Orthogonalization methods
Scientific Computing Winter 2016/2017
Lecture 11
Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

Recap

2 /45

The Gershgorin Circle Theorem
(everywhere, we assume n > 2)

Theorem Let A be an n x n (complex) matrix. Let
A= > |ayl
Jj=1l...n
J#i

If X is an eigenvalue of A then there is r, 1 < r < n such that

|)\ - arr| S /\r

Corollary: Any eigenvalue of A lies in the union of the disks defined by the
Gershgorin cicles

re |J e n—lall <A}

i=1...n

Gershgorin Circle Theorem Corolary

Corollary:

n

A) < ijl — oo
p(A) < max > |ay| = ||Al

=1

A) < il = ||A
o)—,-:ml?.ﬁ;'af' 1Al

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

T (Aun An
PAP' = (0 A22>
A is irreducible if it is not reducible.

Directed matrix graph:

» Nodes: N' = {N;}i=1...n

» Directed edges: £ = {N;N/\ak/ # 0}
A is irreducible < the matrix graph is connected, i.e. for each ordered pair
N;i, Nj there is a path consisting of directed edges, connecting them.

Equivalently, for each i,/ there is a sequence of nonzero matrix entries
Qiky s kyky s+« + 5 Akej-

Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue)\ is a boundary
point of the union of all the disks

€D U {peC:|p—ail <N}
i=1...n

Then, all n Gershgorin circles pass through A, i.e. for i =1...n,

\/\ - aii| =N

6 /45

Diagonally dominant matrices
Definition

» Ais diagonally dominant if for i =1...n,

Jail >) |as]
Jj=l...n

J#
> A is strictly diagonally dominant (sdd) if for i =1...n,

aji| > |a,~\
|ai i
Jj=l...n
J#i

> A is irreducibly diagonally dominant (idd) if A is irreducible, for i =1...n,

lail >) ay]
Jj=l...n

A
and for at least one r, 1 < r < n,

arr| > arj
lan] > > |yl
j=1

J#r

A very practical nonsingularity criterion

Theorem: Let A be strictly diagonally dominant or irreducibly diagonally
dominant. Then A is nonsingular.

If in addition, if a;; > 0 for i = 1...n, then all real parts of the eigenvalues of A
are positive:

ReAi>0, i=1...n

Corollary: If A is symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

8/45

Jacobi method convergence

Theorem: Let A be sdd or idd, and D its diagonal. Then

ol — DA < 1

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0 and
a; <0 for i #j. Then p(I — D™'A) < 1, i.e. the Jacobi method converges.

9 /45

Main Practical M-Matrix Criterion

Corollary: If
» A is strictly or irreducibly diagonally dominat
> a; >0
> a; <0 fori#j.

Then A is an M-Matrix, i.e. in addition to the sign pattern,

» A is nonsingular
» A1 >0

45

Regular splittings

» A= M — N is a regular splitting if

> M is nonsingular
» M=l N are nonnegative, i.e. have nonnegative entries

> Regard the iteration uxi1 = M~ *Nu, + M~ 1h.
> We have | - M™'A= M7IN.

Theorem: Assume A is nonsingular, A~! >0,and A= M — N is a regular
splitting. Then p(M™'N) < 1.

Corollary: p(M™'N) = Z— where 7 = p(A~!N).

1+7
Corollary: Let A>0, A= M; — N; and A= M, — N, be regular splittings. If
N> > Ny >0, then 1 > p(M5 ' No) > p(M;Ny).

Application

Let A be an M-Matrix. Assume A= D — E — F, D > 0 diagonal, E > 0 lower
triangular part, F > 0 upper triangular part.

» Jacobi method: M = D is nonsingular, M~! > 0. N = E + F nonnegative
= convergence

» Gauss-Seidel: M = D — E is an M-Matrix as A < M and M has
non-positive off-digonal entries. N = F > 0. = convergence

» Comparison: N, > Ngs = Gauss-Seidel converges faster.

Intermediate Summary

> Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

> Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check for if matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.

Example: 1D finite volume matrix:

We assume a > 0.

1 1 h
a+i —F u 5h+av
47 p b
12 1
% h Th us hfs
12 1
S~ Un—2 hfy_>
-1 2 _1 u hf
hoohTh N—1 , N1
~% ;+a un §fN+Oan
> idd

» main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the
Jacobi iterative method to solve it.

