Iterative Solver convergence
Scientific Computing Winter 2016/2017
Lecture 9
With material from Y. Saad "lterative Methods for Sparse Linear Systems"
Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

Homework analysis

Machine epsilon

Sample solution: /net/wir/examples/part3/macheps.cxx

T eps=1.0;

T one=1.0;

T epsnew=1.0;

T result=0.0;

do

{
eps=epsnew;
epsnew=eps/2.0;
result=onet+epsnew;

} while (result>one);

Common errors:

> In exact math it is true that from 1 4+ ¢ =1 it follows that 0 + ¢ = 0 and
vice versa. In floating point computations this is not true

» Many of you used the right algorithm and used the first value or which
1+ e =1 as the result. This is half the desired quantity.

» Some did not divide by 2 but by other numbers. Division by 2 is a mantissa
shift and essentially exact. 2 itself is also represented exactly in floating
point arithmetic.

Machine epsilon values

Calculated:
From <limits>:

Calculated:
From <limits>:

Calculated:
From <limits>:

1.1920928955078125e-07
1.1920928955078125e-07

2.22044604925031308084726333618e-16
2.22044604925031308084726333618e-16

1.08420217248550443400745280087e-19
1.08420217248550443400745280087e-19

Summation

~

ZnNzl :117 ~

Fud
6

Intended answer: sum in reverse order. Start with adding up many small values
which would be cancelled out if added to an already large sum value.

Sample solution: /net/wir/examples/part3/basel.cxx

Here are the results for float

n

10

100

1000
10000
100000
1000000
10000000
100000000

I I

forward sum

.5497677326202392e+00

6349840164184570e+00
6439348459243774e+00
6447253227233886e+00
6447253227233886e+00
6447253227233886e+00
6447253227233886e+00

.6447253227233886e+00

NN NNNOOO

forward sum error
51664447784423828e-02
95016098022460937e-03
99331474304199218e-04
08854675292968750e-04
08854675292968750e-04
08854675292968750e-04
08854675292968750e-04
08854675292968750e-04

reverse sum

-54976773262023925e+00
.63498389720916748e+00
.64393448829650878e+00
.64483404159545898e+00
.64492404460906982e+00

64493298530578613e+00

.64493393898010253e+00
.64493405818939208e+00

RN R B ©© O

reverse sum error

51664447784423828e-02
95028018951416015e-03
99689102172851562e-04
00135803222656250e-04
01327896118164062e-05
19209289550781250e-06
38418579101562500e-07

.19209289550781250e-07

Summation: Unexpected highlight answer |

by Minh Huyen Ly Le

In order to improve the accuracy of the approximation of the limit, one can use the Euler-
Maclaurin-Summation Formula, just as Euler did to approximate the series of the Baseler
Problem. With this formula the convergence of the partial sums is accelerated.

The Asymptotic Expansion of sums: For a,b € N and By, k € N Bernoulli-numbers we have:

B _
/ flayaz + 1OLIO) +Z {70 - 1))
Therefore, with f(z) = %, F™(x) = (=1)*(n + 1)1z~ we have on the one hand

A +Z s {0 o epne)

n=1

1
:1+§+ZB2k::C

k=1

Summation: Unexpected highlight answer |l

On the other hand, we have for K € N

1 |
IR L (2k+1)
an : Izdz+ +2K2 ZBkK +ZB%
n=1 k=
1
R
k=1
o Ll 1 ! L1
K 2K?2 6K® 30K> 42K7 30K9 "

(RHS)

For the approximation, let us look at an example for K = 100 and truncate the Right-Hand-
Side (RHS) from above after the K°-term. (See Output above)

(LHS) = ZK 1 ﬁ =1 63498390018489

(RHS) = — & + 302 — 555 + 3005 — ‘W + 355 = —0.00995016666333357

C= LHS-RHS = 1.64493406684823 ~ T and we therefore get an accuracy for at least 8 digits!
Improvement with EMSF, e.g. K = 100:

K=100: LHS=1.63498390018489

K=100: RHS=-0.00995016666333357
K=100: C = LHS-RHS =1.64493406684823

> So, yes, you can beat the computer with good math. ..

