Orthogonalization methods

Scientific Computing Winter 2016/2017

Lecture 11
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap

The Gershgorin Circle Theorem

(everywhere, we assume $n \geq 2$)
Theorem Let A be an $n \times n$ (complex) matrix. Let

$$
\Lambda_{i}=\sum_{\substack{j=1 \ldots . n \\ j \neq i}}\left|a_{i j}\right|
$$

If λ is an eigenvalue of A then there is $r, 1 \leq r \leq n$ such that

$$
\left|\lambda-a_{r r}\right| \leq \Lambda_{r}
$$

Corollary: Any eigenvalue of A lies in the union of the disks defined by the Gershgorin cicles

$$
\lambda \in \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-\left|a_{i i}\right|\right| \leq \Lambda_{i}\right\}
$$

Gershgorin Circle Theorem Corolary

Corollary:

$$
\begin{array}{r}
\rho(A) \leq \max _{i=1 \ldots n} \sum_{j=1}^{n}\left|a_{i j}\right|=\|A\|_{\infty} \\
\rho(A) \leq \max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|=\|A\|_{1}
\end{array}
$$

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)
$$

A is irreducible if it is not reducible.
Directed matrix graph:

- Nodes: $\mathcal{N}=\left\{N_{i}\right\}_{i=1 \ldots n}$
- Directed edges: $\mathcal{E}=\left\{\overrightarrow{N_{k} N_{l}} \mid a_{k l} \neq 0\right\}$
A is irreducible \Leftrightarrow the matrix graph is connected, i.e. for each ordered pair N_{i}, N_{j} there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of nonzero matrix entries $a_{i k_{1}}, a_{k_{1} k_{2}}, \ldots, a_{k_{r} j}$.

Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$
\lambda \in \partial \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Then, all n Gershgorin circles pass through λ, i.e. for $i=1 \ldots n$,

$$
\left|\lambda-a_{i j}\right|=\Lambda_{i}
$$

Diagonally dominant matrices

Definition

- A is diagonally dominant if for $i=1 \ldots n$,

$$
\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|
$$

- A is strictly diagonally dominant (sdd) if for $i=1 \ldots n$,

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|
$$

- A is irreducibly diagonally dominant (idd) if A is irreducible, for $i=1 \ldots n$,

$$
\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots . n \\ j \neq i}}\left|a_{i j}\right|
$$

and for at least one $r, 1 \leq r \leq n$,

$$
\left|a_{r r}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq r}}\left|a_{r j}\right|
$$

A very practical nonsingularity criterion

Theorem: Let A be strictly diagonally dominant or irreducibly diagonally dominant. Then A is nonsingular.
If in addition, if $a_{i i}>0$ for $i=1 \ldots n$, then all real parts of the eigenvalues of A are positive:

$$
\operatorname{Re} \lambda_{i}>0, \quad i=1 \ldots n
$$

Corollary: If A is symmetric, sdd or idd, with positive diagonal entries, it is positive definite.

Jacobi method convergence

Theorem: Let A be sdd or idd, and D its diagonal. Then

$$
\rho\left(\left|I-D^{-1} A\right|\right)<1
$$

Corollary: Let A be sdd or idd, and D its diagonal. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then $\rho\left(I-D^{-1} A\right)<1$, i.e. the Jacobi method converges.

Main Practical M-Matrix Criterion

Corollary: If

- A is strictly or irreducibly diagonally dominat
- $a_{i i}>0$
- $a_{i j} \leq 0$ for $i \neq j$.

Then A is an M-Matrix, i.e. in addition to the sign pattern,

- A is nonsingular
- $A^{-1} \geq 0$

Regular splittings

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- We have $I-M^{-1} A=M^{-1} N$.

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.
Corollary: $\rho\left(M^{-1} N\right)=\frac{\tau}{1+\tau}$ where $\tau=\rho\left(A^{-1} N\right)$.
Corollary: Let $A \geq 0, A=M_{1}-N_{1}$ and $A=M_{2}-N_{2}$ be regular splittings. If $N_{2} \geq N_{1} \geq 0$, then $1>\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right)$.

Application

Let A be an M-Matrix. Assume $A=D-E-F, D>0$ diagonal, $E \geq 0$ lower triangular part, $F \geq 0$ upper triangular part.

