Iterative Solver convergence

Scientific Computing Winter 2016/2017

Lecture 9

With material from Y. Saad "Iterative Methods for Sparse Linear Systems"

Jürgen Fuhrmann

juergen. fuhrmann @wias-berlin. de

Homework analysis

Machine epsilon

Sample solution: /net/wir/examples/part3/macheps.cxx

```
T eps=1.0;
T one=1.0;
T epsnew=1.0;
T result=0.0;
do

{
    eps=epsnew;
    epsnew=eps/2.0;
    result=one+epsnew;
} while (result>one);
```

Common errors:

- In exact math it is true that from $1+\varepsilon=1$ it follows that $0+\varepsilon=0$ and vice versa. In floating point computations this is not true
- Many of you used the right algorithm and used the first value or which $1+\varepsilon=1$ as the result. This is half the desired quantity.
- Some did not divide by 2 but by other numbers. Division by 2 is a mantissa shift and essentially exact. 2 itself is also represented exactly in floating point arithmetic.

Machine epsilon values

Calculated: 1.1920928955078125e-07 From <limits>: 1.1920928955078125e-07

Calculated: 2.22044604925031308084726333618e-16 From imits>: 2.22044604925031308084726333618e-16

Calculated: 1.08420217248550443400745280087e-19
From sts>: 1.08420217248550443400745280087e-19

Summation

$$\sum\nolimits_{n=1}^{N} \tfrac{1}{n^2} \approx \tfrac{\pi^2}{6}$$

Intended answer: sum in reverse order. Start with adding up many small values which would be cancelled out if added to an already large sum value.

Sample solution: /net/wir/examples/part3/basel.cxx

Here are the results for float

n	forward sum	forward sum error	reverse sum	reverse sum error
10	1.5497677326202392e+00	9.51664447784423828e-02	1.54976773262023925e+00	9.51664447784423828e-02
100	1.6349840164184570e+00	9.95016098022460937e-03	1.63498389720916748e+00	9.95028018951416015e-03
1000	1.6439348459243774e+00	9.99331474304199218e-04	1.64393448829650878e+00	9.99689102172851562e-04
10000	1.6447253227233886e+00	2.08854675292968750e-04	1.64483404159545898e+00	1.00135803222656250e-04
100000	1.6447253227233886e+00	2.08854675292968750e-04	1.64492404460906982e+00	1.01327896118164062e-05
1000000	1.6447253227233886e+00	2.08854675292968750e-04	1.64493298530578613e+00	1.19209289550781250e-06
10000000	1.6447253227233886e+00	2.08854675292968750e-04	1.64493393898010253e+00	2.38418579101562500e-07
100000000	1.6447253227233886e+00	2.08854675292968750e-04	1.64493405818939208e+00	1.19209289550781250e-07

Summation: Unexpected highlight answer I

by Minh Huyen Ly Le

In order to improve the accuracy of the approximation of the limit, one can use the *Euler-Maclaurin-Summation Formula*, just as Euler did to approximate the series of the Baseler Problem. With this formula the convergence of the partial sums is accelerated.

The Asymptotic Expansion of sums: For $a, b \in \mathbb{N}$ and $B_k, k \in \mathbb{N}$ Bernoulli-numbers we have:

$$\sum_{n=a}^{b} f(n) \sim \int_{a}^{b} f(x)dx + \frac{f(a) + f(b)}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left\{ f^{(2k-1)}(b) - f^{(2k-1)}(a) \right\}$$

Therefore, with $f(x) = \frac{1}{x^2}$, $f^{(n)}(x) = (-1)^n (n+1)! x^{-(n+2)}$ we have on the one hand

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2} \sim \int_1^{\infty} \frac{1}{x^2} dx + \frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left\{ 0 - (-1)^{2k-1} (2k)! 1^{-(2k+1)} \right\}$$
$$= 1 + \frac{1}{2} + \sum_{k=1}^{\infty} B_{2k} =: C$$

