
~

Orthogonalization methods
Scientific Computing Winter 2016/2017

Lecture 11

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

1 / 45

~

Recap

2 / 45

The Gershgorin Circle Theorem
(everywhere, we assume n ≥ 2)

Theorem Let A be an n × n (complex) matrix. Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there is r , 1 ≤ r ≤ n such that

|λ− arr | ≤ Λr

Corollary: Any eigenvalue of A lies in the union of the disks defined by the
Gershgorin cicles

λ ∈
⋃

i=1...n

{µ ∈ C : |µ− |aii || ≤ Λi}

3 / 45

Gershgorin Circle Theorem Corolary

Corollary:

ρ(A) ≤ max
i=1...n

n∑
j=1

|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑
i=1

|aij | = ||A||1

4 / 45

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =

(
A11 A12
0 A22

)
A is irreducible if it is not reducible.

Directed matrix graph:

I Nodes: N = {Ni}i=1...n

I Directed edges: E = { ~NkNl |akl 6= 0}

A is irreducible ⇔ the matrix graph is connected, i.e. for each ordered pair
Ni ,Nj there is a path consisting of directed edges, connecting them.

Equivalently, for each i , j there is a sequence of nonzero matrix entries
aik1 , ak1k2 , . . . , akr j .

5 / 45

Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue λ is a boundary
point of the union of all the disks

λ ∈ ∂
⋃

i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi

6 / 45

Diagonally dominant matrices
Definition

I A is diagonally dominant if for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if for i = 1 . . . n,

|aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if A is irreducible, for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

and for at least one r , 1 ≤ r ≤ n,

|arr | >
∑

j=1...n
j 6=r

|arj |

7 / 45

A very practical nonsingularity criterion

Theorem: Let A be strictly diagonally dominant or irreducibly diagonally
dominant. Then A is nonsingular.

If in addition, if aii > 0 for i = 1 . . . n, then all real parts of the eigenvalues of A
are positive:

Reλi > 0, i = 1 . . . n

Corollary: If A is symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

8 / 45

Jacobi method convergence

Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0 and
aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method converges.

9 / 45

Main Practical M-Matrix Criterion

Corollary: If

I A is strictly or irreducibly diagonally dominat
I aii > 0
I aij ≤ 0 for i 6= j.

Then A is an M-Matrix, i.e. in addition to the sign pattern,

I A is nonsingular
I A−1 ≥ 0

10 / 45

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a regular
splitting. Then ρ(M−1N) < 1.

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular splittings. If
N2 ≥ N1 ≥ 0, then 1 > ρ(M−12 N2) ≥ ρ(M−11 N1).

11 / 45

Application

Let A be an M-Matrix. Assume A = D − E − F , D > 0 diagonal, E ≥ 0 lower
triangular part, F ≥ 0 upper triangular part.

I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F nonnegative
⇒ convergence

I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has
non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence

I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.

12 / 45

Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check for if matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.

13 / 45

Example: 1D finite volume matrix:

We assume α > 0.



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α





u1
u2
u3
...

uN−2
uN−1
uN


=



h
2 f1 + αv1

hf2
hf3
...

hfN−2
hfN−1

h
2 fN + αvn


I idd
I main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the
Jacobi iterative method to solve it.

Moreover, due to A−1 ≥ 0, for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.

14 / 45

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete lower and upper triangular factors L̃, Ũ, remainder R:

A = L̃Ũ − R

I Problem: with complete LU factorization procedure, for any nonsingular
matrix, the method is stable, i.e. zero pivots never occur. Is this true for the
incomplete LU Factorization as well ?

15 / 45

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute
the incomplete LU factorization by omitting all entries except those belonging to
a a given nonzero pattern resulting

A = L̃Ũ − R

is stable. Moreover, A = L̃Ũ − R is a regular splitting.

