PDEs and Finite Volume Discretizations Scientific Computing Winter 2016/2017 Lecture 14 Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Recap (CG)

Conjugate gradients (Hestenes, Stiefel, 1952)

Given initial value u_0 , spd matrix A, right hand side b.

$$d_{0} = r_{0} = b - Au_{0}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(Ad_{i}, d_{i})}$$

$$u_{i+1} = u_{i} + \alpha_{i}d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i}Ad_{i}$$

$$\beta_{i+1} = \frac{(r_{i+1}, r_{i+1})}{(r_{i}, r_{i})}$$

$$d_{i+1} = r_{i+1} + \beta_{i+1}d_{i}$$

 r_i : residual, $(r_i, r_j) = 0$ for $j < i \ d_i$: search direction, $(d_i, d_j) = 0$ for j < i

Theorem The convergence rate of the method is

$$||e_i||_A \leq 2\left(rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
ight)^i ||e_0||_A$$

where $\kappa = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ is the spectral condition number of A.

Preconditioned CG

Assume $\tilde{r}_i = E^{-1}r_i$, $\tilde{d}_i = E^T d_i$, we get the equivalent algorithm

$$r_{0} = b - Au_{0}$$

$$d_{0} = M^{-1}r_{0}$$

$$\alpha_{i} = \frac{(M^{-1}r_{i}, r_{i})}{(Ad_{i}, d_{i})}$$

$$u_{i+1} = u_{i} + \alpha_{i}d_{i}$$

$$r_{i+1} = r_{i} - \alpha_{i}Ad_{i}$$

$$\beta_{i+1} = \frac{(M^{-1}r_{i+1}, r_{i+1})}{(r_{i}, r_{i})}$$

$$d_{i+1} = M^{-1}r_{i+1} + \beta_{i+1}d_{i}$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

Properties/issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$\mathbf{r}_{i+1} = \mathbf{r}_i - \alpha_i \mathbf{A} \mathbf{d}_i$$

give a much more optimistic picture on the state of the iteration than the real residual

$$r_{i+1} = b - Au_{i+1}$$

Unsymmetric problems

- ▶ By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_0 , perform

$$r_{0} = b - A x_{0}$$

$$\hat{r}_{0} = \hat{b} - \hat{x}_{0} A^{T}$$

$$p_{0} = r_{0}$$

$$\hat{p}_{0} = \hat{r}_{0}$$

$$\hat{p}_{0} = \hat{r}_{0}$$

$$\alpha_{i} = \frac{(\hat{r}_{i}, r_{i})}{(\hat{p}_{i}, Ap_{i})}$$

$$x_{i+1} = x_{i} + \alpha_{i}p_{i}$$

$$\hat{x}_{i+1} = \hat{x}_{i} + \alpha_{i}\hat{p}_{i}$$

$$\hat{r}_{i+1} = \hat{r}_{i} - \alpha_{i}\hat{p}_{i}A^{T}$$

$$\beta_{i} = \frac{(\hat{r}_{i+1}, r_{i+1})}{(\hat{r}_{i}, r_{i})}$$

$$p_{i+1} = r_{i+1} + \beta_{i}p_{i}$$

$$\hat{p}_{i+1} = \hat{r}_{i+1} + \beta_{i}\hat{p}_{i}$$

The two sequences produced by the algorithm are biorthogonal, i.e., $(\hat{p}_i, Ap_j) = (\hat{r}_i, r_j) = 0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable an additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
 - "Stabilize" $BiCG \rightarrow BiCGstab$
 - ► tweak CG → Conjugate gradients squared (CGS)
 - ► Error minimization in Krylov subspace → Generalized Minimum Residual (GMRES)
- ▶ Both CGS and BiCGstab can show rather erratic convergence behavior
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice ⇒ restart strategy.
- From my experience, BiCGstab is a good first guess

Recap (Meshing)

Delaunay triangulations

- Given a finite point set $X \subset \mathbb{R}^d$. Then there exists simplicial a complex called *Delaunay triangulation* of this point set such that
 - X is the set of vertices of the triangulation
 - The union of all its simplices is the convex hull of X.
 - (Delaunay property): For any given *d*-simplex Σ ⊂ Ω belonging to the triangulation, the interior of its circumsphere does not contain any vertex x_k ∈ X.
- Assume that the points of X are in general position, i.e. no n + 2 points lie on one sphere. Then the Delaunay triangulation is unique.

