
~
Recap linear algebra + direct solvers
Scientific Computing Winter 2016/2017

Lecture 6

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

With material from from http://www.cplusplus.com/ and from “Introduction
to High-Performance Scientific Computing” by Victor Eijkhout
(http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

made wit pandoc

http://www.cplusplus.com/
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

~

Recap from last time

Matrix + Vector norms

I Vector norms: let x = (xi) ∈ Rn

I ||x ||1 =
∑

i =n |xi |: sum norm, l1-norm
I ||x ||2 =

√∑n
i=1 x2

i : Euclidean norm, l2-norm
I ||x ||∞ = maxi=1...n |xi |: maximum norm, l∞-norm

I Matrix A = (aij) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =

n∑
j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν =1

||Ax ||ν
||x ||ν

Matrix norms

I ||A||1 = maxj=1...n
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxi=1...n

∑n
j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of ATA.

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + ∆x) = b + ∆b.

Since Ax = b, we get A∆x = ∆b. From this,{
∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A)

||∆b||
||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

~

Solution of linear systems of equations

Approaches to linear system solution

Solve Ax = b

I Direct methods:
I Exact

I up to machine precision!
I Expensive (in time and space)

I where does this matter ?

I Iterative methods:
I Only approximate

I with good convergence and proper accuracy control, results are not worse than for
direct methods

I Cheaper in space and (possibly) time
I Convergence guarantee is problem dependent and can be tricky

Really bad example of direct method

Cramer’s rule
write |A| for determinant, then

xi =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣ /|A| (i = 1 . . . n)

O(n!) operations...

Gaussian elimination

I Essentially the only feasible direct solution method
I Solve Ax = b with square matrix A.

Gauss 1

(6 −2 2
12 −8 6
3 −13 3

)
x =

(16
26
−19

)

Step 1

(6 −2 2
0 4 −2
0 −12 2

)
x =

(16
−6
−27

)

Step 2

(6 −2 2
0 4 −2
0 −0 −4

)
x =

(16
−6
−9

)

Gauss 2

Solve upper triangular system

(6 −2 2
0 4 −2
0 0 −4

)
x =

(16
−6
−9

)

−4x3 = −9 ⇒ x3 =
9
4

−4x2 − 2x3 = −6 ⇒ −4x2 =
21
2 ⇒ x2 = −21

8

6x1 − 2x2 + 2x3 = 2 ⇒ 6x1 = 2− 21
4 −

18
4 = −31

4 ⇒ x1 = −−3124

Gaussian elimination expressed in matrix operations: LU factorization

L1Ax =

(6 −2 2
0 4 −2
0 −12 2

)
x =

(16
−6
−27

)
= L1b, L1 =

(1 0 0
−2 1 0
− 1

2 0 1

)

L2L1Ax =

(6 −2 2
0 4 −2
0 −0 −4

)
x =

(16
−6
−9

)
= L2L1b, L2 =

(1 0 0
0 1 0
0 −3 1

)

I Let L = L−11 L−12 =

(1 0 0
2 1 0
1
2 3 1

)
, U = L2L1A. Then A = LU

I Inplace operation. Diagonal elements of L are always 1, so no need to store
them ⇒ work on storage space for A and overwrite it.

Problem example

Consider (
ε 1
1 1

)
x =

(
1 + ε
2

)
with solution x = (1, 1)t

Ordinary elimination: (
ε 1
0 (1− 1

ε
)

)
x =

(
1

2− 1
ε

)

⇒ x2 =
2− 1

ε

1− 1
ε

⇒ x1 =
1− x2
ε

If ε < εmach, then 2− 1/ε = −1/ε and 1− 1/ε = −1/ε, so

x2 =
2− 1

ε

1− 1
ε

= 1,⇒ x1 =
1− x2
ε

= 0

Partial Pivoting

I Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”

I This prevents near zero divisions and increases stability

(
1 1
ε 1

)
x =

(
2
1

)
⇒
(
1 1
0 1− ε

)
x =

(
2

1− 2ε

)
If ε very small:

x2 =
1− 2ε
1− ε = 1, x1 = 2− x2 = 1

I Factorization: PA = LU, where P is a permutation matrix which can be
encoded usin an integer vector

Gaussian elimination and LU factorization

I Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

I Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

I Standard routines from LAPACK: dgetrf, (factorization) dgetrs (solve)
used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use them. Unless there is special need, they should be used.

