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Criteria for the M-Property of a matrix



Iterative methods so far

I main thread (“Roter Faden”):
I Simple iterative methods converge if the spectral radius of the iteration

matrix is less than one
I If a matrix has the M-Property (positve main diagonal entries, nonpositive off

diagonal entries, nonsingular, inverse nonnegative), then methods based
regular splittings converge

I But: how can we see that a matrix has the M-Property?
I This theory is useful in other contexts as well
I Main source: Varga, “Matrix Iterative Analysis”



The Gershgorin Circle Theorem
(everywhere, we assume n ≥ 2)

Theorem Let A be an n × n (complex) matrix. Let

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A then there is r , 1 ≤ r ≤ n such that

|λ− arr | ≤ Λr

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized such
that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ− aii )xi =
∑

j=1...n
j 6=i

aijxj

|λ− arr | = |
∑

j=1...n
j 6=r

arjxj | ≤
∑

j=1...n
j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�



Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by the
Gershgorin cicles

λ ∈
⋃

i=1...n

{µ ∈ C : |µ− |aii || ≤ Λi}

Corollary:

ρ(A) ≤ max
i=1...n

n∑
j=1

|aij | = ||A||∞

ρ(A) ≤ max
j=1...n

n∑
i=1

|aij | = ||A||1

Proof

|µ− aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =

n∑
j=1

|aij |

Furthermore, σ(A) = σ(AT ). �



Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =

(
A11 A12
0 A22

)
A is irreducible if it is not reducible.

Directed matrix graph:

I Nodes: N = {Ni}i=1...n

I Directed edges: E = { ~NkNl |akl 6= 0}

A is irreducible ⇔ the matrix graph is connected, i.e. for each ordered pair
Ni ,Nj there is a path consisting of directed edges, connecting them.

Equivalently, for each i , j there is a sequence of nonzero matrix entries
aik1 , ak1k2 , . . . , akr j .



Taussky theorem

Theorem Let A be irreducible. Assume that the eigenvalue λ is a boundary
point of the union of all the disks

λ ∈ ∂
⋃

i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ− aii | = Λi



Taussky theorem proof

Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized such
that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

|λ− arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (∗)

Boundary point ⇒ |λ− arr | = Λr

⇒ For all l 6= r with ar,p 6= 0, |xp| = 1.

Due to irreducibility there is at least one such p. For this p, equation (∗) is valid
⇒ |λ− app| = Λp

Due to irreducibility, this is true for all p = 1 . . . n �



Diagonally dominant matrices
Definition

I A is diagonally dominant if for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if for i = 1 . . . n,

|aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if A is irreducible, for i = 1 . . . n,

|aii | ≥
∑

j=1...n
j 6=i

|aij |

and for at least one r , 1 ≤ r ≤ n,

|arr | >
∑

j=1...n
j 6=r

|arj |



A very practical nonsingularity criterion

Theorem: Let A be strictly diagonally dominant or irreducibly diagonally
dominant. Then A is nonsingular.

If in addition, if aii > 0 for i = 1 . . . n, then all real parts of the eigenvalues of A
are positive:

Reλi > 0, i = 1 . . . n

Proof:

Assume A strictly diagonally dominant. Then the union of the Gershgorin disks
does not contain 0 and λ = 0 cannot be an eigenvalue.

As for the real parts, the union of the disks is

⋃
i=1...n

{µ ∈ C : |µ− aii | ≤ Λi}

and Reµ must be larger than zero if it should be contained.



A very practical nonsingularity criterion II

Assume A irreducibly diagonally dominant. Then, if 0 is an eigenvalue, by the
Taussky theorem, we have |aii | = Λi for all i = 1 . . . n. This is a contradiction as
by definition there is at least one i such that |aii | > Λi

Obviously, all real parts of the eigenvalues must be ≥ 0. Therefore, if a real part
is 0, it lies on the boundary of one disk. So by Taussky it must be contained in
the boundary of all the disks and the imaginary axis. But there is at least one
disk which does not touch the imaginary axis. �



Corollary

Theorem: If A is symmetric, sdd or idd, with positive diagonal entries, it is
positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they
must be positive, so A is positive definite. �.



Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij ) = I − D−1A. Then

bij =

{
0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| =

Λi

|aii |
< 1

Therefore, ρ(|B|) < 1.



Theorem on Jacobi matrix II
If A is idd, then for i = 1 . . . n,

∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| =

Λi

|aii |
≤ 1

∑
j=1...n

|brj | =
Λr

|arr |
< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1 By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks

|λ| = 1 ≤ Λi

|aii |
≤ 1

it must lie on the boundary of this union, and by Taussky one has for all i

|λ| = 1 ≤ Λi

|aii |
= 1

which contradicts the idd condition. �



Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0 and
aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method converges.

Proof In this case, |B| = B. �.



Main Practical M-Matrix Criterion

Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j . Then
A is an M-Matrix, i.e. A is nonsingular and A−1 ≥ 0.
Proof: Let B = ρ(I − D−1A). Then ρ(B) < 1, therefore I − B is nonsingular.

We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · ·+ Bk )

(I − B)−1(I − Bk+1) = (I + B + B2 + · · ·+ Bk )

The left hand side for k →∞ converges to (I − B)−1, therefore

(I − B)−1 =

∞∑
k=0

Bk

As B ≥ 0, we have (I−B)−1 = A−1D ≥ 0. As D > 0 we must have A−1 ≥ 0. �



Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I We have I −M−1A = M−1N.



Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a regular
splitting. Then ρ(M−1N) < 1.

Proof: Let G = M−1N. Then A = M(I − G), therefore I − G is nonsingular.