Recap from last time

Sparse direct solvers: solution steps (Saad Ch. 3.6)
1. Pre-ordering

> The amount of non-zero elements generated by fill-in can be decreases by
re-ordering of the matrix

> Several, graph theory based heuristic algorithms exist
2. Symbolic factorization

> |If pivoting is ignored, the indices of the non-zero elements are calculated and
stored

> Most expensive step wrt. computation time
3. Numerical factorization

> Calculation of the numerical values of the nonzero entries
> Not very expensive, once the symbolic factors are available

4. Upper/lower triangular system solution

> Fairly quick in comparison to the other steps

» Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

> With pivoting, steps 2 and 3 have to be performed together

> Instead of pivoting, iterative refinement may be used in order to maintain
accuracy of the solution

Interfacing UMFPACK from C++ (numcxx)

(shortened version of the code)

#include <suitesparse/umfpack.h>

// Calculate LU factorization

template<> inline void TSolverUMFPACK<double>::update ()

{
pMatrix—>flush(); // Update matriz, adding newly created elements
int n=pMatrix->shape(0);
double *control=nullptr;

//Calculate symbolic factorization only if matriz patter
//has changed
if (pMatrix->pattern_changed())

umfpack_di_symbolic (n, n, pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
&Symbolic, 0, 0);

umfpack_di_numeric (pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Symbolic, &Numeric, control, 0) ;

pMatrix->pattern_changed(false);

// Solve LU factorized system
template<> inline void TSolverUMFPACK<double>::solve(TArray<T> & Sol, const TArray<T> & Rhs)
{
umfpack_di_solve (UMFPACK_At,pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Sol.data(), Rhs.data(),
Numeric, control, 0) ;

Example code

> Copy files, creating subdirectory part3

> the . denotes the current directory

$ cp -r /net/wir/examples/part3 .

» Compile sources (for each of the .cxx files)

$ g++ --std=c++11 -I/net/wir/include -o executable source.cxx
-llapack -lblas -L/net/wir/lib -lumfpack -lamd -lcolamd -lcholmod

More compiler flags

(see

Makefile)

-0 name

g

-00, -01, -02, -03
=@

—-I<path>
-D<symbol>
-std=c++11

—1lname

-Lpath

Name of output file

Generate debugging instructions

Optimization levels

Avoid linking

Add <path> to include search path

Define preprocessor symbol

Use C++11 standard

Link with libname.a or libname.so from system
Search for libraries in path

How to use ?

#include <numcxx/numcxx.h>

auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArrayl::create(n);

auto pU=numcxx::DArrayl::create(n);

auto &M=*pM;
auto &F=*pF;
auto &U=*pU;

F=1.0;
for (int i=0;i<n;i++)
{
M(i,i)=3.0;
if (i>0) M(i,i-1)=-1;
if (i<n-1) M(i,i+1)=-1;
}

auto pUmfpack=numcxx::DSolverUMFPACK::create (pM);
pUmfpack->solve (U,F);

Elements of iterative methods (Saad Ch.4)

Solve Au = b iteratively

» Preconditioner: a matrix M &~ A “approximating” the matrix A but with the
property that the system Mv = f is easy to solve

> lteration scheme: algorithmic sequence using M and A which updates the
solution step by step

Simple iteration with preconditioning

Idea: All=b =

= iterative scheme

U1 = ux — M YA — b) (k=0,1...)

Choose initial value up, tolerance ¢, set k =0
Calculate residuum rx = Aux — b
Test convergence: if ||rc|| < € set u = uy, finish

Calculate update: solve Mvy = ry

ok

Update solution: uxi1 = ux — vk, set k =i+ 1, repeat with step 2.

The Jacobi method

» Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part

» Jacobi: M = D, where D is the main diagonal of A.