- Jacobi method: $M=D$ is nonsingular, $M^{-1} \geq 0 . N=E+F$ nonnegative \Rightarrow convergence
- Gauss-Seidel: $M=D-E$ is an M-Matrix as $A \leq M$ and M has non-positive off-digonal entries. $N=F \geq 0 . \Rightarrow$ convergence
- Comparison: $N_{J} \geq N_{G S} \Rightarrow$ Gauss-Seidel converges faster.

Intermediate Summary

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible. This is mostly the case for elliptic and parabolic PDEs.
- Check for if matrix is strictly or irreducibly diagonally dominant. If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.

Example: 1D finite volume matrix:

We assume $\alpha>0$.

$$
\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=\left(\begin{array}{c}
\frac{h}{2} f_{1}+\alpha v_{1} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\frac{h}{2} f_{N}+\alpha v_{n}
\end{array}\right)
$$

- idd
- main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the Jacobi iterative method to solve it.

Moreover, due to $A^{-1} \geq 0$, for $f \geq 0$ and $v \geq 0$ it follows that $u \geq 0$.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete lower and upper triangular factors \tilde{L}, \tilde{U}, remainder R :

$$
A=\tilde{L} \tilde{U}-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization by omitting all entries except those belonging to a a given nonzero pattern resulting

$$
A=\tilde{L} \tilde{U}-R
$$

is stable. Moreover, $A=\tilde{L} \tilde{U}-R$ is a regular splitting.

ILU(0)

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=\tilde{L} \tilde{U}=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup in two loops of $O(n)$ complexity:

```
for i=1...n do
    d(i)=a(i,i)
end
for i=1...n do
    d(i)=1.0/d(i)
    for j=i+1 ... n do
        d(j)=d(j)-a(i,j)*d(i)*a(j,i)
    end
end
```


ILU(0)

Solve $M u=v$ in one forward and one backward sweep.

```
for i=1...n do
    x=0
    for j=1 ... i-1 do
        x=x+a(i,j)*u(j)
    end
    u(i)=d(i)*(v(i)-x)
end
for i=n...1 do
    x=0
    for j=i+1...n do
        x=x+a(i,j)*u(j)
    end
    u(i)=u(i)-d(i)*x
```

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Preconditioners

- Leave this topic for a while now
- Hopefully, we well be able to discuss
- Multigrid: gives $O(n)$ complexity in optimal situations
- Domain decomposition: Structurally well suited for large scale parallelization

More general iteration schemes

Generalization of iteration schemes

- Simple iterations converge slowly
- For most practical purposes, Krylov subspace methods are used.
- We will introduce one special case and give hints on practically useful more general cases
- Material after J. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"

Solution of SPD system as a minimization procedure

Regard $A u=f$, where A is symmetric, positive definite. Then it defines a bilinear form a $: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
a(u, v)=(A u, v)=v^{\top} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent

- Given some vector u_{i} look for a new iterate u_{i+1}.
- The direction of steepest descend is given by $-f^{\prime}\left(u_{i}\right)$.
- So look for u_{i+1} in the direction of $-f^{\prime}\left(u_{i}\right)=r_{i}=b-A u_{i}$ such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha r_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha r_{i}\right)=f^{\prime}\left(u_{i}+\alpha r_{i}\right) \cdot r_{i} \\
& =\left(b-A\left(u_{i}+\alpha r_{i}\right), r_{i}\right) \\
& =\left(b-A u_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
& =\left(r_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
\alpha & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)}
\end{aligned}
$$

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$ Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

Conjugate directions II

$e_{0}=u_{0}-\hat{u}$ (such that $A e_{0}=-r_{0}$) can be represented in the basis of the search directions:

$$
e_{0}=\sum_{i=0}^{n-1} \delta_{j} d_{j}
$$

Projecting onto d_{k} in the A scalar product gives

$$
\begin{aligned}
\left(A e_{0}, d_{k}\right) & =\sum_{i=0}^{n-1} \delta_{j}\left(A d_{j}, d_{k}\right) \\
\left(A e_{0}, d_{k}\right) & =\delta_{k}\left(A d_{k}, d_{k}\right) \\
\delta_{k} & =\frac{\left(A e_{0}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{0}+\sum_{i<k} \alpha_{i} d_{i}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)}=\frac{\left(A e_{k}, d_{k}\right.}{\left(A d_{k}, d_{k}\right)} \\
& =\frac{\left(r_{k}, d_{k}\right)}{\left(A d_{k}, d_{k}\right)} \\
& =-\alpha_{k}
\end{aligned}
$$

