Recap linear algebra + direct solvers

Scientific Computing Winter 2016/2017
Lecture 6
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de
With material from from http://www.cplusplus.com/ and from "Introduction to High-Performance Scientific Computing" by Victor Eijkhout (http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

Recap from last time

Matrix + Vector norms

- Vector norms: let $x=\left(x_{i}\right) \in \mathbb{R}^{n}$
- $\|x\|_{1}=\sum_{i}={ }^{n}\left|x_{i}\right|:$ sum norm, l_{1}-norm
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$: Euclidean norm, l_{2}-norm
- $\|x\|_{\infty}=\max _{i=1 \ldots n}\left|x_{i}\right|:$ maximum norm, l_{∞}-norm
- Matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
- Representation of linear operator $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $\mathcal{A}: x \mapsto y=A x$ with

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Induced matrix norm:

$$
\begin{aligned}
\|A\|_{\nu} & =\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}} \\
& =\max _{x \in \mathbb{R}^{n},\|x\|_{\nu}=1} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}}
\end{aligned}
$$

Matrix norms

- $\|A\|_{1}=\max _{j=1 \ldots n} \sum_{i=\bar{n}^{1}}^{n}\left|a_{i j}\right|$ maximum of column sums
- $\|A\|_{\infty}=\max _{i=1 \ldots n} \sum_{j=1}^{\bar{n}^{1}}\left|a_{i j}\right|$ maximum of row sums
- $\|A\|_{2}=\sqrt{\lambda_{\max }}$ with $\lambda_{\max }$: largest eigenvalue of $A^{T} A$.

Matrix condition number and error propagation

Problem: solve $A x=b$, where b is inexact.

$$
A(x+\Delta x)=b+\Delta b
$$

Since $A x=b$, we get $A \Delta x=\Delta b$. From this,

$$
\begin{gathered}
\left\{\begin{aligned}
\Delta x=A^{-1} \Delta b \\
A x=b
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
\|A\| \cdot\|x\| & \geq\|b\| \\
\|\Delta x\| & \leq\left\|A^{-1}\right\| \cdot\|\Delta b\|
\end{aligned}\right. \\
\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
\end{gathered}
$$

where $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A.

Solution of linear systems of equations

Approaches to linear system solution

Solve $A x=b$

- Direct methods:
- Exact
- up to machine precision!
- Expensive (in time and space)
- where does this matter ?
- Iterative methods:
- Only approximate
- with good convergence and proper accuracy control, results are not worse than for direct methods
- Cheaper in space and (possibly) time
- Convergence guarantee is problem dependent and can be tricky

Really bad example of direct method

Cramer's rule write $|A|$ for determinant, then

$$
x_{i}=\left|\begin{array}{cccccccc}
a_{11} & a_{12} & \ldots & a_{1 i-1} & b_{1} & a_{1 i+1} & \ldots & a_{1 n} \\
a_{21} & & \ldots & & b_{2} & & \ldots & a_{2 n} \\
\vdots & & & & \vdots & & & \vdots \\
a_{n 1} & & \ldots & & b_{n} & & \ldots & a_{n n}
\end{array}\right| /|A| \quad(i=1 \ldots n)
$$

$O(n!)$ operations...

Gaussian elimination

- Essentially the only feasible direct solution method
- Solve $A x=b$ with square matrix A.

Gauss 1

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
12 & -8 & 6 \\
3 & -13 & 3
\end{array}\right) x=\left(\begin{array}{c}
16 \\
26 \\
-19
\end{array}\right)
$$

Step 1

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & 4 & -2 \\
0 & -12 & 2
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-27
\end{array}\right)
$$

Step 2

$$
\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & 4 & -2 \\
0 & -0 & -4
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right)
$$