1 .
Uk+1,i = Uk,j — — 5 ajjuk,j — bi (i=1...n)
aii \ . T
=1...n

aiilk41,i + E ajjux,j = bj (i=1...n)
J=1...nj#i

Alternative formulation:

v

U1 =D YE+ F)ux+ D 'h

v

Essentially, solve for main diagonal element row by row
Already calculated results not taken into account
Variable ordering does not matter

vy

Use in numecxx

auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArrayl::
auto pU=numcxx::DArrayl
auto pR=numcxx::DArrayl
auto pV=numcxx::DArrayl

auto &M=*pM;
auto &F=*pF;
auto &U=*pU;
auto &V=xpV;
auto &R=*pR;

F=1.0;
for (int i=0;i<n;i++)
{
M(i,i)=3;
if (i>0) M(i,i-1)=-1;
if (i<n-1) M(i,i+1)=-1;
¥
pM->flush();
auto pJacobi=numcxx::DPreconJacobi::create(pM);
pJacobi->update() ;
double residual_norm=0.0;
U=0.0;
int niter=1000;
for (int i=0;i<niter;i++)

{
R=M*U-F;
residual_norm=normi(R);
if (residual_norm<1.0e-15) break;
pJacobi->solve(V,R);
U-=V;
3

std::cout << "residual:" << residual_norm << std::endl;

The Gauss-Seidel method

> Solve for main diagonal element row by row
» Take already calculated results into account

QjiUk41,i + E ajjUky1,j + E ajjux,j = bj (i=1...

j<i J>i
(D — E)Uk+1 — Fuk =b
1 =(D—E) 'Fue+(D—-E)'b

May be it is faster

Variable order probably matters

The preconditioneris M =D — E
Backward Gauss-Seidel: M =D — F
Splitting formulation: A= M — N, then

vVvyvyYyy

Ug+1 = I\/I_lNuk + M~ip

n)

SOR and SSOR

» SOR: Successive overrelaxation: solve wA = wB and use splitting

wA = (D — wE) — (wF + (1 —wD))
M:%@—wﬂ

leading to

(D — wE)uks1 = (wF + (1 — wD)uk + wb

> SSOR: Symmetric successive overrelaxation

(D - wE)uH% = (wF + (1 — wD)ux + wb
(D —wF)uks1 = (WE+ (1 —wD)uH% +wb

1

M=le-o

(D — wE)D™'(D — wF)

> Gauss-Seidel and symmetric Gauss-Seidel are special cases for w = 1.

Block methods

» Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

» The blocks on the diagonal should be square matrices, and invertible

> Interesting variant for systems of partial differential equations, where
multiple species interact with each other

Convergence

Let &1 be the solution of Au = b.

Uk+1 = Uk — Mﬁl(Auk —b)
= =M1 Au+M*b
U1 — O = g — 0 — M~ (Aug — AD)
= (/=M A (ux —)
= —M1A (u — 1)

So when does (/ — M~ A)¥ converge to zero for k — oo ?

Spectral radius and convergence

» X\ (i=1...p): eigenvalues of A
> o(A) = {A1...Ap}: spectrum of A
> p(A) = maxyeo(a) |A|: spectral radius

Theorem (Saad, Th. 1.10) limk_.c A* = 0 & p(A) < 1.
Theorem (Saad, Th. 1.12) limi_ o0 ||A¥]|% = p(A)
= Sufficient condition for convergence: p(/ — M~'A) < 1.

= At the same time, p(A) is the worst case estimate for the asymptotic
convergence factor:

lim (max U= M2 A (o [,)|>’< < p(A)

k— o0 ug HUO— OH

Richardson iteration

Then for the eigenvalues u; of | — @A one has 1 — admax < Aj < 1 — admin.
If Amin < 0 and Amax < 0, at least one p; > 1.
So, assume Apmin > 0. Then we must have

1—admax > -1, 1 —admin <1 =
0<a< 2

A!71.9)(:

p = max(|1 — admax|, |1 — @Amin|)

_ 2
Qopt = Amin+Amax

— Amax—Amin

popt T Amax+Amin

Theory of nonnegative matrices

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are impor-
tant in the study of convergence of iterative methods and arise in many applications
including economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More
generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 Ler A and B be two n. x m matrices. Then
A<B

if by definition, a;; < bsj for 1 <i < n, 1 < j < m. If O denotes the n. x m zero
matrix, then A is nonnegative if A > O, and positive if A > O. Similar definitions
hold in which “positive” is replaced by “negative”.

The binary relation “<” imposes only a partial order on R™*™ gince two arbitrary
matrices in R™*™ are not necessarily comparable by this relation. For the remain-
der of this section, we now assume that only square matrices are involved. The next
proposition lists a number of rather trivial properties regarding the partial order rela-
tion just defined.