Voronoi diagram

• Given a finite point set $X \subset \mathbb{R}^d$. Then the Voronoi diagram is a partition of \mathbb{R}^d into convex nonoverlapping polygonal regions defined as

$$\mathbb{R}^{d} = \bigcup_{k=1}^{N_{x}} V_{k}$$
$$V_{k} = \{x \in \mathbb{R}^{d} : ||x - x_{k}|| < ||x - x_{l}|| \forall x_{l} \in X, l \neq k\}$$

Voronoi - Delaunay duality

- ► Given a point set X ⊂ ℝ^d in general position. Then its Delaunay triangulation and its Voronoi diagram are dual to each other:
 - Two Voronoi cells V_k, V_l have a common facet if and only if x_kx_l is an edge of the triangulation.

Boundary conforming Delaunay triangulations

- Domain $\Omega \subset \mathbb{R}^n$ (we will discuss only n = 2) with polygonal boundary $\partial \Omega$.
- Partition (triangulation) Ω = U^{N_Σ}_{s=1} Σ into non-overlapping simplices Σ_s such that this partition represents a simplicial complex. Regard the set of nodes X = {x₁...x_{N_x}}.
- It induces a partition of the boundary into lower dimensional simplices: $\partial \Omega = \bigcup_{t=1}^{N_{\sigma}} \sigma_t$. We assume that in 3D, the set $\{\sigma_t\}_{t=1}^{N_{\sigma}}$ includes all edges of surface triangles as well. For any given lower (d-1 or d-2) dimensional simplex σ , its *diametrical sphere* is defined as the smallest sphere containing all its vertices.
- Boundary conforming Delaunay property:
 - Clearing (Delaunay property): For any given *d*-simplex Σ_s ⊂ Ω, the interior of its circumsphere does not contain any vertex x_k ∈ X.
 - (Gabriel property) For any simplex σ_t ⊂ ∂Ω, the interior of its diametrical sphere does not contain any vertex x_k ∈ X.
- Equivalent formulation in 2D:
 - For any two triangles with a common edge, the sum of their respective angles opposite to that edge is less or equal to 180°.
 - For any triangle sharing an edge with $\partial\Omega$, its angle opposite to that edge is less or equal to 90°.

Restricted Voronoi diagram

 Given a boundary conforming Delaunay discretization of Ω, the *restricted* Voronoi diagram consists of the *restricted Voronoi cells* corresponding to the node set X defined by

$$\omega_k = V_k \cap \Omega = \{x \in \Omega : ||x - x_k|| < ||x - x_l|| \forall x_l \in X, l \neq k\}$$

 These restricted Voronoi cells are used as control volumes in a finite volume discretization

Piecewise linear description of computational domain with given point cloud

Delaunay triangulation of domain and triangle circumcenters.

- Blue: triangle circumcenters
- \blacktriangleright Some boundary triangles have larger than 90° angles opposite to the boundary \Rightarrow their circumcenters are outside of the domain

Boundary conforming Delaunay triangulation

Automatically inserted additional points at the boundary (green dots)

Restricted Voronoi cells (red).

General approach to triangulations

- Obtain piecewise linear descriptiom of domain
- ► Call mesh generator (triangle, TetGen, NetGen . . .) in order to obtain triangulation
- Performe finite volume or finite element discretization of the problem.

Alternative way:

Construction "by hand" on regular structures

Partial Differential Equations

Differential operators

- Bounded domain $\Omega \subset \mathbb{R}^d$, with piecewise smooth boundary
- ▶ Scalar function $u : \Omega \to \mathbb{R}$
- Vector function $\mathbf{v}: \Omega \to \mathbb{R}^d$
- Write $\partial_i u = \frac{\partial u}{\partial u}$
- For a multindex $\alpha = (\alpha_1 \dots \alpha_d)$, write $|\alpha| = \alpha_1 + \dots + \alpha_d$ and define $\partial^{\alpha} u = \frac{\partial^{|\alpha|}}{\partial x_{\cdot}^{\alpha_{1}} \cdots \partial x_{\cdot}^{\alpha_{d}}}$ • Gradient grad = ∇ : $u \mapsto \nabla u = \begin{pmatrix} \partial_1 u \\ \vdots \\ \partial_2 u \end{pmatrix}$ • Divergence div = $\nabla \cdot : \mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ \vdots \end{pmatrix} \mapsto \nabla \cdot \mathbf{v} = \partial_1 v_1 + \cdots + \partial_d v_d$