Summation: Unexpected highlight answer II

On the other hand, we have for $K \in \mathbb{N}$

$$\begin{split} \sum_{n=1}^K \frac{1}{n^2} &\sim \int_1^K \frac{1}{x^2} dx + \frac{1}{2} + \frac{1}{2K^2} - \sum_{k=1}^\infty B_{2k} K^{-(2k+1)} + \sum_{k=1}^\infty B_{2k} \\ &= 1 - \frac{1}{K} + \frac{1}{2} + \frac{1}{2K^2} - \sum_{k=1}^\infty B_{2k} K^{-(2k+1)} + \sum_{k=1}^\infty B_{2k} \\ &= C \underbrace{-\frac{1}{K} + \frac{1}{2K^2} - \frac{1}{6K^3} + \frac{1}{30K^5} - \frac{1}{42K^7} + \frac{1}{30K^9} \dots}_{(RHS)} \end{split}$$

For the approximation, let us look at an example for K=100 and truncate the Right-Hand-Side (RHS) from above after the K^9 -term. (See Output above)

(LHS) =
$$\sum_{n=1}^{K} \frac{1}{n^2} = 1.63498390018489$$

$$(RHS) = -\frac{1}{K} + \frac{1}{2K^2} - \frac{1}{6K^3} + \frac{1}{30K^5} - \frac{1}{42K^7} + \frac{1}{30K^9} = -0.00995016666333357$$

 $C=LHS-RHS=1.64493406684823\sim\frac{\pi^2}{6}$ and we therefore get an accuracy for at least 8 digits!

Improvement with EMSF, e.g. K = 100:

K=100: LHS=1.63498390018489

K=100: RHS=-0.00995016666333357

K=100: C = LHS-RHS = 1.64493406684823

▶ So, yes, you can beat the computer with good math...

Recap from last time

Sparse direct solvers: solution steps (Saad Ch. 3.6)

- 1. Pre-ordering
 - The amount of non-zero elements generated by fill-in can be decreases by re-ordering of the matrix
 - Several, graph theory based heuristic algorithms exist
- 2. Symbolic factorization
 - If pivoting is ignored, the indices of the non-zero elements are calculated and stored
 - Most expensive step wrt. computation time
- 3 Numerical factorization
 - Calculation of the numerical values of the nonzero entries
 - ▶ Not very expensive, once the symbolic factors are available
- 4. Upper/lower triangular system solution
 - Fairly quick in comparison to the other steps
- Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity structure remains unchanged, e.g. time dependent problems on fixed computational grids
- ▶ With pivoting, steps 2 and 3 have to be performed together
- Instead of pivoting, iterative refinement may be used in order to maintain accuracy of the solution

Interfacing UMFPACK from C++ (numcxx)

(shortened version of the code)

```
#include <suitesparse/umfpack.h>
// Calculate LU factorization
template<> inline void TSolverUMFPACK<double>::update()
    pMatrix->flush(): // Update matrix, adding newly created elements
    int n=pMatrix->shape(0):
    double *control=nullptr;
    //Calculate symbolic factorization only if matrix patter
    //has changed
    if (pMatrix->pattern changed())
    Ł
      umfpack di symbolic (n, n, pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
      &Symbolic, 0, 0);
    umfpack di numeric (pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
    Symbolic, &Numeric, control, 0):
   pMatrix->pattern_changed(false);
// Solve LU factorized system
template<> inline void TSolverUMFPACK<double>::solve( TArray<T> & Sol, const TArray<T> & Rhs)
    umfpack di solve (UMFPACK At,pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
                      Sol.data(), Rhs.data(),
                      Numeric, control, 0):
```

Example code

- Copy files, creating subdirectory part3
 - the . denotes the current directory

```
$ cp -r /net/wir/examples/part3 .
```

► Compile sources (for each of the .cxx files)

```
$ g++ --std=c++11 -I/net/wir/include -o executable source.cxx
-llapack -lblas -L/net/wir/lib -lumfpack -lamd -lcolamd -lcholmod
```