Properties of < for matrices

Proposition 1.24 The following properties hold.

1.

AN W

The relation < for matrices is reflexive (A < A), antisymmetric (if A < B and
B < A, then A = B), and transitive (if A < Band B < C, then A < C).

. If A and B are nonnegative, then so is their product AB and their sum A+ B.
. If A is nonnegative, then so is A".
. IfA < B, then AT < BT,

. IfO < A< B, then || A1 < ||Blj1 and similarly || A]| s < || B]|co-

Irreducible matrices

A is irreducible if there is a permutation matrix P such that PAPT is upper
block triangular.

Perron-Frobenius Theorem

Theorem (Saad Th.1.25) Let A be a real n X n nonnegative irreducible martrix.
Then:

> The spectral radius p(A) is a simple eigenvalue of A.
» There exists an eigenvector u associated wit p(A) which has positive

elements

Proof: see e.g. Varga, “Matrix lterative Analysis”

Consequences of Perron-Frobenius for iterative method
convergence

Comparison of products of nonnegative matrices

Proposition 1.26 Let A, B, C be nonnegative matrices, with A < B. Then

AC <BC and CA<CB.

Proof. Consider the first inequality only, since the proof for the second is identical.
The result that is claimed translates into

n n
> aer; <Y biery, 1<, <,
k=1 k=1

which is clearly true by the assumptions. O

Comparison of powers of nonnegative matrices

Corollary 1.27 Let A and B be two nonnegative matrices, with A < B. Then

AF < B* VEk >o. (1.42)

Proof. The proof is by induction. The inequality is clearly true for £ = 0. Assume
that is true for k. According to the previous proposition, multiplying
from the left by A results in

Akl < ABE, (1.43)

Now, it is clear that if B > 0, then also B > 0, by Proposition We now
multiply both sides of the inequality A < B by BF to the right, and obtain

ABF < BF+1, (1.44)

The inequalities (1.43) and (I.44) show that A*t1 < BF*+L which completes the
induction proof. O

Comparison of spectral radii of nonnegative matrices

Theorem 1.28 Ler A and B be two square matrices that satisfy the inequalities
O<A<B. (1.45)

Then
p(A) < p(B). (1.46)

Proof. The proof is based on the following equality stated in Theorem
p(X) = lim || xF|/F
k—oo

for any matrix norm. Choosing the 1—norm, for example, we have from the last
property in Proposition

. 1/k . 1/k
p(A) = lim [A5|3/* < lim || BY* = p(B)

which completes the proof. O

Nonnegative matrices in iterations

Theorem 1.29 Let B be a nonnegative matrix. Then p(B) < 1 ifand only if I — B
is nonsingular and (I — B)™! is nonnegative.

Proof. Define C' = I — B. If it is assumed that p(B) < 1, then by Theorem[1.11]
C = I — B is nonsingular and
oo
cl=(I-B)'=> B. (1.47)
i=0
In addition, since B > 0, all the powers of B as well as their sum in are also
nonnegative.
To prove the sufficient condition, assume that C' is nonsingular and that its in-
verse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigen-
vector u associated with p(B), which is an eigenvalue, i.e.,

Bu = p(B)u
or, equivalently, .
Clu=———u.
1—p(B)

Since u and C'~! are nonnegative, and I — B is nonsingular, this shows that 1 —
p(B) > 0, which is the desired result. O

M-Matrices

Definition 1.30 A matrix is said to be an M -matrix if it satisfies the following four
properties:

1. a;; >0fori=1,...,n
2 a;;<0fori#j t.j=1...,n

3. A is nonsingular.

4. A1 >0.

» This matrix property plays an important role for discrtized PDEs:

> convergence of iterative methods
> nonnegativity of discrete solutions (e.g concentrations)
> prevention of unphysical oscillations

Equivalent definition

Theorem 1.31 Let a matrix A be given such that
1. a;; >0fori=1,...,n
2 a;;<0fori#j i,j=1,....,n

Then Ais an M-matrix if and only if

3. p(B) < 1, where B=1— D71A.

