it is hard to say what the value of a function from L^{p} on the boundary is like.
- For Lipschitz domains there exists unique continuous trace mapping $\gamma_{0}: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ such that
- $\operatorname{Im} \gamma_{0}=W^{\frac{1}{p^{\prime}, p}}(\partial \Omega)$
- $\operatorname{Ker} \gamma_{0}=W_{0}^{1, p}(\Omega)$

Sobolev spaces of square integrable functions

- $H^{k}(\Omega)=W^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d x
$$

is a Hilbert space.

- $H^{k}(\Omega)_{0}=W_{0}^{k, 2}(\Omega)$ with the scalar product

$$
(u, v)_{H^{k}(\Omega)}=\sum_{|\alpha| \leq k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v d x
$$

is a Hilbert space as well.

- The initally most important:
- $L^{2}(\Omega)$ with the scalar product $(u, v)_{L^{2}(\Omega)}=\int_{\Omega} u v d x$
- $H^{1}(\Omega)$ with the scalar product $(u, v)_{H^{1}(\Omega)}=\int_{\Omega}(u v+\nabla u \cdot \nabla v) d x$
- $H_{0}^{1}(\Omega)$ with the scalar product $(u, v)_{H_{0}^{1}(\Omega)}=\int_{\Omega}(\nabla u \cdot \nabla v) d x$

Heat conduction revisited: Derivation of weak formulation

- Sobolev space theory provides the necessary framework to formulate existence and uniqueness of solutions of PDEs.
- Heat conduction equation with homogeneous Dirichlet boundary conditions:

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Multiply and integrate with an arbitrary test function from $C_{0}^{\infty}(\Omega)$:

$$
\begin{aligned}
-\int_{\Omega} \nabla \cdot \lambda \nabla u v d x & =\int_{\Omega} f v d x \\
\int_{\Omega} \lambda \nabla u \nabla v d x & =\int_{\Omega} f v d x
\end{aligned}
$$

Weak formulation of homogeneous Dirichlet problem

- Search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

- Then,

$$
a(u, v):=\int_{\Omega} \lambda \nabla u \nabla v d x
$$

is a self-adjoint bilinear form defined on the Hilbert space $H_{0}^{1}(\Omega)$

- $f(v)=\int_{\Omega} f v d x$ is a linear functional on $H_{0}^{1}(\Omega)$. For Hilbert spaces V the dual space V^{\prime} (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{v}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Heat conduction revisited

Let $\lambda>0$. Then the weak formulation of the heat conduction problem: search $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \lambda \nabla u \nabla v d x=\int_{\Omega} f v d x \forall v \in H_{0}^{1}(\Omega)
$$

has an unique solution.