More compiler flags

(see Makefile)

```
l -o name
                   | Name of output file
                   | Generate debugging instructions
| -00, -01, -02, -03 | Optimization levels
I -c
                   | Avoid linking
| -I<path>
               | Add <path> to include search path
| -D<symbol>
                  | Define preprocessor symbol
| -std=c++11
                  | Use C++11 standard
| -lname
                   | Link with libname.a or libname.so from system
| -Lpath
                   | Search for libraries in path
```

How to use?

```
#include <numcxx/numcxx.h>
auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArray1::create(n);
auto pU=numcxx::DArray1::create(n);
auto &M=*pM;
auto &F=*pF;
auto &U=*pU;
F=1.0:
for (int i=0;i<n;i++)</pre>
    M(i,i)=3.0;
   if (i>0) M(i,i-1)=-1;
    if (i<n-1) M(i,i+1)=-1;
auto pUmfpack=numcxx::DSolverUMFPACK::create(pM);
pUmfpack->solve(U,F);
```

Elements of iterative methods (Saad Ch.4)

Solve Au = b iteratively

- ▶ Preconditioner: a matrix $M \approx A$ "approximating" the matrix A but with the property that the system Mv = f is easy to solve
- ▶ Iteration scheme: algorithmic sequence using *M* and *A* which updates the solution step by step

Simple iteration with preconditioning

Idea:
$$A\hat{u} = b \Rightarrow$$

$$\hat{u} = \hat{u} - M^{-1}(A\hat{u} - b)$$

⇒ iterative scheme

$$u_{k+1} = u_k - M^{-1}(Au_k - b) \quad (k = 0, 1...)$$

- 1. Choose initial value u_0 , tolerance ε , set k=0
- 2. Calculate residuum $r_k = Au_k b$
- 3. Test convergence: if $||r_k|| < \varepsilon$ set $u = u_k$, finish
- 4. Calculate *update*: solve $Mv_k = r_k$
- 5. Update solution: $u_{k+1} = u_k v_k$, set k = i + 1, repeat with step 2.

The Jacobi method

- ▶ Let A = D E F, where D: main diagonal, E: negative lower triangular part F: negative upper triangular part
- ▶ Jacobi: M = D, where D is the main diagonal of A.

$$u_{k+1,i} = u_{k,i} - \frac{1}{a_{ii}} \left(\sum_{j=1...n} a_{ij} u_{k,j} - b_i \right) \quad (i = 1...n)$$
 $a_{ii} u_{k+1,i} + \sum_{j=1...n,j \neq i} a_{ij} u_{k,j} = b_i \quad (i = 1...n)$

Alternative formulation:

$$u_{k+1} = D^{-1}(E+F)u_k + D^{-1}b$$

- Essentially, solve for main diagonal element row by row
- ► Already calculated results not taken into account
- Variable ordering does not matter

Use in numcxx

```
auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArray1::create(n);
auto pU=numcxx::DArray1::create(n);
auto pR=numcxx::DArray1::create(n);
auto pV=numcxx::DArray1::create(n);
auto &M=*pM;
auto &F=*pF;
auto &U=*pU;
auto &V=*pV;
auto &R=*pR;
F=1.0;
for (int i=0:i<n:i++)
    M(i,i)=3;
    if (i>0) M(i,i-1)=-1;
    if (i < n-1) M(i,i+1) = -1:
pM->flush();
auto pJacobi=numcxx::DPreconJacobi::create(pM);
pJacobi->update();
double residual_norm=0.0;
U=0.0:
int niter=1000:
for (int i=0;i<niter;i++)</pre>
ł
    R=M*U-F:
    residual_norm=normi(R);
    if (residual_norm<1.0e-15) break;
    pJacobi->solve(V,R);
    U-=V:
std::cout << "residual:" << residual norm << std::endl:
```

The Gauss-Seidel method

- ► Solve for main diagonal element row by row
- Take already calculated results into account

$$\begin{aligned} a_{ii}u_{k+1,i} + \sum_{j < i} a_{ij}u_{k+1,j} + \sum_{j > i} a_{ij}u_{k,j} &= b_i \\ (D - E)u_{k+1} - Fu_k &= b \\ u_{k+1} &= (D - E)^{-1}Fu_k + (D - E)^{-1}b \end{aligned}$$