Proof. From the above argument, an immediate application of Theorem[1.29]shows
that properties (3) and (4) of the above definition are equivalent to p(B) < 1, where
B =1—Cand C = D 'A. In addition, C is nonsingular iff A is and C~' is
nonnegative iff A is. O

Equivalent definition
Theorem 1.32 Let a matrix A be given such that
1 a;; <O0fori#j,i,5=1,...,n

2. A is nonsingular.

3. A1 >0.
Then
4. a;; >0fori=1,...,n, ie, Aisan M-matrix.

5. p(B) < 1where B=1— D7'A.
Proof. Define C' = A~!. Writing that (AC); = 1 yields

n

E @ikCri = 1

k=1

which gives

n
@ity = 1 — E @ik Chi-

k=1
ki
Since a;jxcr; < 0 for all k, the right-hand side is > 1 and since ¢;; > 0, then a;; > 0.

The second part of the result now follows immediately from an application of the
nraviniice thanram —

Comparison criterion
Theorem 1.33 Let A, B be two matrices which satisfy

1. A<B.
2. by < 0foralli#j.

Then if A is an M-matrix, so is the matrix B.

Proof. Assume that A is an M-matrix and let Dx denote the diagonal of a matrix
X . The matrix Dp is positive because

Dp>Dy>0.
Consider now the matrix I — D;B . Since A < B, then
Dy—A>Dp—-B>0
which, upon multiplying through by Dzl, yields
I-D*A>D,Y(Dg - B)>D;'(Dp—B)=1-Dy'B>0.
Since the matrices [— D;B and 1 — D;lA are nonnegative, Theorems and
[1.31]imply that
p(I - D5'B) < p(I - D;'A4) < 1.

This establishes the result by using Theorem|1.31|once again. O

Regular splittings

» A= M — N is a regular splitting if

> M is nonsingular
» M~1, N are nonnegative, i.e. have nonnegative entries

> Regard the iteration uy1 = M~ Nux + M~ 1h.
> We have $I-M"{-1}A= M~N.

When does it converge ?

Convergence of iterations based on regular splittings

Theorem 4.4 Let M, N be a regular splitting of a matrix A. Then p(M~'N) < 1if
and only if A is nonsingular and A~ is nonnegative.

Proof. Define G = M1 N. From the fact that p(G) < 1, and the relation
A=MI-G) (4.35)

it follows that A is nonsingular. The assumptions of Theorem[1.29]are satisfied for
the matrix G since G = M~ is nonnegative and p(G) < 1. Therefore, (I — G)~!
is nonnegative as is A~1 = (I — G)"' M1,

To prove the sufficient condition, assume that A is nonsingular and that its inverse
is nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that
I — @ is nonsingular and in addition,

1

AT'N = (M(I-M'N)) N
= (I-M'N)'M'N
= -6 (4.36)
Clearly, G = M~!N is nonnegative by the assumptions, and as a result of the

Perron-Frobenius theorem, there is a nonnegative eigenvector x: associated with p(G)
which is an eigenvalue, such that

Gz = p(G)z.

Convergence of iterations based on regular splittings Il

From this and by virtue of (4.36), it follows that

ANz = ﬂr
1-p(G)
Since x and A~ N are nonnegative, this shows that
PG o
1-p(G) ~
and this can be true only when 0 < p(G) < 1. Since I — G is nonsingular, then
p(G) # 1, which implies that p(G) < 1. O

This theorem establishes that the iteration (4.34) always converges, if M, N is a
regular splitting and A is an M-matrix.

Regular splittings: example

» Jacobi
» Gauss-Seidel

Further methods for establishing convergence

» Theory for diagonally dominant matrices
» Theory for symmetric, positive definite matrices

Installation on MacOSX

1. Install Xcode from the App-Store

2. Trigger installaion of Command line developer tools in the terminal via
$ gecc

A dialogue window should pop up, click on install Dann im erscheinenden
Dialogfenster “Install” klicken.

3. Check with

$ xcode-select -p
/Library/Developer/CommandLineTools

4. Install Homebrew + Cakebrew GUI
http://brew.sh/index.html
https://www.cakebrew.com/

5. Install via homebrew
make, cmake suite-sparse from science tree

To link with lapack/blas: use -~framework Accelerate instead of -Iblas -llapack

