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Recap (CG)



Conjugate gradients (Hestenes, Stiefel, 1952)

Given initial value up, spd matrix A, right hand side b.

do =rn = b— AUo
(ri, ri)

Qf = 77—~

(Ad;, di)
Uir1 = Ui + oid;
riy1 = r — o;Ad;
o (fi+1, fi+1)
/81+1 - (ri, ri)
dit1 = rip1 + Bipid;
ri: residual, (r;, r;) =0 for j < i d: search direction, (dj,d;) =0 for j < i

Theorem The convergence rate of the method is

w-1)
leta <2 (V21 ) el

where K = i\LX((/’;‘)) is the spectral condition number of A.
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Preconditioned CG

Assume F; = Eilr,», 8,» = ETd,-, we get the equivalent algorithm

n = b— AUo

do = M_lro

0= Mri i)
(Ad;, dy)

Uiy1 = uj + a;d;
riy1 = i — a;iAd;

(M~ trii, rig1)

P = (ri, ri)

dis1 = M7 i1 + Bisad;

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.



Properties/issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

rig1 = ri — a;Ad;
give a much more optimistic picture on the state of the iteration than the real

residual

riy1 = b — Auina
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Unsymmetric problems

» By definition, CG is only applicable to symmetric problems.
» The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xp, perform

rn=>b—Ax fo=b— %A
po=ro Po="o
iy ri
“ (f(),-,Ap),-)
Xit1 = Xi + aip; Xiv1 = Xi + aipi
riq1 = ri — OéiAPi 'fi+1 =F— OéiﬁiAT
5:‘ _ (?H-l7 ff+1)
(P, ri)
pi+1 = fiy1 + Bipi Pi+1 = Fix1 + Bibi

The two sequences produced by the algorithm are biorthogonal, i.e.,
(i, Apj) = (Fi, ;) = 0 for i # j.

6
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Unsymmetric problems |l

BiCG is very unstable an additionally needs the transposed matrix vector
product, it is seldomly used in practice
There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.
Main practical approaches to fix the situation:

> “Stabilize” BiCG — BiCGstab

> tweak CG — Conjugate gradients squared (CGS)

> Error minimization in Krylov subspace — Generalized Minimum Residual
(GMRES)

Both CGS and BiCGstab can show rather erratic convergence behavior
For GMRES one has to keep the full Krylov subspace, which is not possible

in practice = restart strategy.
From my experience, BiCGstab is a good first guess
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Recap (Meshing)



Delaunay triangulations

» Given a finite point set X C RY. Then there exists simplicial a complex
called Delaunay triangulation of this point set such that
> X is the set of vertices of the triangulation
> The union of all its simplices is the convex hull of X.
> (Delaunay property): For any given d-simplex X C Q belonging to the
triangulation, the interior of its circumsphere does not contain any vertex
xx € X.

» Assume that the points of X are in general position, i.e. no n+ 2 points lie
on one sphere. Then the Delaunay triangulation is unique.

9/37



Voronoi diagram

» Given a finite point set X C RY. Then the Voronoi diagram is a partition of
R? into convex nonoverlapping polygonal regions defined as

Rd:ka

k=1

Vi = {x € R ||x — x|| < ||x — x1||[Vx € X, 1 # k}



Voronoi - Delaunay duality

» Given a point set X C R? in general position. Then its Delaunay
triangulation and its Voronoi diagram are dual to each other:

> Two Voronoi cells Vi, V; have a common facet if and only if XX, is an edge
of the triangulation.
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Boundary conforming Delaunay triangulations

» Domain Q C R" (we will discuss only n = 2) with polygonal boundary 9.

» Partition (triangulation) Q = U:V:ZI Y into non-overlapping simplices X
such that this partition represents a simplicial complex. Regard the set of
nodes X = {x1...xn,}.

> It induces a partition of the boundary into lower dimensional simplices:
o0 = UCI:"I o¢. We assume that in 3D, the set {0}, includes all edges of
surface triangles as well. For any given lower (d — 1 or d — 2) dimensional
simplex o, its diametrical sphere is defined as the smallest sphere containing
all its vertices.

» Boundary conforming Delaunay property:

> (Delaunay property): For any given d-simplex Xs C €, the interior of its
circumsphere does not contain any vertex x; € X.

> (Gabriel property) For any simplex o: C 0%, the interior of its diametrical
sphere does not contain any vertex x; € X.

» Equivalent formulation in 2D:

> For any two triangles with a common edge, the sum of their respective angles
opposite to that edge is less or equal to 180°.

> For any triangle sharing an edge with 09, its angle opposite to that edge is
less or equal to 90°.