- ▶ May be it is faster
- ▶ Variable order probably matters
- ▶ The preconditioner is M = D E
- ▶ Backward Gauss-Seidel: M = D F
- ▶ Splitting formulation: A = M N, then

$$u_{k+1} = M^{-1} N u_k + M^{-1} b$$

SOR and SSOR

▶ SOR: Successive overrelaxation: solve $\omega A = \omega B$ and use splitting

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega D))$$
$$M = \frac{1}{\omega}(D - \omega E)$$

leading to

$$(D - \omega E)u_{k+1} = (\omega F + (1 - \omega D)u_k + \omega b)$$

▶ SSOR: Symmetric successive overrelaxation

$$(D - \omega E)u_{k + \frac{1}{2}} = (\omega F + (1 - \omega D)u_k + \omega b)$$

$$(D - \omega F)u_{k + 1} = (\omega E + (1 - \omega D)u_{k + \frac{1}{2}} + \omega b)$$

$$M = \frac{1}{\omega(2-\omega)}(D-\omega E)D^{-1}(D-\omega F)$$

lacktriangle Gauss-Seidel are special cases for $\omega=1$.

Block methods

- Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise, based on a partition of the system matrix into larger blocks,
- ▶ The blocks on the diagonal should be square matrices, and invertible
- ▶ Interesting variant for systems of partial differential equations, where multiple species interact with each other

Convergence

Let \hat{u} be the solution of Au = b.

$$u_{k+1} = u_k - M^{-1}(Au_k - b)$$

$$= (I - M^{-1}A)u_k + M^{-1}b$$

$$u_{k+1} - \hat{u} = u_k - \hat{u} - M^{-1}(Au_k - A\hat{u})$$

$$= (I - M^{-1}A)(u_k - \hat{u})$$

$$= (I - M^{-1}A)^k(u_0 - \hat{u})$$

So when does $(I - M^{-1}A)^k$ converge to zero for $k \to \infty$?

Spectral radius and convergence

- $\triangleright \lambda_i \ (i = 1 \dots p)$: eigenvalues of A
- $\sigma(A) = \{\lambda_1 \dots \lambda_p\}$: spectrum of A
- $\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|$: spectral radius

Theorem (Saad, Th. 1.10) $\lim_{k\to\infty} A^k = 0 \Leftrightarrow \rho(A) < 1$.

Theorem (Saad, Th. 1.12) $\lim_{k\to\infty} ||A^k||^{\frac{1}{k}} = \rho(A)$

- \Rightarrow Sufficient condition for convergence: $\rho(I M^{-1}A) < 1$.
- \Rightarrow At the same time, $\rho(A)$ is the worst case estimate for the asymptotic convergence factor:

$$\lim_{k \to \infty} \left(\max_{u_0} \frac{||(I - M^{-1}A)^k (u_0 - \hat{u})||}{||u_0 - \hat{u}||} \right)^{\frac{1}{k}} \le \rho(A)$$

Richardson iteration

$$M=\frac{1}{\alpha},\ I-M^{-1}A=I-\alpha A.$$
 Assume for the eigenvalues of A : $\lambda_{min}\leq \lambda_i\leq \lambda_{max}.$

Then for the eigenvalues μ_i of $I - \alpha A$ one has $1 - \alpha \lambda_{max} \leq \lambda_i \leq 1 - \alpha \lambda_{min}$.

If
$$\lambda_{\textit{min}} < 0$$
 and $\lambda_{\textit{max}} < 0$, at least one $\mu_i > 1$.