In addition

A−1N = (M(I −M−1N))−1N = (I −M−1N)−1M−1N = (I − G)−1G

By Perron-Frobenius, there ρ(G) is an eigenalue with a nonnegative eigenvector
x . Thus,

0 ≤ A−1Nx =
ρ(G)

1− ρ(G)
x

Therefore 0 ≤ ρ(G) ≤ 1. As I − G is nonsingular, ρ(G) < 1 �.



Convergence rate

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(G)
1−ρ(G)

�

Corollary: Let A ≥ 0, A = M1 − N1 and A = M2 − N2 be regular splittings. If
N2 ≥ N1 ≥ 0, then 1 > ρ(M−12 N2) ≥ ρ(M−11 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1, τ
1+τ is strictly increasing.



Application

Let A be an M-Matrix. Assume A = D − E − F .

I Jacobi method: M = D is nonsingular, M−1 ≥ 0. N = E + F nonnegative
⇒ convergence

I Gauss-Seidel: M = D − E is an M-Matrix as A ≤ M and M has
non-positive off-digonal entries. N = F ≥ 0. ⇒ convergence

I Comparison: NJ ≥ NGS ⇒ Gauss-Seidel converges faster.



Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check for if matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal entries
are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods converge.



Example: 1D finite volume matrix:

We assume α > 0.



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α





u1
u2
u3
...

uN−2
uN−1
uN


=



h
2 f1 + αv1

hf2
hf3
...

hfN−2
hfN−1

h
2 fN + αvn


I idd
I main diagonal entries are positive and off-diagonal entries are nonpositive

So this matrix is nonsingular, has the M-property, and we can e.g. apply the
Jacobi iterative method to solve it.

Moreover, due to A−1 ≥ 0, for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.



Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R:

A = LU − R

I Problem: with complete LU factorization procedure, for any nonsingular
matrix, the method is stable, i.e. zero pivots never occur. Is this true for the
incomplete LU Factorization as well ?



Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute
the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.



ILU(0)

I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F )

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:

for i=1...n do
d(i)=a(i,i)

end

for i=1...n do
d(i)=1.0/d(i)
for j=i+1 ... n do

d(j)=d(j)-a(i,j)*d(i)*a(j,i)
end

end



ILU(0)

Solve Mu = v

for i=1...n do
x=0
for j=1 ... i-1 do

x=x+a(i,j)*u(j)
end
u(i)=d(i)*(v(i)-x)

end

for i=n...1 do
x=0
for j=i+1...n do

x=x+a(i,j)*u(j)
end
u(i)=u(i)-d(i)*x



ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU



Preconditioners

I Leave this topic for a while now
I Hopefully, we well be able to discuss

I Multigrid: gives O(n) complexity in optimal situations
I Domain decomposition: Structurally well suited for large scale parallelization



~

More general iteration schemes



Generalization of iteration schemes

I Simple iterations converge slowly
I For most practical purposes, Krylov subspace methods are used.
I We will introduce one special case and give hints on practically useful more

general cases
I Material after J. Shewchuk: !An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain“

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf


Solution of SPD system as a minimization procedure
Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a : Rn × Rn → R

a(u, v) = (Au, v) = vT Au =

n∑
i=1

n∑
j=1

aijvi uj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.

For a given vector b, regard the function

f (u) =
1
2a(u, u)− bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .



Method of steepest descent

I Given some vector ui look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui ).
I So look for ui+1 in the direction of −f ′(ui ) = ri = b − Aui such that it

minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen from

0 =
d

dα f (ui + αri ) = f ′(ui + αri ) · ri

= (b − A(ui + αri ), ri )

= (b − Aui , ri )− α(Ari , ri )

= (ri , ri )− α(Ari , ri )

α =
(ri , ri )

(Ari , ri )



Method of steepest descent: iteration scheme

ri = b − Aui

αi =
(ri , ri )

(Ari , ri )

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û. Let ||u||A = (Au, u)
1
2 be the energy

norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(
κ− 1
κ+ 1

)i
||e0||A



Conjugate directions

For steepest descent, there is no guarantee that a search direction di = ri = Aei
is not used several times. If all search directions would be orthogonal, or, indeed,
A-orthogonal, one could control this situation.

So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj ) = 0, i 6= j.

I Look for ui+1 in the direction of di such that it minimizes f in this direction,
i.e. set ui+1 = ui + αdi with α choosen from

0 =
d

dα f (ui + αdi ) = f ′(ui + αdi ) · di

= (b − A(ui + αdi ), di )

= (b − Aui , di )− α(Adi , di )

= (ri , di )− α(Adi , di )

α =
(ri , di )

(Adi , di )



Conjugate directions II
e0 = u0 − û (such that Ae0 = −r0) can be represented in the basis of the search
directions:

e0 =

n−1∑
i=0

δjdj

Projecting onto dk in the A scalar product gives

(Ae0, dk ) =

n−1∑
i=0

δj (Adj , dk )

(Ae0, dk ) = δk (Adk , dk )

δk =
(Ae0, dk )

(Adk , dk )
=

(Ae0 +
∑

i<k αi di , dk )

(Adk , dk )
=

(Aek , dk

(Adk , dk )

=
(rk , dk )

(Adk , dk )

= −αk



Conjugate directions III

Then,

ei = e0 +

i−1∑
j=0

αjdj

= −
n−1∑
j=0

αjdj +

i−1∑
j=0

αjdj

= −
n−1∑
j=i

αjdj

So, the iteration consists in component-wise suppression of the error, and it must
converge after n steps.

But by what magic we can obtain these di?