Restricted Voronoi diagram

» Given a boundary conforming Delaunay discretization of Q, the restricted
Voronoi diagram consists of the restricted Voronoi cells corresponding to
the node set X defined by

we=VieNQ={xe€Q:|lx— x| <|lx —x|Vx € X, # k}

» These restricted Voronoi cells are used as control volumes in a finite volume
discretization
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Piecewise linear description of computational domain with given point cloud
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Delaunay triangulation of domain and triangle circumcenters.
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> Blue: triangle circumcenters
» Some boundary triangles have larger than 90° angles opposite to the
boundary = their circumcenters are outside of the domain
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Boundary conforming Delaunay triangulation

» Automatically inserted additional points at the boundary (green dots)
> Restricted Voronoi cells (red).
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General approach to triangulations

» Obtain piecewise linear descriptiom of domain

> Call mesh generator (triangle, TetGen, NetGen ...) in order to obtain
triangulation

> Performe finite volume or finite element discretization of the problem.

Alternative way:

» Construction “by hand” on regular structures



Partial Differential Equations



Dlfferential operators

Bounded domain Q C RY, with piecewise smooth boundary
Scalar function v: Q — R

Vector function v : Q — R

Write Qju = ‘Z—:’

For a multindex o = (a1 ... ag), write |a| = a1 + -+ + aq and define

R
Owu
Gradient grad = V: u+— Vu = :
Oqu
Vi
Divergence div=V-:v=| | | =V .v=01vi + -+ + 0wy
vd

Laplace operator A =div-grad =V - V: u— Au = 01u—+ -+ Odggu



Matrices from PDE revisited

Given:

» Domain Q = (0, X) x (0, Y) C R? with boundary I' = 9Q, outer normal n
» Right hand side f : Q — R

» "Conductivity" A

» Boundary value v: I — R

» Transfer coefficient «
Search function v : Q — R such that

-V -AVu=f inQ
—AVu-n+afu—v)=0 onl

» Example: heat conduction:

> u: temperature

> f: volume heat source

> )\: heat conduction coefficient
> v: Ambient temperature

> «: Heat transfer coefficient



The finite volume idea revisited

» Assume €2 is a polygon
> Subdivide the domain  into a finite number of control volumes :

Q= UkeN’ Wk
such that
> wy are open (not containing their boundary) convex domains

> wi Nw =0 if wy #* w
> oy = Wi N, are either empty, points or straight lines

> we will write |o| for the length
> if |ox| > 0 we say that wy, w; are neigbours

> neigbours of wx: Ny = {l € N : |ow| > 0}
» To each control volume wy assign a collocation point: xx € @&, such that
» admissibility condition: if / € N then the line x,x, is orthogonal to oy
> if wy is situated at the boundary, i.e. v, = Owx N AN # B, then x, € O

» Now, we know how to construct this partition
> obtain a boundary conforming Delaunay triangulation

> construct restricted Voronoi cells
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Discretization ansatz

» Given control volume wy, integrate equation over control volume

0:/ (=V - AVu—f)dw
Wi

:7/ >\Vu~nkd77/ fdw (Gauss)
ow Wk

:—Z/ AVu-nydy — /)\Vu-nd'y—/ fdw

LEN Wk

g,
~ Z h“(Uk = u) + [yle(ue — vie) — [wrl i
LEN K

» Here,

> up = u(x)
> v = V(Xk)
> fi = f(x)

N
N

N



Solvability of discrete problem

» N = |N| equations (one for each control volume)

» N = |N/| unknowns (one in each collocation point = control volume)

» Graph of discretzation matrix = edge graph of triangulation = matrix is
irreducible

> Matrix is symmetric

» Main diagonal entries are positive, off diagonal entries are non-positive

> The matrix is diagonally dominant

» For positive heat transfer coefficients, the matrix becomes irreducibly

diagonally dominant

= the discretization matrix has the M-property.
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Note on matrix M property and discretization methods

» Finite volume methods on boundary conforming Delaunay triangulations
can be practically constructed on large classes of 2D and 3D polygonal
domains using provable algorithms

> Results mostly by J. Shewchuk (triangle) and H. Si (TetGen)

> Later we will discuss the finite element method. It has a significantly
simpler convergence theory than the finite volume method.

> For constant heat conduction coefficients, in 2D it yields the same
discretization matrix as the finite volume method.

> However this is not true in 3D.

> Consequence: there is no provable mesh construction algorithm which leads
to the M-Propertiy of the finite element discretization matrix in 3D.
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Convergence theory

For an excurse into convergence theory, we need to recall a number of concepts
from functional analysis.

See e.g. Appendix of the book of Ern/Guermond.
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Lebesgue integral, L1(Q) |

> Let Q have a boundary which can be represented by continuous, piecewiese
smooth functions in local coordinate systems, without cusps and other+
degeneracies (more precisely: Lipschitz domain).

> Polygonal domains are Lipschitz.
> Let C(2) be the set of continuous functions f : Q — R with compact
support.
> For these functions, the Riemann integral fQ f(x)dx is well defined, and
[If]] == fQ |f(x)|dx provides a norm, and induces a metric

» A Cauchy sequence is a sequence f, of functions where the norm of the
difference between two elements can be made arbitrarily small by increasing
the element numbers:

Ve >03IN eN:Vm,n>n,||fa —fal| <e

> All convergent sequences of functions are Cauchy sequences

> A metric space is complete if all Cauchy sequences of its element have a
limit within this space
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Lebesgue integral, L1(Q) II

> Let L'(Q) be the completion of C.(f2) with respect to the metric defined by
the integral norm, i.e. “include” all limites of Cauchy sequences

» Defined via sequences, fn |f(x)|dx is defined for all functions in L*(Q).