Moreover, due to A~ >0, for f > 0 and v > 0 it follows that u > 0.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

> apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

> Result: incomplete lower and upper triangular factors L, U, remainder R:

A=LU-R

> Problem: with complete LU factorization procedure, for any nonsingular
matrix, the method is stable, i.e. zero pivots never occur. Is this true for the
incomplete LU Factorization as well ?

15 /45

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute
the incomplete LU factorization by omitting all entries except those belonging to
a a given nonzero pattern resulting

=L0-

is stable. Moreover, A= LU — R is a regular splitting.

16 /4

ILU(0)

» Special case of ILU: ignore any fill-in.
» Representation:

M=LU=(D-ED " (D-F)

» D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

> Setup in two loops of O(n) complexity:

for i=1...n do
d(i)=a(i,i)
end

for i=1...n do
d(i)=1.0/d(i)
for j=i+1 ... n do
d(3)=d(§)-a(i,)*d(1)*a(j,1)
end
end

ILU(0)

Solve Mu = v in one forward and one backward sweep.

for i=1...n do

x=0

for j=1 ... i-1 do
x=x+a(d,j)*u(j)

end

u(i)=d(i)*(v(i)-x)
end

for i=n...1 do
x=0
for j=i+1...n do
x=x+a(i,j)*u(j)
end
u(i)=u(i)-d (i) *x

45

ILU(0)

vVvyVvyYyvyy

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified”): add ignored off-diagonal entries to D
> ILUT: zero pattern calculated dynamically based on drop tolerance

Dependence on ordering

Can be parallelized using graph coloring

Not much theory: experiment for particular systems

| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU

19 /4

Preconditioners

» Leave this topic for a while now
> Hopefully, we well be able to discuss

> Multigrid: gives O(n) complexity in optimal situations
» Domain decomposition: Structurally well suited for large scale parallelization

More general iteration schemes

Generalization of iteration schemes

v

Simple iterations converge slowly

For most practical purposes, Krylov subspace methods are used.

We will introduce one special case and give hints on practically useful more
general cases

Material after J. Shewchuk: An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain*

vy

v

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R" x R" - R

a(u,v) = (Au,v) = v Au = Z Z ajviuj

i=1 j=1

As A is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function

What is the minimizer of f ?7

ffluy=Au—b=0

> Solution of SPD system = minimization of f.

23 /45

Method of steepest descent

> Given some vector u; look for a new iterate ujt1.
> The direction of steepest descend is given by —f'(u;).

> So look for wjt1 in the direction of —f'(u;) = r; = b — Au; such that it
minimizes f in this direction, i.e. set u;+1 = u; + ar; with o choosen from

d
0= Ef(u,- +ar) = f(ui+ar)

= (b— A(ui + ari), ri)
= (b— Aui, ri) — a(Ar, ri)
= (ri,r) — a(Ar,)

_ (n,nm)
«= (AI’,‘7 I‘,‘)

24 /45

Method of steepest descent: iteration scheme

ri = b — Au;
_ (riyn)
4= (Ari, i)

Uiy1 = Ui + ot

Let &1 the exact solution. Define e; = u; — @I, then r;, = —Ae;
1
Let ||ul|a = (Au, u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

k—1\
lella < (27) Heolla

Amax(A)

(A is the spectral condition number.

where k =

25 /45

Conjugate directions

For steepest descent, there is no guarantee that a search direction
d; = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let do, di ... dn—1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adj,d;) =0, i #j.

» Look for ujy1 in the direction of d; such that it minimizes f in this direction,
i.e. set uj+1 = u; + «;d; with o choosen from

0= %f(u,— +ad) = f'(ui + ad;) - d;
= (b— A(ui + ad), di)

b— Aui, d;) — a(Ad;, d)

ri, di) — a(Ad;, d;)

(ri, di)

Y= (Ad, d)

=(
=(

26

45

Conjugate directions Il

e = up — U (such that Aep = —rp) can be represented in the basis of the search

directions:

n—1
& = Z o;dj
i=0
Projecting onto di in the A scalar product gives

n—1

(Aeo, dk) = Y d;(Ad;, di)
i=0
(Aeo, d) = 0k(Adk; di)

_ (Aeo,di) (A60+Z;<k0‘idfvdk) _ (Aex, dk
“T (Adi,di) (Ady, dy) "~ (Ady, di)
(i, di)
" (Adx, dv)
= —Q

27 /45

Conjugate directions Il
Then,

e

i1 n—1 i—1
et ad=-) ad+y ad
j=0 J=0 J=0

n—1

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps.