► Laplace operator $\Delta = \operatorname{div} \cdot \operatorname{grad} = \nabla \cdot \nabla$: $u \mapsto \Delta u = \partial_{11}u + \cdots + \partial_{dd}u$

Matrices from PDE revisited

Given:

- ▶ Domain $\Omega = (0, X) \times (0, Y) \subset \mathbb{R}^2$ with boundary $\Gamma = \partial \Omega$, outer normal **n**
- Right hand side $f: \Omega \to \mathbb{R}$
- \blacktriangleright "Conductivity" λ
- Boundary value $v : \Gamma \to \mathbb{R}$
- Transfer coefficient α

Search function $u: \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot \lambda \nabla u = f \quad \text{in}\Omega$$
$$-\lambda \nabla u \cdot \mathbf{n} + \alpha (u - v) = 0 \quad \text{on}\Gamma$$

- Example: heat conduction:
 - ▶ *u*: temperature
 - f: volume heat source
 - λ: heat conduction coefficient
 - v: Ambient temperature
 - α: Heat transfer coefficient

The finite volume idea revisited

- Assume Ω is a polygon
- Subdivide the domain Ω into a finite number of **control volumes** : $\bar{\Omega} = \bigcup_{k \in \mathcal{N}} \bar{\omega}_k$ such that

such that

- ω_k are open (not containing their boundary) convex domains
- $\omega_k \cap \omega_l = \emptyset$ if $\omega_k \neq \omega_l$
- $\sigma_{kl} = \bar{\omega}_k \cap \bar{\omega}_l$ are either empty, points or straight lines
 - we will write $|\sigma_{kl}|$ for the length
 - if $|\sigma_{kl}| > 0$ we say that ω_k , ω_l are neigbours
 - neighbours of ω_k : $\mathcal{N}_k = \{I \in \mathcal{N} : |\sigma_{kl}| > 0\}$

• To each control volume ω_k assign a **collocation point**: $\mathbf{x}_k \in \bar{\omega}_k$ such that

- admissibility condition: if $l \in \mathcal{N}_k$ then the line $\mathbf{x}_k \mathbf{x}_l$ is orthogonal to σ_{kl}
- if ω_k is situated at the boundary, i.e. $\gamma_k = \partial \omega_k \cap \partial \Omega \neq \emptyset$, then $\mathbf{x}_k \in \partial \Omega$

- Now, we know how to construct this partition
 - obtain a boundary conforming Delaunay triangulation
 - construct restricted Voronoi cells

Discretization ansatz

• Given control volume ω_k , integrate equation over control volume

$$0 = \int_{\omega_{k}} (-\nabla \cdot \lambda \nabla u - f) d\omega$$

= $-\int_{\partial \omega_{k}} \lambda \nabla u \cdot \mathbf{n}_{k} d\gamma - \int_{\omega_{k}} fd\omega$ (Gauss)
= $-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{kl}} \lambda \nabla u \cdot \mathbf{n}_{kl} d\gamma - \int_{\gamma_{k}} \lambda \nabla u \cdot \mathbf{n} d\gamma - \int_{\omega_{k}} fd\omega$
 $\approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{kl}}{h_{kl}} (u_{k} - u_{l}) + |\gamma_{k}| \alpha (u_{k} - v_{k}) - |\omega_{k}| f_{k}$

Here,

•
$$u_k = u(\mathbf{x}_k)$$

• $v_k = v(\mathbf{x}_k)$

$$f_k = f(\mathbf{x}_k)$$

Solvability of discrete problem

- $N = |\mathcal{N}|$ equations (one for each control volume)
- ▶ $N = |\mathcal{N}|$ unknowns (one in each collocation point \equiv control volume)
- \blacktriangleright Graph of discretzation matrix \equiv edge graph of triangulation \Rightarrow matrix is irreducible
- Matrix is symmetric
- Main diagonal entries are positive, off diagonal entries are non-positive
- The matrix is diagonally dominant
- For positive heat transfer coefficients, the matrix becomes irreducibly diagonally dominant
- \Rightarrow the discretization matrix has the M-property.