So, assume $\lambda_{min} > 0$. Then we must have

$$\begin{array}{l} 1 - \alpha \lambda_{\text{max}} > -1, 1 - \alpha \lambda_{\text{min}} < 1 \Rightarrow \\ 0 < \alpha < \frac{2}{\lambda_{\text{max}}}. \end{array}$$

$$\rho = \max(|1 - \alpha \lambda_{\textit{max}}|, |1 - \alpha \lambda_{\textit{min}}|)$$

$$lpha_{\mathit{opt}} = rac{2}{\lambda_{\mathit{min}} + \lambda_{\mathit{max}}}$$

$$\rho_{opt} = \frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}}$$

Theory of nonnegative matrices

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are important in the study of convergence of iterative methods and arise in many applications including economics, queuing theory, and chemical engineering.

A *nonnegative matrix* is simply a matrix whose entries are nonnegative. More generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 Let A and B be two $n \times m$ matrices. Then

$$A \leq B$$

if by definition, $a_{ij} \leq b_{ij}$ for $1 \leq i \leq n$, $1 \leq j \leq m$. If O denotes the $n \times m$ zero matrix, then A is nonnegative if $A \geq O$, and positive if A > O. Similar definitions hold in which "positive" is replaced by "negative".

The binary relation " \leq " imposes only a *partial* order on $\mathbb{R}^{n \times m}$ since two arbitrary matrices in $\mathbb{R}^{n \times m}$ are not necessarily comparable by this relation. For the remainder of this section, we now assume that only square matrices are involved. The next proposition lists a number of rather trivial properties regarding the partial order relation just defined.

Properties of \leq for matrices

Proposition 1.24 The following properties hold.

- 1. The relation \leq for matrices is reflexive ($A \leq A$), antisymmetric (if $A \leq B$ and $B \leq A$, then A = B), and transitive (if $A \leq B$ and $B \leq C$, then $A \leq C$).
- 2. If A and B are nonnegative, then so is their product AB and their sum A+B.
- 3. If A is nonnegative, then so is A^k .
- 4. If $A \leq B$, then $A^T \leq B^T$.
- 5. If $0 \le A \le B$, then $||A||_1 \le ||B||_1$ and similarly $||A||_{\infty} \le ||B||_{\infty}$.

A is <i>irreducible</i> if block triangular.	there is a permutation	matrix P such th	at PAP^T is upper

Irreducible matrices

Perron-Frobenius Theorem

Theorem (Saad Th.1.25) Let A be a real $n \times n$ nonnegative irreducible martrix. Then:

- ▶ The spectral radius $\rho(A)$ is a simple eigenvalue of A.
- ▶ There exists an eigenvector u associated wit $\rho(A)$ which has positive elements

Proof: see e.g. Varga, "Matrix Iterative Analysis"

Consequences of Perron-Frobenius for iterative method convergence

Comparison of products of nonnegative matrices

Proposition 1.26 Let A, B, C be nonnegative matrices, with $A \leq B$. Then

$$AC \leq BC$$
 and $CA \leq CB$.

Proof. Consider the first inequality only, since the proof for the second is identical. The result that is claimed translates into

$$\sum_{k=1}^{n} a_{ik} c_{kj} \le \sum_{k=1}^{n} b_{ik} c_{kj}, \quad 1 \le i, j \le n,$$

П

which is clearly true by the assumptions.

Comparison of powers of nonnegative matrices

Corollary 1.27 *Let* A *and* B *be two nonnegative matrices, with* $A \leq B$. Then

$$A^k \le B^k, \quad \forall \ k \ge 0. \tag{1.42}$$

Proof. The proof is by induction. The inequality is clearly true for k=0. Assume that (1.42) is true for k. According to the previous proposition, multiplying (1.42) from the left by A results in

$$A^{k+1} \le AB^k. \tag{1.43}$$

Now, it is clear that if $B \ge 0$, then also $B^k \ge 0$, by Proposition 1.24. We now multiply both sides of the inequality $A \le B$ by B^k to the right, and obtain

$$AB^k \le B^{k+1}. (1.44)$$

The inequalities (1.43) and (1.44) show that $A^{k+1} \leq B^{k+1}$, which completes the induction proof. \Box