Let kK <. A-projection on dx gives

(Aei, di) = Za, Ad;, di) = 0

Therefore, r; = Ae; is orthogonal to dy ... di—1.

45

Conjugate directions IV

Looking at the error norm ||ei||A, the method yields the element with the
minimum energy norm from all elements of the affine space ey + K; where
,C,‘ = span{do, d1 - di_l}

n—1 n—1

(Aei, e) = (Zéc/hZéd) >S50l)

j=i k=i
= Z 57(d;,)
j=i

n_|lella
eceg+K;

By what magic we can obtain these d;?

29 /45

Conjugate directions V

Furthermore, we have

Uir1 = Uj + a;d;
ei+1 = & + a;d;
Aeit1 = Aei + aiAd;

riy1 = ri — oiAd;

30

Gram-Schmidt Orthogonalization

> Assume we have been given some linearly independent vectors
Vo, Vi...Vp—1.

> Setdy = w

» Define

i—1
di=vi+ Zﬁikdk
k=0
> For j < i, A-project onto d; and require orthogonality:

i—1

(Ad;, dj) = (Avi,) + Y _ Bu(Adk, dj)

k=0
0= (AV,‘, dJ) + /BU(Adjv dj)
5“ _ (AV"7 dJ)
" (Ady,d))

» If v; are the coordinate unit vectors, this is Gaussian elimination!

> If v; are arbitrary, they all must be kept in the memory

31/45

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up d; from d;, j < i, we can choose v; = r; — the
residuals built up during the conjugate direction process.

Let C; = span{do e d,;l}. Then, ri L K;

But d; are built by Gram-Schmidt from the residuals, so we also have
Ki=span{ry...ri—1} and (r;, r;) =0 for j < i.

From ri = ri_1 — aj—1Ad:_1 we obtain
Ki=Ki_1U span{Ad,-_l}

This gives two other representations of C;:

K; = span{do, Ado, Ado, ..., A do}
= span{r, Ar, A, ... ,Ai_lro}

Such type of subspace of R" is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

32/45

Conjugate gradients |l

Look at Gram-Schmidt under these conditions. The essential data are (setting
(Ari,dj) (Adj,ri)

v; = ri and using j < i) 6;‘1‘:—(Adj7dj) = —{Add)-

Then, for j < i:

ris1 = r; — aAd;
(rj+17 fi) = (rj, rf) - aj(Adj, rf)
aj(Ad;, ri) = (1, ri) — (g1, i)

—a(nn), j+l=i (-G (nn), j+l=i
(Adfvri): D%,(’:hri)a J:’ = O%’.(rhri)7 J:I
0, else 0, else

L) g
By = { @1 Adsd) jtl=i
0, else

33 /45

Conjugate gradients Il
For Gram-Schmidt we defined (replacing v; by r;):

i—1

di=r+ Z/Bikdk
k=0

=ri+ Bii—1di—1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or search
directions. In the sequel, set ;i := (i i—1.

We have

di—1 = ri—1 + Bi—1di—2
(di—1,ric1) = (fie1, ric1) + Bi—1(di—2, ri—1)

= (I’i—l,ri—l)

1 (ri, ri) ~ (n,m)
bi= Qj—1 (Adi—l,di—l) N (di—l, ri—1)

. (ri,ri)

N (fi—l,ri—l)

34 /45

Conjugate gradients IV - The algorithm
Given initial value up, spd matrix A, right hand side b.

do =n = b— AUo
o = i)

(Adi, dy)

Uip1 = U + oid;

fiy1 = i — a;iAd;
rit1, i
o1 = (riy1, riva)
(ri, ri)
dit1 = rix1 + Biqrd;
At the i-th step, the algorithm yields the element from ey + IC; with the

minimum energy error.