Gauss 2

Solve upper triangular system

$$
\begin{array}{cll}
\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & 4 & -2 \\
0 & 0 & -4
\end{array}\right) x=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right) & \\
-4 x_{3}=-9 & & \Rightarrow x_{3}=\frac{9}{4} \\
-4 x_{2}-2 x_{3}=-6 & \Rightarrow-4 x_{2}=\frac{21}{2} & \Rightarrow x_{2}=-\frac{21}{8} \\
6 x_{1}-2 x_{2}+2 x_{3}=2 & \Rightarrow 6 x_{1}=2-\frac{21}{4}-\frac{18}{4}=-\frac{31}{4} & \Rightarrow x_{1}=-\frac{-31}{24}
\end{array}
$$

Gaussian elimination expressed in matrix operations: LU factorization

$$
\begin{aligned}
& L_{1} A x=\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & 4 & -2 \\
0 & -12 & 2
\end{array}\right) \times=\left(\begin{array}{c}
16 \\
-6 \\
-27
\end{array}\right)=L_{1} b, \quad L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right) \\
& L_{2} L_{1} A x=\left(\begin{array}{ccc}
6 & -2 & 2 \\
0 & 4 & -2 \\
0 & -0 & -4
\end{array}\right) \times=\left(\begin{array}{c}
16 \\
-6 \\
-9
\end{array}\right)=L_{2} L_{1} b, \quad L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right)
\end{aligned}
$$

- Let $L=L_{1}^{-1} L_{2}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & 3 & 1\end{array}\right), U=L_{2} L_{1} A$. Then $A=L U$
- Inplace operation. Diagonal elements of L are always 1 , so no need to store them \Rightarrow work on storage space for A and overwrite it.

Problem example

Consider

$$
\left(\begin{array}{ll}
\epsilon & 1 \\
1 & 1
\end{array}\right) x=\binom{1+\epsilon}{2}
$$

with solution $x=(1,1)^{t}$
Ordinary elimination:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\epsilon & 1 \\
0 & \left(1-\frac{1}{\epsilon}\right)
\end{array}\right) x=\binom{1}{2-\frac{1}{\epsilon}} \\
& \Rightarrow x_{2}=\frac{2-\frac{1}{\epsilon}}{1-\frac{1}{\epsilon}} \Rightarrow x_{1}=\frac{1-x_{2}}{\epsilon}
\end{aligned}
$$

If $\epsilon<\epsilon_{\text {mach }}$, then $2-1 / \epsilon=-1 / \epsilon$ and $1-1 / \epsilon=-1 / \epsilon$, so

$$
x_{2}=\frac{2-\frac{1}{\epsilon}}{1-\frac{1}{\epsilon}}=1, \Rightarrow x_{1}=\frac{1-x_{2}}{\epsilon}=0
$$

Partial Pivoting

- Before elimination step, look at the element with largest absolute value in current column and put the corresponding row "on top" as the "pivot"
- This prevents near zero divisions and increases stability

$$
\left(\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right) x=\binom{2}{1} \Rightarrow\left(\begin{array}{cc}
1 & 1 \\
0 & 1-\epsilon
\end{array}\right) x=\binom{2}{1-2 \epsilon}
$$

If ϵ very small:

$$
x_{2}=\frac{1-2 \epsilon}{1-\epsilon}=1, \quad x_{1}=2-x_{2}=1
$$

- Factorization: $P A=L U$, where P is a permutation matrix which can be encoded usin an integer vector

Gaussian elimination and LU factorization

- Full pivoting: in addition to row exchanges, perform column exchanges to ensure even larger pivots. Seldomly used in practice.
- Gaussian elimination with partial pivoting is the "working horse" for direct solution methods
- Standard routines from LAPACK: dgetrf, (factorization) dgetrs (solve) used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++ matrix libraries use them. Unless there is special need, they should be used.
- Complexity of LU-Factorization: $O\left(n^{3}\right)$, some theoretically better algorithms are known with e.g. $O\left(n^{2.736}\right)$

Cholesky factorization

- $A=L L^{\top}$ for symmetric, positive definite matrices

Matrices from PDE: a first example

- "Drosophila": Poisson boundary value problem in rectangular domain

Given:

- Domain $\Omega=(0, X) \times(0, Y) \subset \mathbb{R}^{2}$ with boundary $\Gamma=\partial \Omega$, outer normal \mathbf{n}
- Right hand side $f: \Omega \rightarrow \mathbb{R}$
- "Conductivity" λ
- Boundary value v: $\Gamma \rightarrow \mathbb{R}$
- Transfer coefficient α

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot \lambda \nabla u & =f & & \text { in } \Omega \\
-\lambda \nabla u \cdot \mathbf{n}+\alpha(u-v) & =0 & & \text { on } \Gamma
\end{aligned}
$$

- Example: heat conduction:
- u : temperature
- f : volume heat source
- λ : heat conduction coefficient
- v : Ambient temperature
- α : Heat transfer coefficient

The finite volume idea

- Assume Ω is a polygon
- Subdivide the domain Ω into a finite number of control volumes: $\bar{\Omega}=\bigcup_{k \in \mathcal{N}} \bar{\omega}_{k}$ such that
- ω_{k} are open (not containing their boundary) convex domains
- $\omega_{k} \cap \omega_{l}=\emptyset$ if $\omega_{k} \neq \omega_{l}$
- $\sigma_{k l}=\bar{\omega}_{k} \cap \bar{\omega}_{l}$ are either empty, points or straight lines
- we will write $\left|\sigma_{k l}\right|$ for the length
- if $\left|\sigma_{k l}\right|>0$ we say that ω_{k}, ω_{l} are neigbours
- neigbours of $\omega_{k}: \mathcal{N}_{k}=\left\{I \in \mathcal{N}:\left|\sigma_{k l}\right|>0\right\}$
- To each control volume ω_{k} assign a collocation point: $\mathbf{x}_{k} \in \bar{\omega}_{k}$ such that
- admissibility condition: if $I \in \mathcal{N}_{k}$ then the line $\mathbf{x}_{k} \mathbf{x}_{l}$ is orthogonal to $\sigma_{k l}$
- if ω_{k} is situated at the boundary, i.e. $\gamma_{k}=\partial \omega_{k} \cap \partial \Omega \neq \emptyset$, then $\mathbf{x}_{k} \in \partial \Omega$

Discretization ansatz

- Given control volume ω_{k}, integrate equation over control volume

$$
\begin{align*}
0 & =\int_{\omega_{k}}(-\nabla \cdot \lambda \nabla u-f) d \omega \\
& =-\int_{\partial \omega_{k}} \lambda \nabla u \cdot \mathbf{n}_{k} d \gamma-\int_{\omega_{k}} f d \omega \tag{Gauss}\\
& =-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \lambda \nabla u \cdot \mathbf{n}_{k l} d \gamma-\int_{\gamma_{k}} \lambda \nabla u \cdot \mathbf{n} d \gamma-\int_{\omega_{k}} f d \omega \\
& \approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{k l}}{h_{k l}}\left(u_{k}-u_{l}\right)+\left|\gamma_{k}\right| \alpha\left(u_{k}-v_{k}\right)-\left|\omega_{k}\right| f_{k}
\end{align*}
$$

- Here,
- $u_{k}=u\left(\mathrm{x}_{k}\right)$
- $v_{k}=v\left(\mathbf{x}_{k}\right)$
- $f_{k}=f\left(\mathbf{x}_{k}\right)$
- $N=|\mathcal{N}|$ equations (one for each control volume)
- $N=|\mathcal{N}|$ unknowns (one in each collocation point \equiv control volume)