16 / 45

ILU(0)

I Special case of ILU: ignore any fill-in.
I Representation:

M = L̃Ũ = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup in two loops of O(n) complexity:

for i=1...n do
d(i)=a(i,i)

end

for i=1...n do
d(i)=1.0/d(i)
for j=i+1 ... n do

d(j)=d(j)-a(i,j)*d(i)*a(j,i)
end

end

17 / 45

ILU(0)

Solve Mu = v in one forward and one backward sweep.

for i=1...n do
x=0
for j=1 ... i-1 do

x=x+a(i,j)*u(j)
end
u(i)=d(i)*(v(i)-x)

end

for i=n...1 do
x=0
for j=i+1...n do

x=x+a(i,j)*u(j)
end
u(i)=u(i)-d(i)*x

18 / 45

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

19 / 45

Preconditioners

I Leave this topic for a while now
I Hopefully, we well be able to discuss

I Multigrid: gives O(n) complexity in optimal situations
I Domain decomposition: Structurally well suited for large scale parallelization

20 / 45

~

More general iteration schemes

21 / 45

Generalization of iteration schemes

I Simple iterations converge slowly
I For most practical purposes, Krylov subspace methods are used.
I We will introduce one special case and give hints on practically useful more

general cases
I Material after J. Shewchuk: An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain“

22 / 45

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =

n∑
i=1

n∑
j=1

aijvi uj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.

For a given vector b, regard the function

f (u) =
1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .
23 / 45

Method of steepest descent

I Given some vector ui look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui).
I So look for ui+1 in the direction of −f ′(ui) = ri = b − Aui such that it

minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen from

0 =
d

dα f (ui + αri) = f ′(ui + αri) · ri

= (b − A(ui + αri), ri)

= (b − Aui , ri)− α(Ari , ri)

= (ri , ri)− α(Ari , ri)

α =
(ri , ri)

(Ari , ri)

24 / 45

Method of steepest descent: iteration scheme

ri = b − Aui

αi =
(ri , ri)

(Ari , ri)

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u)
1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A

where κ = λmax (A)
λmin(A)

is the spectral condition number.

25 / 45

Conjugate directions

For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j.

I Look for ui+1 in the direction of di such that it minimizes f in this direction,
i.e. set ui+1 = ui + αi di with α choosen from

0 =
d

dα f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)

= (b − Aui , di)− α(Adi , di)

= (ri , di)− α(Adi , di)

αi =
(ri , di)

(Adi , di)

26 / 45

Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the search
directions:

e0 =

n−1∑
i=0

δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk) =

n−1∑
i=0

δj (Adj , dk)

(Ae0, dk) = δk (Adk , dk)

δk =
(Ae0, dk)

(Adk , dk)
=

(Ae0 +
∑

i<k αi di , dk)

(Adk , dk)
=

(Aek , dk

(Adk , dk)

=
(rk , dk)

(Adk , dk)

= −αk

27 / 45

Conjugate directions III
Then,

ei = e0 +

i−1∑
j=0

αjdj = −
n−1∑
j=0

αjdj +

i−1∑
j=0

αjdj

= −
n−1∑
j=i

αjdj

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps.

Let k ≤ i . A-projection on dk gives

(Aei , dk) = −
n−1∑
j=i

αj (Adj , dk) = 0

Therefore, ri = Aei is orthogonal to d0 . . . di−1.

28 / 45

Conjugate directions IV

Looking at the error norm ||ei ||A, the method yields the element with the
minimum energy norm from all elements of the affine space e0 +Ki where
Ki = span{d0, d1 . . . di−1}

(Aei , ei) =

(
n−1∑
j=i

δjdj ,

n−1∑
j=i

δjdj

)
=

n−1∑
j=i

n−1∑
k=i

δjδk (dj , dk)

=

n−1∑
j=i

δ2j (dj , dj)

min
e∈e0+Ki

||e||A

By what magic we can obtain these di?