Comparison of spectral radii of nonnegative matrices

Theorem 1.28 Let A and B be two square matrices that satisfy the inequalities

$$O \le A \le B. \tag{1.45}$$

Then

$$\rho(A) \le \rho(B). \tag{1.46}$$

Proof. The proof is based on the following equality stated in Theorem 1.12

$$\rho(X) = \lim_{k \to \infty} ||X^k||^{1/k}$$

for any matrix norm. Choosing the 1-norm, for example, we have from the last property in Proposition $\boxed{1.24}$

$$\rho(A) = \lim_{k \to \infty} \|A^k\|_1^{1/k} \le \lim_{k \to \infty} \|B^k\|_1^{1/k} = \rho(B)$$

which completes the proof.

Nonnegative matrices in iterations

Theorem 1.29 Let B be a nonnegative matrix. Then $\rho(B) < 1$ if and only if I - B is nonsingular and $(I - B)^{-1}$ is nonnegative.

Proof. Define C = I - B. If it is assumed that $\rho(B) < 1$, then by Theorem 1.11 C = I - B is nonsingular and

$$C^{-1} = (I - B)^{-1} = \sum_{i=0}^{\infty} B^{i}.$$
 (1.47)

In addition, since $B \ge 0$, all the powers of B as well as their sum in (1.47) are also nonnegative.

To prove the sufficient condition, assume that C is nonsingular and that its inverse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigenvector u associated with $\rho(B)$, which is an eigenvalue, i.e.,

$$Bu = \rho(B)u$$

or, equivalently,

$$C^{-1}u = \frac{1}{1 - o(B)}u.$$

Since u and C^{-1} are nonnegative, and I-B is nonsingular, this shows that $1-\rho(B)>0$, which is the desired result.

M-Matrices

Definition 1.30 A matrix is said to be an M-matrix if it satisfies the following four properties:

- I. $a_{i,i} > 0$ for i = 1, ..., n.
- 2. $a_{i,j} \le 0$ for $i \ne j, i, j = 1, ..., n$.
- 3. A is nonsingular.
- 4. $A^{-1} \ge 0$.

- ► This matrix property plays an important role for discrtized PDEs:
 - convergence of iterative methods
 - nonnegativity of discrete solutions (e.g concentrations)
 - prevention of unphysical oscillations

Equivalent definition

Theorem 1.31 Let a matrix A be given such that

1.
$$a_{i,i} > 0$$
 for $i = 1, ..., n$.

2.
$$a_{i,j} \le 0$$
 for $i \ne j$, $i, j = 1, ..., n$.

Then A is an M-matrix if and only if

3.
$$\rho(B) < 1$$
, where $B = I - D^{-1}A$.

Proof. From the above argument, an immediate application of Theorem 1.29 shows that properties (3) and (4) of the above definition are equivalent to $\rho(B) < 1$, where B = I - C and $C = D^{-1}A$. In addition, C is nonsingular iff A is and C^{-1} is nonnegative iff A is.

Equivalent definition

Theorem 1.32 Let a matrix A be given such that

- 1. $a_{i,j} \leq 0$ for $i \neq j, i, j = 1, ..., n$.
- 2. A is nonsingular.
- 3. $A^{-1} \ge 0$.

Then

4.
$$a_{i,i} > 0$$
 for $i = 1, ..., n$, i.e., A is an M-matrix.

5.
$$\rho(B) < 1$$
 where $B = I - D^{-1}A$.

Proof. Define $C \equiv A^{-1}$. Writing that $(AC)_{ii} = 1$ yields

$$\sum_{k=1}^{n} a_{ik} c_{ki} = 1$$

which gives

previous theorem

$$a_{ii}c_{ii} = 1 - \sum_{\substack{k=1\\k\neq i}}^{n} a_{ik}c_{ki}.$$

Since $a_{ik}c_{ki} \le 0$ for all k, the right-hand side is ≥ 1 and since $c_{ii} \ge 0$, then $a_{ii} > 0$. The second part of the result now follows immediately from an application of the

Comparison criterion

Theorem 1.33 Let A, B be two matrices which satisfy

- 1. $A \leq B$.
- 2. $b_{ij} \leq 0$ for all $i \neq j$.