1D finite volume grid

- $\Omega=[0, X]$
- Collocation points:

$$
0=x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=X
$$

- Control volumes:

$$
\begin{aligned}
\omega_{1} & =\left(x_{1},\left(x_{1}+x_{2}\right) / 2\right) \\
\omega_{2} & =\left(\left(x_{1}+x_{2}\right) / 2,\left(x_{2}+x_{3}\right) / 2\right) \\
& \vdots \\
\omega_{N-1} & =\left(\left(x_{N-2}+x_{N-1}\right) / 2,\left(x_{N-1}+x_{N}\right) / 2\right) \\
\omega_{N} & =\left(\left(x_{N-1}+x_{N}\right) / 2, x_{N}\right)
\end{aligned}
$$

- Maximum number of neighbours: 2

Discretization matrix (1D)

Assume $\lambda=1, h_{k l}=h$ and we count collocation points from $1 \ldots N$. For $k=2 \ldots N-1, \omega_{K}=h$, and

$$
\sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{k l}}{h_{k l}}\left(u_{k}-u_{l}\right)=\frac{1}{h}\left(-u_{k-1}+2 u_{k}-u_{k+1}\right)
$$

The linear system then is (only nonzero entries marked):

$$
\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=\left(\begin{array}{c}
\frac{h}{2} f_{1}+\alpha v_{1} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\frac{h}{2} f_{N}+\alpha v_{n}
\end{array}\right)
$$

General tridiagonal matrix

$$
\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
a_{2} & b_{2} & c_{2} & & \\
& a_{3} & b_{3} & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
& & & a_{n} & b_{n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right)
$$

Gaussian elimination for tridiagonal systems

- TDMA (tridiagonal matrix algorithm)
- "Thomas algorithm" (Llewellyn H. Thomas, 1949 (?))
- "Progonka method" (Gelfand, Lokutsievski, 1952, published 1960)
$a_{i} u_{i-1}+b_{i} u_{i}+c_{i} u_{i+1}=f_{i}, a_{1}=0, c_{N}=0$
For $i=1 \ldots n-1$, assume there are coefficients α_{i}, β_{i} such that $u_{i}=\alpha_{i+1} u_{i+1}+\beta_{i+1}$.

Then, we can express u_{i-1} and u_{i} via u_{i+1} :
$\left(a_{i} \alpha_{i} \alpha_{i+1}+c_{i} \alpha_{i+1}+b_{i}\right) u_{i+1}+a_{i} \alpha_{i} \beta_{i+1}+a_{i} \beta_{i}+c_{i} \beta_{i+1}-f_{i}=0$
This is true independently of u if

$$
\begin{cases}a_{i} \alpha_{i} \alpha_{i+1}+c_{i} \alpha_{i+1}+b_{i} & =0 \\ a_{i} \alpha_{i} \beta_{i+1}+a_{i} \beta_{i}+c_{i} \beta_{i+1}-f_{i} & =0\end{cases}
$$

or for $i=1 \ldots n-1$:

$$
\left\{\begin{array}{l}
\alpha_{i+1}=-\frac{b_{i}}{a_{i}} \frac{b_{i} \alpha_{i}+c_{i}}{f_{i}-\alpha_{i} \beta_{i}} \\
\beta_{i+1}=\frac{f_{i} \alpha_{i}+c_{i}}{a_{i}}
\end{array}\right.
$$

Progonka algorithm

Forward sweep:

$$
\left\{\begin{array}{l}
\alpha_{2}=-\frac{b_{1}}{c_{1}} \\
\beta_{2}=\frac{f_{i}}{c_{1}}
\end{array}\right.
$$

for $i=2 \ldots n-1$

$$
\left\{\begin{aligned}
\alpha_{i+1} & =-\frac{b_{i}}{a_{i} \alpha_{i}+c_{i}} \\
\beta_{i+1} & =\frac{f_{i}-a_{i} \beta_{i}}{a_{i} \alpha_{i}+c_{i}}
\end{aligned}\right.
$$

