
~

From Direct to Iterative Solvers
Scientific Computing Winter 2016/2017

Lecture 8

With material from Y. Saad "Iterative Methods for Sparse Linear Systems"

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

made wit pandoc

~

Recap from last time

Matrices from PDE: a first example
I “Drosophila”: Poisson boundary value problem in rectangular domain

Given:

I Domain Ω = (0,X)× (0,Y) ⊂ R2 with boundary Γ = ∂Ω, outer normal n
I Right hand side f : Ω→ R
I "Conductivity" λ
I Boundary value v : Γ→ R
I Transfer coefficient α

Search function u : Ω→ R such that

−∇ · λ∇u = f inΩ

−λ∇u · n + α(u − v) = 0 onΓ

I Example: heat conduction:
I u: temperature
I f : volume heat source
I λ: heat conduction coefficient
I v : Ambient temperature
I α: Heat transfer coefficient

2D finite volume grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Red circles: discretization nodes
I Thin lines: original “grid”
I Thick lines: boundaries of control volumes
I Each discretization point has not more then 4 neighbours

Discretization matrix (2D)

Assume λ = 1, hkl = h and we count collocation points in each direction from
1 . . .N. For i = 2 . . .N − 1, j = 2 . . .N − 1, k = N ∗ (j − 1) + i one
has|ωK | = h2, |σKL| = h, and

∑
L∈Nk

|σkl |
hkl

(uk − ul) = −uk−N − uk−1 + 2uk − uk+1 − uk+N

The linear system then has 5 nonzero diagonals

Sparse matrices

I Regardless of number of unknowns n, the number of non-zero entries per
row remains limited by nr

I If we find a scheme which allows to store only the non-zero matrix entries,
we would need nnr = O(n) storage locations instead of n2

I The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once:
martrix-vector multiplication uses O(n) instead of O(n2) operartions

Compressed Row Storage (CRS) format with 0-based indexing

(aka Compressed Sparse Row (CSR) or IA-JA etc.)

I real array AA, length nnz, containing all nonzero elements row by row
I integer array JA, length nnz, containing the column indices of the elements

of AA
I integer array IA, length n+1, containing the start indizes of each row in the

arrays IA and JA and IA(n)=nnz

AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 0 3 0 1 3 0 2 3 4 2 3 4
IA: 0 2 4 0 11 12

Sparse direct solvers

I Sparse direct solvers implement Gaussian elimination with different pivoting
strategies

I UMFPACK
I Pardiso (omp + MPI parallel)
I SuperLU
I MUMPS (MPI parallel)
I Pastix

I Quite efficient for 1D/2D problems
I They suffer from fill-in: ⇒ huge memory usage for 3D

~

Using sparse direct solvers

Sparse direct solvers: solution steps (Saad Ch. 3.6)
1. Pre-ordering

I The amount of non-zero elements generated by fill-in can be decreases by
re-ordering of the matrix

I Several, graph theory based heuristic algorithms exist

2. Symbolic factorization
I If pivoting is ignored, the indices of the non-zero elements are calculated and

stored
I Most expensive step wrt. computation time

3. Numerical factorization
I Calculation of the numerical values of the nonzero entries
I Not very expensive, once the symbolic factors are available

4. Upper/lower triangular system solution
I Fairly quick in comparison to the other steps

I Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

I With pivoting, steps 2 and 3 have to be performed together
I Instead of pivoting, iterative refinement may be used in order to maintain

accuracy of the solution

Interfacing UMFPACK from C++ (numcxx)
(shortened version of the code)

#include <suitesparse/umfpack.h>

// Calculate LU factorization
template<> inline void TSolverUMFPACK<double>::update()
{

pMatrix->flush(); // Update matrix, adding newly created elements
int n=pMatrix->shape(0);
double *control=nullptr;

//Calculate symbolic factorization only if matrix patter
//has changed
if (pMatrix->pattern_changed())
{

umfpack_di_symbolic (n, n, pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
&Symbolic, 0, 0);

}

umfpack_di_numeric (pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Symbolic, &Numeric, control, 0) ;

pMatrix->pattern_changed(false);
}

// Solve LU factorized system
template<> inline void TSolverUMFPACK<double>::solve(TArray<T> & Sol, const TArray<T> & Rhs)
{

umfpack_di_solve (UMFPACK_At,pMatrix->pIA->data(), pMatrix->pJA->data(), pMatrix->pA->data(),
Sol.data(), Rhs.data(),
Numeric, control, 0) ;

}

How to use ?