Conjugate directions III

Then,

$$
\begin{aligned}
e_{i} & =e_{0}+\sum_{j=0}^{i-1} \alpha_{j} d_{j}=-\sum_{j=0}^{n-1} \alpha_{j} d_{j}+\sum_{j=0}^{i-1} \alpha_{j} d_{j} \\
& =-\sum_{j=i}^{n-1} \alpha_{j} d_{j}
\end{aligned}
$$

So, the iteration consists in component-wise suppression of the error, and it must converge after n steps.

Let $k \leq i$. A-projection on d_{k} gives

$$
\left(A e_{i}, d_{k}\right)=-\sum_{j=i}^{n-1} \alpha_{j}\left(A d_{j}, d_{k}\right)=0
$$

Therefore, $r_{i}=A e_{i}$ is orthogonal to $d_{0} \ldots d_{i-1}$.

Conjugate directions IV

Looking at the error norm $\left\|e_{i}\right\| A$, the method yields the element with the minimum energy norm from all elements of the affine space $e_{0}+\mathcal{K}_{i}$ where $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0}, d_{1} \ldots d_{i-1}\right\}$

$$
\begin{aligned}
\left(A e_{i}, e_{i}\right) & =\left(\sum_{j=i}^{n-1} \delta_{j} d_{j}, \sum_{j=i}^{n-1} \delta_{j} d_{j}\right)=\sum_{j=i}^{n-1} \sum_{k=i}^{n-1} \delta_{j} \delta_{k}\left(d_{j}, d_{k}\right) \\
& =\sum_{j=i}^{n-1} \delta_{j}^{2}\left(d_{j}, d_{j}\right) \\
& \min _{e \in e_{0}+\mathcal{K}_{i}}\|e\|_{A}
\end{aligned}
$$

By what magic we can obtain these d_{i} ?

Conjugate directions V

Furthermore, we have

$$
\begin{aligned}
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
e_{i+1} & =e_{i}+\alpha_{i} d_{i} \\
A e_{i+1} & =A e_{i}+\alpha_{i} A d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i}
\end{aligned}
$$

Gram-Schmidt Orthogonalization

- Assume we have been given some linearly independent vectors $v_{0}, v_{1} \ldots v_{n-1}$.
- Set $d_{0}=v_{0}$
- Define

$$
d_{i}=v_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k}
$$

- For $j<i$, A-project onto d_{j} and require orthogonality:

$$
\begin{aligned}
\left(A d_{i}, d_{j}\right) & =\left(A v_{i}, d_{j}\right)+\sum_{k=0}^{i-1} \beta_{i k}\left(A d_{k}, d_{j}\right) \\
0 & =\left(A v_{i}, d_{j}\right)+\beta_{i j}\left(A d_{j}, d_{j}\right) \\
\beta_{i j} & =-\frac{\left(A v_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}
\end{aligned}
$$

- If v_{i} are the coordinate unit vectors, this is Gaussian elimination!
- If v_{i} are arbitrary, they all must be kept in the memory

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d_{i} from $d_{j}, j<i$, we can choose $v_{i}=r_{i}$ - the residuals built up during the conjugate direction process.

Let $\mathcal{K}_{i}=\operatorname{span}\left\{d_{0} \ldots d_{i-1}\right\}$. Then, $r_{i} \perp \mathcal{K}_{i}$
But d_{i} are built by Gram-Schmidt from the residuals, so we also have $\mathcal{K}_{i}=\operatorname{span}\left\{r_{0} \ldots r_{i-1}\right\}$ and $\left(r_{i}, r_{j}\right)=0$ for $j<i$.

From $r_{i}=r_{i-1}-\alpha_{i-1} A d_{i-1}$ we obtain
$\mathcal{K}_{i}=\mathcal{K}_{i-1} \cup \operatorname{span}\left\{A d_{i-1}\right\}$
This gives two other representations of \mathcal{K}_{i} :

$$
\begin{aligned}
\mathcal{K}_{i} & =\operatorname{span}\left\{d_{0}, A d_{0}, A^{2} d_{0}, \ldots, A^{i-1} d_{0}\right\} \\
& =\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{i-1} r_{0}\right\}
\end{aligned}
$$

Such type of subspace of \mathbb{R}^{n} is called Krylov subspace, and orthogonalization methods are more often called Krylov subspace methods.