29 / 45

Conjugate directions V

Furthermore, we have

ui+1 = ui + αi di

ei+1 = ei + αi di

Aei+1 = Aei + αi Adi

ri+1 = ri − αi Adi

30 / 45

Gram-Schmidt Orthogonalization
I Assume we have been given some linearly independent vectors

v0, v1 . . . vn−1.
I Set d0 = v0
I Define

di = vi +

i−1∑
k=0

βikdk

I For j < i , A-project onto dj and require orthogonality:

(Adi , dj) = (Avi , dj) +

i−1∑
k=0

βik (Adk , dj)

0 = (Avi , dj) + βij (Adj , dj)

βij = − (Avi , dj)

(Adj , dj)

I If vi are the coordinate unit vectors, this is Gaussian elimination!
I If vi are arbitrary, they all must be kept in the memory

31 / 45

Conjugate gradients (Hestenes, Stiefel, 1952)

As Gram-Schmidt builds up di from dj , j < i , we can choose vi = ri – the
residuals built up during the conjugate direction process.

Let Ki = span{d0 . . . di−1}. Then, ri ⊥ Ki

But di are built by Gram-Schmidt from the residuals, so we also have
Ki = span{r0 . . . ri−1} and (ri , rj) = 0 for j < i .

From ri = ri−1 − αi−1Adi−1 we obtain

Ki = Ki−1 ∪ span{Adi−1}

This gives two other representations of Ki :

Ki = span{d0,Ad0,A2d0, . . . ,Ai−1d0}

= span{r0,Ar0,A2r0, . . . ,Ai−1r0}

Such type of subspace of Rn is called Krylov subspace, and orthogonalization
methods are more often called Krylov subspace methods.

32 / 45

Conjugate gradients II

Look at Gram-Schmidt under these conditions. The essential data are (setting
vi = ri and using j < i) βij = − (Ari ,dj)

(Adj ,dj)
= − (Adj ,ri)

(Adj ,dj)
.

Then, for j < i :

rj+1 = rj − αjAdj

(rj+1, ri) = (rj , ri)− αj (Adj , ri)

αj (Adj , ri) = (rj , ri)− (rj+1, ri)

(Adj , ri) =


− 1
αj

(rj+1, ri), j + 1 = i
1
αj

(rj , ri), j = i
0, else

=


− 1
αi−1

(ri , ri), j + 1 = i
1
αi

(ri , ri), j = i
0, else

βij =

{
1

αi−1
(ri ,ri)

(Adi−1,di−1)
, j + 1 = i

0, else

33 / 45

Conjugate gradients III
For Gram-Schmidt we defined (replacing vi by ri):

di = ri +

i−1∑
k=0

βikdk

= ri + βi,i−1di−1

So, the new orthogonal direction depends only on the previous orthogonal
direction and the current residual. We don’t have to store old residuals or search
directions. In the sequel, set βi := βi,i−1.

We have

di−1 = ri−1 + βi−1di−2

(di−1, ri−1) = (ri−1, ri−1) + βi−1(di−2, ri−1)

= (ri−1, ri−1)

βi =
1

αi−1

(ri , ri)

(Adi−1, di−1)
=

(ri , ri)

(di−1, ri−1)

=
(ri , ri)

(ri−1, ri−1)
34 / 45

Conjugate gradients IV - The algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi =
(ri , ri)

(Adi , di)

ui+1 = ui + αi di

ri+1 = ri − αi Adi

βi+1 =
(ri+1, ri+1)

(ri , ri)

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 +Ki with the
minimum energy error.

Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ− 1√
κ+ 1

)i

||e0||A

where κ = λmax (A)
λmin(A)

is the spectral condition number. 35 / 45

Preconditioning

We discussed all these nice preconditioners - GS, Jacobi, ILU, may be there are
more of them. Are they of any help here ?

Let M be spd. We can try to solve M−1Au = M−1b instead of the original
system.

But in general, M−1A is neither symmetric, nor definite. But there is a trick:

Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):

Assume M−1Au = λu. We have

(E−1AE−T)(ET u) = (ET E−T)E−1Au = ET M−1Au = λET u

⇔ ET u is an eigenvector of E−1AE−T with eigenvalue λ.