Then if A is an M-matrix, so is the matrix B.

Proof. Assume that A is an M-matrix and let D_X denote the diagonal of a matrix X. The matrix D_B is positive because

$$D_B \ge D_A > 0$$
.

Consider now the matrix $I - D_B^{-1}B$. Since $A \leq B$, then

$$D_A - A \ge D_B - B \ge O$$

which, upon multiplying through by D_A^{-1} , yields

$$I - D_A^{-1}A \ge D_A^{-1}(D_B - B) \ge D_B^{-1}(D_B - B) = I - D_B^{-1}B \ge O.$$

Since the matrices $I-D_B^{-1}B$ and $I-D_A^{-1}A$ are nonnegative, Theorems 1.28 and 1.31 imply that

$$\rho(I - D_R^{-1}B) \le \rho(I - D_A^{-1}A) < 1.$$

This establishes the result by using Theorem 1.31 once again.

Regular splittings

- ightharpoonup A = M N is a regular splitting if
 - ► *M* is nonsingular
 - $ightharpoonup M^{-1}$, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1} = M^{-1}Nu_k + M^{-1}b$.
- We have $I-M^{-1}A = M^{-1}N$.

When does it converge?

Convergence of iterations based on regular splittings

Theorem 4.4 Let M, N be a regular splitting of a matrix A. Then $\rho(M^{-1}N) < 1$ if and only if A is nonsingular and A^{-1} is nonnegative.

Proof. Define $G = M^{-1}N$. From the fact that $\rho(G) < 1$, and the relation

$$A = M(I - G) \tag{4.35}$$

it follows that A is nonsingular. The assumptions of Theorem 1.29 are satisfied for the matrix G since $G = M^{-1}N$ is nonnegative and $\rho(G) < 1$. Therefore, $(I - G)^{-1}$ is nonnegative as is $A^{-1} = (I - G)^{-1} M^{-1}$.

To prove the sufficient condition, assume that A is nonsingular and that its inverse is nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that I-G is nonsingular and in addition,

$$A^{-1}N = (M(I - M^{-1}N))^{-1}N$$

= $(I - M^{-1}N)^{-1}M^{-1}N$
= $(I - G)^{-1}G.$ (4.36)

Clearly, $G=M^{-1}N$ is nonnegative by the assumptions, and as a result of the Perron-Frobenius theorem, there is a nonnegative eigenvector x associated with $\rho(G)$ which is an eigenvalue, such that

$$Gx = \rho(G)x$$
.

Convergence of iterations based on regular splittings II

From this and by virtue of (4.36), it follows that

$$A^{-1}Nx = \frac{\rho(G)}{1 - \rho(G)}x.$$

Since x and $A^{-1}N$ are nonnegative, this shows that

$$\frac{\rho(G)}{1 - \rho(G)} \ge 0$$

and this can be true only when $0 \le \rho(G) \le 1$. Since I - G is nonsingular, then $\rho(G) \ne 1$, which implies that $\rho(G) < 1$.

This theorem establishes that the iteration (4.34) always converges, if M, N is a regular splitting and A is an M-matrix.

Regular splittings: example

- Jacobi
- ► Gauss-Seidel

Further methods for establishing convergence

- ▶ Theory for diagonally dominant matrices
- ▶ Theory for symmetric, positive definite matrices

Installation on MacOSX

- 1. Install Xcode from the App-Store
- 2. Trigger installaion of Command line developer tools in the terminal via

\$ gcc

A dialogue window should pop up, click on install Dann im erscheinenden Dialogfenster "Install" klicken.

3. Check with

```
$ xcode-select -p
/Library/Developer/CommandLineTools
```

- 4. Install Homebrew + Cakebrew GUI http://brew.sh/index.html https://www.cakebrew.com/
- Install via homebrew make, cmake suite-sparse from science tree

To link with lapack/blas: use -framework Accelerate instead of -lblas -llapack