Note on matrix M property and discretization methods

- Finite volume methods on boundary conforming Delaunay triangulations can be *practically* constructed on large classes of 2D and 3D polygonal domains using *provable* algorithms
 - Results mostly by J. Shewchuk (triangle) and H. Si (TetGen)
- Later we will discuss the finite element method. It has a significantly simpler convergence theory than the finite volume method.
 - For constant heat conduction coefficients, in 2D it yields the same discretization matrix as the finite volume method.
 - However this is not true in 3D.
 - Consequence: there is no provable mesh construction algorithm which leads to the *M*-Propertiy of the finite element discretization matrix in 3D.

For an excurse into convergence theory, we need to recall a number of concepts from functional analysis.

See e.g. Appendix of the book of Ern/Guermond.

Lebesgue integral, $L^1(\Omega)$ l

- Let Ω have a boundary which can be represented by continuous, piecewiese smooth functions in local coordinate systems, without cusps and other+ degeneracies (more precisely: Lipschitz domain).
 - Polygonal domains are Lipschitz.
- Let $C_c(\Omega)$ be the set of continuous functions $f: \Omega \to \mathbb{R}$ with compact support.
- For these functions, the Riemann integral $\int_{\Omega} f(x) dx$ is well defined, and $||f|| := \int_{\Omega} |f(x)| dx$ provides a norm, and induces a metric
- ► A Cauchy sequence is a sequence *f_n* of functions where the norm of the difference between two elements can be made arbitrarily small by increasing the element numbers:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall m, n > n, ||f_n - f_m|| < \varepsilon$$

- All convergent sequences of functions are Cauchy sequences
- A metric space is *complete* if all Cauchy sequences of its element have a limit within this space

Lebesgue integral, $L^1(\Omega)$ II

- Let L¹(Ω) be the completion of C_c(Ω) with respect to the metric defined by the integral norm, i.e. "include" all limites of Cauchy sequences
- Defined via sequences, $\int_{\Omega} |f(x)| dx$ is defined for all functions in $L^{1}(\Omega)$.
- ► Equality of *L*¹ functions is elusive as they are not necessarily continuous: best what we can say is that they are equal "almost everywhere".
- Examples for Lebesgue integrable (measurable) functions:
 - Step functions
 - Bounded functions continuous except in a finite number of points

Spaces of integrable functions

• For $1 \leq p \leq \infty$, let $L^{p}(\Omega)$ be the space of measureable functions such that

$$\int_{\Omega} |f(x)|^p dx < \infty$$

equipped with the norm

$$||f||_{p} = \left(\int_{\Omega} |f(x)|^{p} dx\right)^{\frac{1}{p}}$$

- ▶ These spaces are *Banach spaces*, i.e. complete, normed vector spaces.
- The space L²(Ω) is a *Hilbert space*, i.e. a Banach space equipped with a scalar product (·, ·) whose norm is induced by that scalar product, i.e. ||u|| = √(u, u). The scalar product in L² is

$$(f,g)=\int_{\Omega}f(x)g(x)dx.$$

Green's theorem

Green's theorem for smooth functions: Let u, v ∈ C¹(Ω̄) (continuously differentiable). Then for n = (n₁...n_d) being the outward normal to Ω,

$$\int_{\Omega} u\partial_i v dx = \int_{\partial\Omega} uv n_i ds - \int_{\Omega} v\partial_i u dx$$

In particular, if v = 0 on $\partial \Omega$ one has

$$\int_{\Omega} u \partial_i v dx = -\int_{\Omega} v \partial_i u dx$$

Weak derivative

Let L¹_{loc}(Ω) the set of functions which are Lebesgue integrable on every compact subset K ⊂ Ω. Let C[∞]₀(Ω) be the set of functions infinitely differentiable with zero values on the boundary.

For $u \in L^1_{loc}(\Omega)$ we define $\partial_i u$ by

$$\int_{\Omega} v \partial_i u dx = - \int_{\Omega} u \partial_i v dx \quad \forall v \in C_0^{\infty}(\Omega)$$

and $\partial^{\alpha} u$ by

$$\int_{\Omega} v \partial^{\alpha} u dx = (-1)^{|\alpha|} \int_{\Omega} u \partial_i v dx \quad \forall v \in C_0^{\infty}(\Omega)$$

if these integrals exist.