I Complexity of LU-Factorization: O(n3), some theoretically better algorithms
are known with e.g. O(n2.736)

Cholesky factorization

I A = LLT for symmetric, positive definite matrices

Matrices from PDE: a first example
I “Drosophila”: Poisson boundary value problem in rectangular domain

Given:

I Domain Ω = (0,X)× (0,Y) ⊂ R2 with boundary Γ = ∂Ω, outer normal n
I Right hand side f : Ω→ R
I "Conductivity" λ
I Boundary value v : Γ→ R
I Transfer coefficient α

Search function u : Ω→ R such that

−∇ · λ∇u = f inΩ

−λ∇u · n + α(u − v) = 0 onΓ

I Example: heat conduction:
I u: temperature
I f : volume heat source
I λ: heat conduction coefficient
I v : Ambient temperature
I α: Heat transfer coefficient

The finite volume idea

I Assume Ω is a polygon
I Subdivide the domain Ω into a finite number of control volumes :

Ω̄ =
⋃

k∈N ω̄k
such that

I ωk are open (not containing their boundary) convex domains
I ωk ∩ ωl = ∅ if ωk 6= ωl
I σkl = ω̄k ∩ ω̄l are either empty, points or straight lines

I we will write |σkl | for the length
I if |σkl | > 0 we say that ωk , ωl are neigbours
I neigbours of ωk : Nk = {l ∈ N : |σkl | > 0}

I To each control volume ωk assign a collocation point: xk ∈ ω̄k such that
I admissibility condition: if l ∈ Nk then the line xkxl is orthogonal to σkl
I if ωk is situated at the boundary, i.e. γk = ∂ωk ∩ ∂Ω 6= ∅, then xk ∈ ∂Ω

xk xl

σklωk

ωlnkl

Discretization ansatz
I Given control volume ωk , integrate equation over control volume

0 =

∫
ωk

(−∇ · λ∇u − f) dω

= −
∫
∂ωk

λ∇u · nkdγ −
∫
ωk

fdω (Gauss)

= −
∑

L∈Nk

∫
σkl

λ∇u · nkldγ −
∫
γk

λ∇u · ndγ −
∫
ωk

fdω

≈
∑

L∈Nk

σkl

hkl
(uk − ul) + |γk |α(uk − vk)− |ωk |fk

I Here,
I uk = u(xk)
I vk = v(xk)
I fk = f (xk)

I N = |N | equations (one for each control volume)
I N = |N | unknowns (one in each collocation point ≡ control volume)

1D finite volume grid

|!k|

hk�1,k hk,k+1

xk�1 xk xk+1xk�1,k xk,k+1

I Ω = [0,X]
I Collocation points:

0 = x1 < x2 < · · · < xn−1 < xn = X
I Control volumes:

ω1 = (x1, (x1 + x2)/2)

ω2 = ((x1 + x2)/2, (x2 + x3)/2)

...
ωN−1 = ((xN−2 + xN−1)/2, (xN−1 + xN)/2)

ωN = ((xN−1 + xN)/2, xN)

I Maximum number of neighbours: 2

Discretization matrix (1D)

Assume λ = 1, hkl = h and we count collocation points from 1 . . .N. For
k = 2 . . .N − 1, ωK = h, and

∑
L∈Nk

σkl

hkl
(uk − ul) =

1
h (−uk−1 + 2uk − uk+1)

The linear system then is (only nonzero entries marked):



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α





u1
u2
u3
...

uN−2
uN−1
uN


=



h
2 f1 + αv1

hf2
hf3
...

hfN−2
hfN−1

h
2 fN + αvn



General tridiagonal matrix


b1 c1
a2 b2 c2

a3 b3
. . .