Good preconditioner: M ≈ A in the sense that κ(M−1A) << κ(A).

36 / 45

Preconditioned CG I
Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ET u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi =
(r̃i , r̃i)

(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αi E−1AE−T d̃i

βi+1 =
(r̃i+1, r̃i+1)

(r̃i , r̃i)

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E
37 / 45

Preconditioned CG II

Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi =
(M−1ri , ri)

(Adi , di)

ui+1 = ui + αi di

ri+1 = ri − αi Adi

βi+1 =
(M−1ri+1, ri+1)

(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of the
matrix vector product and the calculation of the scalar product.

38 / 45

A few issues

Usually we stop the iteration when the residual r becomes small. However during
the iteration, floating point errors occur which distort the calculations and lead
to the fact that the accumulated residuals

ri+1 = ri − αi Adi

give a much more optimistic picture on the state of the iteration than the real
residual

ri+1 = b − Aui+1

39 / 45

C++ implementation
template < class Matrix, class Vector, class Preconditioner, class Real >
int CG(const Matrix &A, Vector &x, const Vector &b,

const Preconditioner &M, int &max_iter, Real &tol)
{ Real resid;

Vector p, z, q;
Vector alpha(1), beta(1), rho(1), rho_1(1);
Real normb = norm(b);
Vector r = b - A*x;
if (normb == 0.0) normb = 1;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = 0;
return 0;

}
for (int i = 1; i <= max_iter; i++) {

z = M.solve(r);
rho(0) = dot(r, z);
if (i == 1)

p = z;
else {

beta(0) = rho(0) / rho_1(0);
p = z + beta(0) * p;

}
q = A*p;
alpha(0) = rho(0) / dot(p, q);
x += alpha(0) * p;
r -= alpha(0) * q;
if ((resid = norm(r) / normb) <= tol) {

tol = resid;
max_iter = i;
return 0;

}
rho_1(0) = rho(0);

}
tol = resid; return 1;

}
40 / 45

C++ implementation II

I Available from http://www.netlib.org/templates/cpp//cg.h
I Slightly adapted for numcxx
I Available in numxx in the namespace netlib.

41 / 45

http://www.netlib.org/templates/cpp//cg.h

Unsymmetric problems
I By definition, CG is only applicable to unsymmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̂0 = b̂ − x̂0AT

p0 = r0 p̂0 = r̂0

αi =
(r̂i , ri)

(p̂i ,Api)

xi+1 = xi + αi pi x̂i+1 = x̂i + αi p̂i

ri+1 = ri − αi Api r̂i+1 = r̂i − αi p̂i AT

βi =
(r̂i+1, ri+1)

(r̂i , ri)

pi+1 = ri+1 + βi pi p̂i+1 = r̂i+1 + βi p̂i

The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̂i ,Apj) = (r̂i , rj) = 0 for i 6= j.

42 / 45

Unsymmetric problems II

I BiCG is very unstable an additionally needs the transposed matrix vector
product, it is seldomly used in practice

I There is as well a preconditioned variant of BiCG which also needs the
transposed preconditioner.

I Main practical approaches to fix the situation:
I “Stabilize” BiCG → BiCGstab
I tweak CG → Conjugate gradients squared (CGS)
I Error minimization in Krylov subspace → Generalized Minimum Residual

(GMRES)
I Both CGS and BiCGstab can show rather erratic convergence behavior
I For GMRES one has to keep the full Krylov subspace, which is not possible

in practice ⇒ restart strategy.
I From my experience, BiCGstab is a good first guess

43 / 45

Plan for next lectures

I Move on to higher dimensional (2D) discretiztion methods:
I Domain triangulation
I Partial differential equations
I Finite volume method
I Finite element method

I Aim: working with the methods introduced on 2D systems.

44 / 45

Next time

Special Guest: (Hang Si) from Weierstrass Institute, author of the
tetrahedral mesh generator TetGen.

45 / 45

http://tetgen.org