Sobolev spaces

For k≥ 0 and 1 ≤ p < ∞, the Sobolev space W^{k,p}(Ω) is the space functions where all up to the k-th derivatives are in L^p:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : \partial^{\alpha} u \in L^p(\Omega) \; \forall |\alpha| \le k \}$$

with then norm

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

- ▶ Alternatively, they can be defined as the completion of C^{∞} in the norm $||u||_{W^{k,p}(\Omega)}$
- $W_0^{k,p}(\Omega)$ is the completion of C_0^{∞} in the norm $||u||_{W^{k,p}(\Omega)}$
- The Sobolev spaces are Banach spaces.

Fractional Sobolev spaces and traces

▶ For 0 < s < 1 define the *fractional Sobolev space*

$$W^{s,p}(\Omega) = \left\{ u \in L^p(\Omega) : \frac{u(x) - u(y)}{||x - y||^{s + \frac{d}{p}}} \in L^p(\Omega \times \Omega) \right\}$$

- Let $H^{\frac{1}{2}}(\Omega) = W^{\frac{1}{2},2}(\Omega)$
- A priori it is hard to say what the value of a function from L^p on the boundary is like.
- ► For Lipschitz domains there exists unique continuous *trace mapping* $\gamma_0: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ where $\frac{1}{p} + \frac{1}{p'} = 1$ such that

•
$$\operatorname{Im}\gamma_0 = W_{p'}^{\frac{1}{p'},p}(\partial\Omega)$$

• $\operatorname{Ker}\gamma_0 = W_0^{1,p}(\Omega)$

Sobolev spaces of square integrable functions

• $H^k(\Omega) = W^{k,2}(\Omega)$ with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, dx$$

is a Hilbert space. • $H^k(\Omega)_0 = W_0^{k,2}(\Omega)$ with the scalar product

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, dx$$

is a Hilbert space as well.

- The initally most important:
 - $L^2(\Omega)$ with the scalar product $(u, v)_{L^2(\Omega)} = \int_{\Omega} uv \, dx$
 - $H^1(\Omega)$ with the scalar product $(u, v)_{H^1(\Omega)} = \int_{\Omega} (uv + \nabla u \cdot \nabla v) dx$
 - $H_0^1(\Omega)$ with the scalar product $(u, v)_{H_0^1(\Omega)} = \int_{\Omega} (\nabla u \cdot \nabla v) dx$

Heat conduction revisited: Derivation of weak formulation

- Sobolev space theory provides the necessary framework to formulate existence and uniqueness of solutions of PDEs.
- Heat conduction equation with homogeneous Dirichlet boundary conditions:

 $-\nabla \cdot \lambda \nabla u = f \text{ in } \Omega$ $u = 0 \text{ on } \partial \Omega$

Multiply and integrate with an arbitrary *test function* from $C_0^{\infty}(\Omega)$:

$$-\int_{\Omega} \nabla \cdot \lambda \nabla uv \, dx = \int_{\Omega} fv \, dx$$
$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} fv \, dx$$

Weak formulation of homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} f v \, dx \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \lambda \nabla u \nabla v \, dx$$

is a self-adjoint bilinear form defined on the Hilbert space $H^1_0(\Omega)$

f(v) = ∫_Ω fv dx is a linear functional on H¹₀(Ω). For Hilbert spaces V the dual space V' (the space of linear functionals) can be identified with the space itself.

The Lax-Milgram lemma

Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$\exists \alpha > 0 : \forall u \in V, a(u, u) \geq \alpha ||u||_{V}^{2}.$$

Then the problem: find $u \in V$ such that

$$a(u,v)=f(v) \ \forall v \in V$$

admits one and only one solution with an a priori estimate

$$||u||_V \leq \frac{1}{\alpha} ||f||_{V'}$$

Let $\lambda > 0$. Then the weak formulation of the heat conduction problem: search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \lambda \nabla u \nabla v \, dx = \int_{\Omega} f v \, dx \, \forall v \in H^1_0(\Omega)$$

has an unique solution.