» Equality of L! functions is elusive as they are not necessarily continuous:
best what we can say is that they are equal "almost everywhere”.

» Examples for Lebesgue integrable (measurable) functions:

> Step functions
> Bounded functions continuous except in a finite number of points
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Spaces of integrable functions

> For 1 < p < o0, let LP(Q2) be the space of measureable functions such that

/Q|f(x)|”dx < oo

equipped with the norm

|mp=(1;am”w)”

> These spaces are Banach spaces, i.e. complete, normed vector spaces.

» The space L2(Q) is a Hilbert space, i.e. a Banach space equipped with a
scalar product (-, ) whose norm is induced by that scalar product, i.e.

[lu]| = v/(u, u). The scalar product in L? is

Ug%j/ﬂﬂdﬂw-
Q



Green's theorem

> Green's theorem for smooth functions: Let u,v € C(Q) (continuously
differentiable). Then for n = (n; ... ny4) being the outward normal to €,

/ua,-vdX:/ uvn,-ds—/v&udx
Q o9 Q

In particular, if v =0 on 02 one has

/u&-vdxz —/ vOjudx
Q Q
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Weak derivative

» Let Lj,.(Q) the set of functions which are Lebesgue integrable on every
compact subset K C Q. Let C5°(2) be the set of functions infinitely
differentiable with zero values on the boundary.

For u € Li,.(Q) we define O;u by

/v@;udxz —/u@,-vdx Vv e GP(Q)
Q Q

and 0%u by

/v@audx:(—l)‘al/uafvdx Vv e G°(2)
Q Q

if these integrals exist.



Sobolev spaces

» For k>0 and 1 < p < oo, the Sobolev space W*P(Q) is the space
functions where all up to the k-th derivatives are in LP:

WHP(Q) = {u € LP(Q) : °u € LP(Q) V]a| < k}

with then norm

||U||vvk,p(n) = Z ||6a“||fp(n)

|| <k

» Alternatively, they can be defined as the completion of C* in the norm
||UHW‘<»P(Q)
> WJP(Q) is the completion of C§° in the norm [lullwr.p(q)

» The Sobolev spaces are Banach spaces.
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Fractional Sobolev spaces and traces

» For 0 < s < 1 define the fractional Sobolev space
WP(Q) = {u € LP(9Q) : L”(ﬁ € LP(Q x Q)}
[Ix = yl[*"
> Let H2(Q) = W22(Q)

» A priori it is hard to say what the value of a function from L on the
boundary is like.

For Lipschitz domains there exists unique continuous trace mapping
Yo : WHP(Q) — LP(9Q) where % 4 - = 1 such that

p

v

1
> Imy = W# P (6Q)
> Keryy = Wol‘p(Q)



Sobolev spaces of square integrable functions

» H¥(Q) = W*?(Q) with the scalar product

(U, V) k(e Z /8au8av dx
Q

|| <k

is a Hilbert space.
> H*(Q)o = Wy *(Q) with the scalar product

(U, V) (e Z /8au8av dx
Q

|| <k

is a Hilbert space as well.
» The initally most important:
> [2(Q) with the scalar product (u, v)i2() = fﬂ uv dx
> H(Q) with the scalar product (u, Vi) = fQ(uv + Vu-Vv) dx
> H}(Q) with the scalar product (u, V)Hé(Q) = fQ(Vu - Vv) dx
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Heat conduction revisited: Derivation of weak formulation

> Sobolev space theory provides the necessary framework to formulate
existence and uniqueness of solutions of PDEs.

» Heat conduction equation with homogeneous Dirichlet boundary conditions:

-V - AXNVu=finQ
u=0o0n 0

Multiply and integrate with an arbitrary test function from C5°(Q):

—/V~>\Vuvdxz fv dx
Q

/)\VUVV dx = fv dx
Q

S— 55—
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Weak formulation of homogeneous Dirichlet problem

» Search u € H}(Q) such that

/)\Vqudx = / fv dx Vv € Hy ()
Q Q

» Then,

a(u, v) :://\Vqudx
Q

is a self-adjoint bilinear form defined on the Hilbert space Hg ()

> f(v)= fQ fv dx is a linear functional on H3(S2). For Hilbert spaces V the
dual space V' (the space of linear functionals) can be identified with the
space itself.
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The Lax-Milgram lemma

Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear form,
and f a linear functional on V. Assume a is coercive, i.e.

o> 0:Vue V,a(u,u) > al|ul}.

Then the problem: find u € V such that

a(u,v) =f(v)VvevVv

admits one and only one solution with an a priori estimate

1
llullv < =[]y
«
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Heat conduction revisited

Let A > 0. Then the weak formulation of the heat conduction problem: search
u € H3(Q) such that

/)\Vqudx: / fv dx Vv € Hy(Q)
Q Q

has an unique solution.
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