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting $v_{i}=r_{i}$ and using $\left.j<i\right) \beta_{i j}=-\frac{\left(A r_{i}, d_{j}\right)}{\left(A d_{j}, d_{j}\right)}=-\frac{\left(A d_{j}, r_{j}\right)}{\left(A d_{j}, d_{j}\right)}$.
Then, for $j<i$:

$$
\begin{aligned}
r_{j+1} & =r_{j}-\alpha_{j} A d_{j} \\
\left(r_{j+1}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\alpha_{j}\left(A d_{j}, r_{i}\right) \\
\alpha_{j}\left(A d_{j}, r_{i}\right) & =\left(r_{j}, r_{i}\right)-\left(r_{j+1}, r_{i}\right) \\
\left(A d_{j}, r_{i}\right) & =\left\{\begin{array}{ll}
-\frac{1}{\alpha_{j}}\left(r_{j+1}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{j}}\left(r_{j}, r_{i}\right), & j=i \\
0, & \text { else }
\end{array}= \begin{cases}-\frac{1}{\alpha_{i-1}}\left(r_{i}, r_{i}\right), & j+1=i \\
\frac{1}{\alpha_{i}}\left(r_{i}, r_{i}\right), & j=i \\
0, & \text { else }\end{cases} \right. \\
\beta_{i j} & = \begin{cases}\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}, & j+1=i \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Conjugate gradients III

For Gram-Schmidt we defined (replacing v_{i} by r_{i}):

$$
\begin{aligned}
d_{i} & =r_{i}+\sum_{k=0}^{i-1} \beta_{i k} d_{k} \\
& =r_{i}+\beta_{i, i-1} d_{i-1}
\end{aligned}
$$

So, the new orthogonal direction depends only on the previous orthogonal direction and the current residual. We don't have to store old residuals or search directions. In the sequel, set $\beta_{i}:=\beta_{i, i-1}$.

We have

$$
\begin{aligned}
d_{i-1} & =r_{i-1}+\beta_{i-1} d_{i-2} \\
\left(d_{i-1}, r_{i-1}\right) & =\left(r_{i-1}, r_{i-1}\right)+\beta_{i-1}\left(d_{i-2}, r_{i-1}\right) \\
& =\left(r_{i-1}, r_{i-1}\right) \\
\beta_{i} & =\frac{1}{\alpha_{i-1}} \frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i-1}, d_{i-1}\right)}=\frac{\left(r_{i}, r_{i}\right)}{\left(d_{i-1}, r_{i-1}\right)} \\
& =\frac{\left(r_{i}, r_{i}\right)}{\left(r_{i-1}, r_{i-1}\right)}
\end{aligned}
$$

Conjugate gradients IV - The algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\text {max }}(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Preconditioning

We discussed all these nice preconditioners - GS, Jacobi, ILU, may be there are more of them. Are they of any help here ?

Let M be spd. We can try to solve $M^{-1} A u=M^{-1} b$ instead of the original system.

But in general, $M^{-1} A$ is neither symmetric, nor definite. But there is a trick:
Let E be such that $M=E E^{T}$, e.g. its Cholesky factorization. Then, $\sigma\left(M^{-1} A\right)=\sigma\left(E^{-1} A E^{-T}\right):$

Assume $M^{-1} A u=\lambda u$. We have

$$
\left(E^{-1} A E^{-T}\right)\left(E^{T} u\right)=\left(E^{T} E^{-T}\right) E^{-1} A u=E^{T} M^{-1} A u=\lambda E^{T} u
$$

$\Leftrightarrow E^{T} u$ is an eigenvector of $E^{-1} A E^{-T}$ with eigenvalue λ.
Good preconditioner: $M \approx A$ in the sense that $\kappa\left(M^{-1} A\right) \ll \kappa(A)$.