#include <numcxx/numcxx.h>
auto pM=numcxx::DSparseMatrix::create(n,n);
auto pF=numcxx::DArray1::create(n);
auto pU=numcxx::DArray1::create(n);

auto &M=*pM;
auto &F=*pF;
auto &U=*pU;

F=1.0;
for (int i=0;i<n;i++)
{

M(i,i)=3.0;
if (i>0) M(i,i-1)=-1;
if (i<n-1) M(i,i+1)=-1;

}

auto pUmfpack=numcxx::DSolverUMFPACK::create(pM);
pUmfpack->solve(U,F);

~

Towards iterative methodsx

Elements of iterative methods (Saad Ch.4)

Solve Au = b iteratively

I Preconditioner: a matrix M ≈ A “approximating” the matrix A but with the
property that the system Mv = f is easy to solve

I Iteration scheme: algorithmic sequence using M and A which updates the
solution step by step

Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . .)

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk
5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.

The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Jacobi: M = D, where D is the main diagonal of A.

uk+1,i = uk,i −
1
aii

(∑
j=1...n

aijuk,j − bi

)
(i = 1 . . . n)

aiiuk+1,i +
∑

j=1...n,j 6=i

aijuk,j = bi (i = 1 . . . n)

I Alternative formulation:

uk+1 = D−1(E + F)uk + D−1b

I Essentially, solve for main diagonal element row by row
I Already calculated results not taken into account
I Variable ordering does not matter

The Gauss-Seidel method
I Solve for main diagonal element row by row
I Take already calculated results into account

aiiuk+1,i +
∑
j<i

aijuk+1,j +
∑
j>i

aijuk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b
uk+1 = (D − E)−1Fuk + (D − E)−1b

I May be it is faster
I Variable order probably matters
I The preconditioner is M = D − E
I Backward Gauss-Seidel: M = D − F
I Splitting formulation: A = M − N, then

uk+1 = M−1Nuk + M−1b

Gauss an Gerling I

http://gdz.sub.uni-goettingen.de/

Gauss an Gerling II

http://gdz.sub.uni-goettingen.de/

SOR and SSOR
I SOR: Successive overrelaxation: solve ωA = ωB and use splitting

ωA = (D − ωE)− (ωF + (1− ωD))

M =
1
ω

(D − ωE)

leading to

(D − ωE)uk+1 = (ωF + (1− ωD)uk + ωb
I SSOR: Symmetric successive overrelaxation

(D − ωE)uk+ 1
2

= (ωF + (1− ωD)uk + ωb

(D − ωF)uk+1 = (ωE + (1− ωD)uk+ 1
2

+ ωb

M =
1

ω(2− ω)
(D − ωE)D−1(D − ωF)

I Gauss-Seidel and symmetric Gauss-Seidel are special cases for ω = 1.

Block methods

I Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

I The blocks on the diagonal should be square matrices, and invertible
I Interesting variant for systems of partial differential equations, where

multiple species interact with each other

Convergence

Let û be the solution of Au = b.

uk+1 = uk −M−1(Auk − b)

= (I −M−1A)uk + M−1b
uk+1 − û = uk − û −M−1(Auk − Aû)

= (I −M−1A)(uk − û)

= (I −M−1A)k (u0 − û)

So when does (I −M−1A)k converge to zero for k →∞ ?

Jordan canonical form of a matrix A

I λi (i = 1 . . . p): eigenvalues of A
I σ(A) = {λ1 . . . λp}: spectrum of A
I µi : algebraic multiplicity of λi :

multiplicity as zero of the characteristic polynomial det(A− λI)
I γi geometric multiplicity of λi : dimension of Ker(A− λI)
I li : index of the eigenvalue: the smallest integer for which

Ker(A− λI)li+1 = Ker(A− λI)li)
I li ≤ µi

Theorem (Saad, Th. 1.8) Matrix A can be transformed to a block diagonal
matrix consisting of p diagonal blocks, each associated with a distinct eigenvalue
λi .