Backward sweep:

$$
u_{n}=\frac{f_{n}-a_{n} \beta_{n}}{a_{n} \alpha_{n}+c_{n}}
$$

for $n-1 \ldots 1$:

$$
u_{i}=\alpha_{i+1} u_{i+1}+\beta_{i+1}
$$

Progonka algorithm - properties

- n unknowns, one forward sweep, one backward sweep $\Rightarrow O(n)$ operations vs. $O\left(n^{3}\right)$ for algorithm using full matrix
- No pivoting \Rightarrow stability issues
- Stability for diagonally dominant matrices $\left(\left|b_{i}\right|>\left|a_{i}\right|+\left|c_{i}\right|\right)$
- Stability for symmetric positive definite matrices

2D finite volume grid

- Red circles: discretization nodes
- Thin lines: original "grid"
- Thick lines: boundaries of control volumes
- Each discretization point has not more then 4 neighbours

Sparse matrices

- Regardless of number of unknowns n, the number of non-zero entries per row remains limited by n_{r}
- If we find a scheme which allows to store only the non-zero matrix entries, we would need $n n_{r}=O(n)$ storage locations instead of n^{2}
- The same would be true for the matrix-vector multiplication if we program it in such a way that we use every nonzero element just once: martrix-vector multiplication uses $O(n)$ instead of $O\left(n^{2}\right)$ operartions
- In the special case of tridiagonal matrices, progonka gives an algorithm which allows to solve the nonlinear system with $O(n)$ operations

Sparse matrix questions

- What is a good format for sparse matrices?
- Is there a way to implement Gaussian elimination for general sparse matrices which allows for linear system solution with $O(n)$ operation
- Is there a way to implement Gaussian elimination with pivoting for general sparse matrices which allows for linear system solution with $O(n)$ operations?
- Is there any algorithm for sparse linear system solution with $O(n)$ operations?

Coordinate (triplet) format

- store all nonzero elements along with their row and column indices
- one real, two integer arrays, length $=n n z=$ number of nonzero elements

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

AA	12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10											
JR	5	3	3	2	1	1	4	2	3	2		4
JC	5	5	3	4	1	4	4	1	1	2		3

Y.Saad, Iterative Methods, p. 92

Compressed Row Storage (CRS) format

(aka Compressed Sparse Row (CSR) or IA-JA etc.)

- real array AA, length nnz, containing all nonzero elements row by row
- integer array JA, length nnz, containing the column indices of the elements of AA
- integer array IA, length $n+1$, containing the start indizes of each row in the arrays $I A$ and $J A$ and $I A(n+1)=n n z+1$

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

	AA	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
	11.	12.									
JA	1	4	1	2	4	1	3	4	5	3	4

Y.Saad, Iterative Methods, p. 93

- Used in most sparse matrix packages

The big schism

- Worse than catholics vs. protestants or shia vs. sunni...
- Should array indices count from zero or from one ?
- Fortran, Matlab, Julia count from one
- $\mathrm{C} / \mathrm{C}++$, python count from zero
- I am siding with the one fraction
- but I am tolerant, so for this course ...
- It matters when passing index arrays to sparse matrix packages

http://xkcd.com/1739/

CRS again

$$
A=\left(\begin{array}{ccccc}
1 . & 0 . & 0 . & 2 . & 0 . \\
3 . & 4 . & 0 . & 5 . & 0 . \\
6 . & 0 . & 7 . & 8 . & 9 . \\
0 . & 0 . & 10 . & 11 . & 0 . \\
0 . & 0 . & 0 . & 0 . & 12 .
\end{array}\right)
$$

```
AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 0 3 0 1 3 0 2 3 4 2 3 4
IA: 0 2 4 0 11 12
```

- some package APIs provide the possibility to specify array offset
- index shift is not very expensive compared to the rest of the work

Sparse direct solvers

- Sparse direct solvers implement Gaussian elimination with different pivoting strategies
- UMFPACK
- Pardiso (omp + MPI parallel)
- SuperLU
- MUMPS (MPI parallel)
- Pastix
- Quite efficient for 1D/2D problems
- They suffer from fill-in: \Rightarrow huge memory usage for 3D