. cn−1
an bn



u1
u2
u3
...
un

 =


f1
f2
f3
...
fn



Gaussian elimination for tridiagonal systems
I TDMA (tridiagonal matrix algorithm)
I “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
I “Progonka method” (Gelfand, Lokutsievski, 1952, published 1960)

aiui−1 + biui + ciui+1 = fi , a1 = 0, cN = 0

For i = 1 . . . n − 1, assume there are coefficients αi , βi such that
ui = αi+1ui+1 + βi+1.

Then, we can express ui−1 and ui via ui+1:
(aiαiαi+1 + ciαi+1 + bi)ui+1 + aiαiβi+1 + aiβi + ciβi+1 − fi = 0

This is true independently of u if

{
aiαiαi+1 + ciαi+1 + bi = 0
aiαiβi+1 + aiβi + ciβi+1 − fi = 0

or for i = 1 . . . n − 1:

{
αi+1 = − bi

aiαi +ci

βi+1 = fi−aiβi
aiαi +ci

Progonka algorithm
Forward sweep:

{
α2 = − b1

c1
β2 = fi

c1

for i = 2 . . . n − 1

{
αi+1 = − bi

aiαi +ci

βi+1 = fi−aiβi
aiαi +ci

Backward sweep:

un =
fn − anβn

anαn + cn

for n − 1 . . . 1:

ui = αi+1ui+1 + βi+1

Progonka algorithm - properties

I n unknowns, one forward sweep, one backward sweep ⇒ O(n) operations
vs. O(n3) for algorithm using full matrix

I No pivoting ⇒ stability issues
I Stability for diagonally dominant matrices (|bi | > |ai | + |ci |)
I Stability for symmetric positive definite matrices

2D finite volume grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Red circles: discretization nodes
I Thin lines: original “grid”
I Thick lines: boundaries of control volumes
I Each discretization point has not more then 4 neighbours

Sparse matrices

I Regardless of number of unknowns n, the number of non-zero entries per
row remains limited by nr

I If we find a scheme which allows to store only the non-zero matrix entries,
we would need nnr = O(n) storage locations instead of n2

I The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once:
martrix-vector multiplication uses O(n) instead of O(n2) operartions

I In the special case of tridiagonal matrices, progonka gives an algorithm
which allows to solve the nonlinear system with O(n) operations

Sparse matrix questions

I What is a good format for sparse matrices?
I Is there a way to implement Gaussian elimination for general sparse

matrices which allows for linear system solution with O(n) operation
I Is there a way to implement Gaussian elimination with pivoting for general

sparse matrices which allows for linear system solution with O(n)
operations?

I Is there any algorithm for sparse linear system solution with O(n)
operations?

Coordinate (triplet) format

I store all nonzero elements along with their row and column indices
I one real, two integer arrays, length = nnz= number of nonzero elements

Y.Saad, Iterative Methods, p.92

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

I real array AA, length nnz, containing all nonzero elements row by row
I integer array JA, length nnz, containing the column indices of the elements

of AA
I integer array IA, length n+1, containing the start indizes of each row in the

arrays IA and JA and IA(n+1)=nnz+1

Y.Saad, Iterative Methods, p.93

I Used in most sparse matrix packages

The big schism

I Worse than catholics vs. protestants or shia vs. sunni. . .
I Should array indices count from zero or from one ?
I Fortran, Matlab, Julia count from one
I C/C++, python count from zero
I I am siding with the one fraction
I but I am tolerant, so for this course . . .

I It matters when passing index arrays to sparse matrix packages

http://xkcd.com/1739/

CRS again

AA: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
JA: 0 3 0 1 3 0 2 3 4 2 3 4
IA: 0 2 4 0 11 12

I some package APIs provide the possibility to specify array offset
I index shift is not very expensive compared to the rest of the work

Sparse direct solvers

I Sparse direct solvers implement Gaussian elimination with different pivoting
strategies

I UMFPACK
I Pardiso (omp + MPI parallel)
I SuperLU
I MUMPS (MPI parallel)
I Pastix

I Quite efficient for 1D/2D problems
I They suffer from fill-in: ⇒ huge memory usage for 3D