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

$$
E^{-1} A E^{-T} \tilde{x}=E^{-1} b
$$

with $\tilde{u}=E^{T} u$

$$
\begin{aligned}
\tilde{d}_{0} & =\tilde{r}_{0}=E^{-1} b-E^{-1} A E^{-T} u_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)}{\left(E^{-1} A E^{-T} \tilde{d}_{i}, \tilde{d}_{i}\right)} \\
\tilde{u}_{i+1} & =\tilde{u}_{i}+\alpha_{i} \tilde{d}_{i} \\
\tilde{r}_{i+1} & =\tilde{r}_{i}-\alpha_{i} E^{-1} A E^{-T} \tilde{d}_{i} \\
\beta_{i+1} & =\frac{\left(\tilde{r}_{i+1}, \tilde{r}_{i+1}\right)}{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)} \\
\tilde{d}_{i+1} & =\tilde{r}_{i+1}+\beta_{i+1} \tilde{d}_{i}
\end{aligned}
$$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

A few issues

Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

C++ implementation

```
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,
    const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
    Vector p, z, q;
    Vector alpha(1), beta(1), rho(1), rho_1(1);
    Real normb = norm(b);
    Vector r = b - A*x;
    if (normb == 0.0) normb = 1;
    if ((resid = norm(r) / normb) <= tol) {
        tol = resid;
        max_iter = 0;
        return 0;
    }
    for (int i = 1; i <= max_iter; i++) {
        z = M.solve(r);
        rho(0) = dot(r, z);
        if (i == 1)
        p = z;
        else {
            beta(0) = rho(0) / rho_1(0);
            p = z + beta(0) * p;
        }
        q = A*p;
        alpha(0) = rho(0) / dot(p, q);
        x += alpha(0) * p;
        r -= alpha(0) * q;
        if ((resid = norm(r) / normb) <= tol) {
            tol = resid;
            max_iter = i;
            return 0;
        }
        rho_1(0) = rho(0);
    }
    tol = resid; return 1;
}
```


C++ implementation II

- Available from http://www.netlib.org/templates/cpp//cg.h
- Slightly adapted for numcxx
- Available in numxx in the namespace netlib.

Unsymmetric problems

- By definition, CG is only applicable to unsymmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_{0}, perform

$$
\begin{aligned}
r_{0} & =b-A x_{0} & \hat{r}_{0} & =\hat{b}-\hat{x}_{0} A^{T} \\
p_{0} & =r_{0} & \hat{p}_{0} & =\hat{r}_{0} \\
\alpha_{i} & =\frac{\left(\hat{r}_{i}, r_{i}\right)}{\left(\hat{p}_{i}, A p_{i}\right)} & & \\
x_{i+1} & =x_{i}+\alpha_{i} p_{i} & \hat{x}_{i+1} & =\hat{x}_{i}+\alpha_{i} \hat{p}_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} & \hat{r}_{i+1} & =\hat{r}_{i}-\alpha_{i} \hat{p}_{i} A^{T} \\
\beta_{i} & =\frac{\left(\hat{r}_{i+1}, r_{i+1}\right)}{\left(\hat{r}_{i}, r_{i}\right)} & & \\
p_{i+1} & =r_{i+1}+\beta_{i} p_{i} & \hat{p}_{i+1} & =\hat{r}_{i+1}+\beta_{i} \hat{p}_{i}
\end{aligned}
$$

The two sequences produced by the algorithm are biorthogonal, i.e., $\left(\hat{p}_{i}, A p_{j}\right)=\left(\hat{r}_{i}, r_{j}\right)=0$ for $i \neq j$.

Unsymmetric problems II

- BiCG is very unstable an additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
- "Stabilize" BiCG \rightarrow BiCGstab
- tweak CG \rightarrow Conjugate gradients squared (CGS)
- Error minimization in Krylov subspace \rightarrow Generalized Minimum Residual (GMRES)
- Both CGS and BiCGstab can show rather erratic convergence behavior
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice \Rightarrow restart strategy.
- From my experience, BiCGstab is a good first guess

Plan for next lectures

- Move on to higher dimensional (2D) discretiztion methods:
- Domain triangulation
- Partial differential equations
- Finite volume method
- Finite element method
- Aim: working with the methods introduced on 2D systems.

Next time

Special Guest: 斯杭 (Hang Si) from Weierstrass Institute, author of the tetrahedral mesh generator TetGen.