I Each of these diagonal blocks has itself a block diagonal structure
consisting of γi Jordan blocks

I Each of the Jordan blocks is an upper bidiagonal matrix of size not
exceeding li with λi on the diagonal and 1 on the first upper diagonal.

Jordan canonical form of a matrix II

X−1AX = J =

J1

J2
. . .

Jp

Ji =

Ji,1

Ji,2
. . .

Ji,γi

Ji,k =

λi 1

λi 1
. . . 1

λi

Each Ji,k is of size li and corresponds to a different eigenvector of A.

Spectral radius and convergence

I ρ(A) = maxλ∈σ(A) |λ|: spectral radius

Theorem (Saad, Th. 1.10) limk→∞ Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λiui

A2ui = λiAiui = λ2ui

...

Akui = λkui

therefore ||Akui ||2 = |λk |

and lim
k→∞

|λk | = 0

so we must have ρ(A) < 1

Spectral radius and convergence II
Proof, ⇐: Jordan form X−1AX = J . Then X−1AkX = Jk .
Sufficient to regard Jordan block Ji = λi I + Ei where |λi | < 1 and E li

i = 0.
Let k ≥ li . Then

Jk
i =

li−1∑
j=0

(
k
j

)
λk−jE j

i

||Ji ||k ≤
li−1∑
j=0

(
k
j

)
|λ|k−j ||Ei ||j

One has
(
k
j

)
= k!

j!(k−j)! =
∑j

i=0

[
j
i

]
k i

j! is a polynomial

where for k > 0, the Stirling numbers of the first kind are given by[0
0

]
= 1,

[j
0

]
=
[0

j

]
= 0,

[j+1
i

]
= j
[j

i

]
+
[j

i−1

]
.

Thus,
(
k
j

)
|λ|k−j → 0 (k →∞).

Corollary from proof

Theorem (Saad, Th. 1.12)

lim
k→∞

||Ak ||
1
k = ρ(A)

Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.

Convergence rate
Assume λ with |λ| = ρ(I −M−1A) is the largest eigenvalue and has a single
Jordan block. Then the convergence rate is dominated by this Jordan block, and
therein by the term

λk−p+1
(

k
p − 1

)
E p−1

||(I −M−1A)k (u0 − û)|| = O
(
|λk−p+1|

(
k

p − 1

))
and the “worst case” convergence factor ρ equals the spectral radius:

ρ = lim
k→∞

(
max

u0

||(I −M−1A)k (u0 − û)||
||u0 − û||

) 1
k

= lim
k→∞

||(I −M−1A)k ||
1
k

= ρ(I −M−1A)

Depending on u0, the rate may be faster, though

Richardson iteration

M = 1
α
, I −M−1A = I − αA. Assume for the eigenvalues of A:

λmin ≤ λi ≤ λmax .

Then for the eigenvalues µi of I − αA one has 1− αλmax ≤ λi ≤ 1− αλmin.

If λmin < 0 and λmax < 0, at least one µi > 1.

So, assume λmin > 0. Then we must have

1− αλmax > −1, 1− αλmin < 1 ⇒
0 < α < 2

λmax
.

ρ = max(|1− αλmax |, |1− αλmin|)

αopt = 2
λmin+λmax

ρopt = λmax−λmin
λmax+λmin

Regular splittings

A = M − N is a regular splitting if - M is nonsingular - M−1, N are nonnegative,
i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.

When does it converge ?

Theory of nonnegative matrices

Properties of ≤ for matrices

Irreducible matrices

A is irreducible if there is a permutation matrix P such that PAPT is upper
block triangular.

Perron-Frobenius Theorem

Theorem (Saad Th.1.25) Let A be a real n × n nonnegative irreducible martrix.
Then:

I The spectral radius ρ(A) is a simple eigenvalue of A.
I There exists an eigenvector u associated wit ρ(A) which has positive

elements