Theorem The convergence rate of the method is

-1\
leta<2 (V21) el

where 1 = Smax(4)
Nomi

%) is the spectral condition number.

35 /45

Preconditioning

We discussed all these nice preconditioners - GS, Jacobi, ILU, may be there are
more of them. Are they of any help here ?

Let M be spd. We can try to solve M~*Au = M~1b instead of the original
system.

But in general, M~ A is neither symmetric, nor definite. But there is a trick:

Let E be such that M = EE", e.g. its Cholesky factorization. Then,
o(M7*A) = o(ETTAETT):

Assume M~'Au = Au. We have
(E'AE"YE"u)=(E"TETE'Au=E" M 'Au=\E"u

< ETuis an eigenvector of E"*AE™T with eigenvalue \.

Good preconditioner: M = A in the sense that k(M ™*A) << k(A).

Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system

E'AET T =E7'b
with 1= ETu
do=F=E'b—ETAE Ty
(%, %)
(E-*AE-Td;, d)
Uip1 = Ui + id;

7‘,‘+1 = T’,’ — Oé,‘E_lAE_Tai

aj =

(Fiv1, Fira)
(%, %)

¢~7',-+1 =Fit1+ /Bi+lai

/BH—I -

Not very practical as we need E

37/45

Preconditioned CG Il

Assume F; = Eilr,», 8,» = ETd,-, we get the equivalent algorithm

n = b— AUo

do = M_lro

0= Mri i)
(Ad;, dy)

Uiy1 = uj + a;d;
riy1 = i — a;iAd;

(M~ trii, rig1)

P = (ri, ri)

dis1 = M7 i1 + Bisad;

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

8 /45

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

rig1 = ri — a;Ad;
give a much more optimistic picture on the state of the iteration than the real

residual

riy1 = b — Auina

39 /4

C++ implementation

template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,
const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;
Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r = b - A*x;
if (normb 0.0) normb = 1;
if ((resid = norm(r) / normb) <= tol) {
tol = resid;
max_iter = 0;
return 0;
}
for (int i = 1; i <= max_iter; i++) {
z = M.solve(r);
rho(0) = dot(r, z);
if (1 == 1)
P =z
else {
beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;
s
q = A*p;
alpha(0) = rho(0) / dot(p, q);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / normb) <= tol) {
tol = resid;
max_iter = i;

return 0;
¥
rho_1(0) = rho(0);
}
tol = resid; return 1;

1

45

C++ implementation Il

» Available from http://wuw.netlib.org/templates/cpp//cg.h
» Slightly adapted for numcxx
> Available in numxx in the namespace netlib.

41 /45

http://www.netlib.org/templates/cpp//cg.h

Unsymmetric problems

» By definition, CG is only applicable to unsymmetric problems.
» The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xp, perform

rn=>b—Ax fo=b— %A
po=ro Po="o
iy ri
“ (f(),-,Ap),-)
Xit1 = Xi + aip; Xiv1 = Xi + aipi
riq1 = ri — OéiAPi 'fi+1 =F— OéiﬁiAT
5:‘ _ (?H-l7 ff+1)
(P, ri)
pi+1 = fiy1 + Bipi Pi+1 = Fix1 + Bibi

The two sequences produced by the algorithm are biorthogonal, i.e.,
(i, Apj) = (Fi, ;) = 0 for i # j.

Unsymmetric problems |l

BiCG is very unstable an additionally needs the transposed matrix vector
product, it is seldomly used in practice
There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.
Main practical approaches to fix the situation:

> “Stabilize” BiCG — BiCGstab

> tweak CG — Conjugate gradients squared (CGS)

> Error minimization in Krylov subspace — Generalized Minimum Residual
(GMRES)

Both CGS and BiCGstab can show rather erratic convergence behavior
For GMRES one has to keep the full Krylov subspace, which is not possible

in practice = restart strategy.
From my experience, BiCGstab is a good first guess

Plan for next lectures

» Move on to higher dimensional (2D) discretiztion methods:

> Domain triangulation
Partial differential equations
Finite volume method
Finite element method

vYyy

» Aim: working with the methods introduced on 2D systems.

44 /45

Next time

Special Guest: Hn (Hang Si) from Weierstrass Institute, author of the
tetrahedral mesh generator TetGen.

45 /45

http://tetgen.org

