Recap linear algebra + direct solvers
Scientific Computing Winter 2016/2017
Lecture 6
Jirgen Fuhrmann

juergen.fuhrmann®@wias-berlin.de

With material from from http://wuw.cplusplus.com/ and from “Introduction
to High-Performance Scientific Computing” by Victor Eijkhout
(http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

made wit pandoc


http://www.cplusplus.com/
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

Recap from last time



Matrix + Vector norms

> Vector norms: let x = (x;) € R”

> x|l = Zi =" |x;|: sum norm, /i-norm
> ||x|l2 = ,/27:1 x2: Euclidean norm, h-norm
> ||X|loc = Maxj=1...n |X;|: maximum norm, lsc-norm
> Matrix A = (a;) € R" x R”
> Representation of linear operator A : R" — R" defined by A : x — y = Ax
with

n
Yi = E ajjXxj
j=1

> Induced matrix norm:

[[Ax|]v

xERM x#0 HXHV
[1Ax[]»
xeRM,[|x|[,=1 ||x]|v

Al =




Matrix norms

> ||All1 = maxj=1..n >, |aj| maximum of column sums

> ||Alloc = maxj=1...n Zj'.’zl |aj| maximum of row sums

> [|A]]2 = vV Amax With A\pax: largest eigenvalue of AT A.



Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + Ax) = b+ Ab.

Since Ax = b, we get AAx = Ab. From this,

Ax = Aab \ _ [ 1AL 2 [lbl]
Ax = b Iax]l <17 [1as]

Ab
< ~(4) ||||b|||

|| Ax]|
Il

=

where 1(A) = ||A|| - ||A7Y|| is the condition number of A.



Solution of linear systems of equations



Approaches to linear system solution

Solve Ax = b

> Direct methods:
> Exact
»> up to machine precision!
> Expensive (in time and space)
> where does this matter ?
> lterative methods:
> Only approximate

> with good convergence and proper accuracy control, results are not worse than for
direct methods

> Cheaper in space and (possibly) time
> Convergence guarantee is problem dependent and can be tricky



Really bad example of direct method

Cramer's rule
write |A| for determinant, then

anu a2 ... ai-1 b1 auy1 ... aum
a1 . by c..a2p

Xi=| . ) /A (i=1...
an1 e bn . ann

O(n!) operations...



Gaussian elimination

» Essentially the only feasible direct solution method

» Solve Ax = b with square matrix A.



Gauss 1

6 -2 2 16
12 -8 6 |x=| 26
3 —-13 3 -19

Step 1

6 -2 2 16
0 4 -2 | x= —6
0o —-12 2 27

Step 2

6 -2 2 16
0 4 —2 X = —6
0 -0 —4 -9



Gauss 2

Solve upper triangular system

6 -2 2 16
0 4 -2]x=|-6
0o 0 -4 -9

—4X3 =-9

—4xy — 2x3 = —6 = —4x = %

21
x 4 4

18 _

6X1 - 2X2 + 2X3 =2

:>X3:9
4
:>X2:*g
8
IO
4 24



Gaussian elimination expressed in matrix operations: LU factorization

6 —2 2 16 1 00

LiAx = <0 4 2) x= <6> =Lb, L= <2 1 0)
0 —12 2 —27 -3 01
6 —2 2 16 1 0 0

L2L1AX = (0 4 —2) X = (—6) = L2L1b, LQ = <0 1 0)
0 —0 —4 -9 0 -3 1

100
>LetL:L11L21:<2 1 0|, U=LL1A Then A= LU

131

2

» Inplace operation. Diagonal elements of L are always 1, so no need to store
them = work on storage space for A and overwrite it.



Problem example
Consider

with solution x = (1,1)*

€ 1 1
(6 aty)=(2)

2—1 17X2
1 ;:>X1:7

€

Ordinary elimination:

= X2 =

If € < €mach, then 2 —1/e=—1/eand 1 —1/e = —1/¢, so

2 —
1—

o=

_l-xe
€

X2 =

o=
I
“I—‘
¥
X



Partial Pivoting

» Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”
» This prevents near zero divisions and increases stability

(=)= 1))

X2:172621, X1:27X2:1
1—¢

o =
Juy

If € very small:

» Factorization: PA = LU, where P is a permutation matrix which can be
encoded usin an integer vector



Gaussian elimination and LU factorization

» Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

» Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

> Standard routines from LAPACK: dgetrf, (factorization) dgetrs (solve)
used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use them. Unless there is special need, they should be used.

» Complexity of LU-Factorization: O(n*), some theoretically better algorithms
are known with e.g. O(n*7%)



Cholesky factorization

» A= LL" for symmetric, positive definite matrices



Matrices from PDE: a first example

» “Drosophila”: Poisson boundary value problem in rectangular domain

Given:

» Domain Q = (0, X) x (0, Y) C R? with boundary I = 8Q, outer normal n
> Right hand side f : Q — R

» "Conductivity" A

> Boundary value v: I — R

» Transfer coefficient «
Search function u: Q — R such that

V- AVu=f inQ
—AVu-n+a(u—v)=0 onl

» Example: heat conduction:

> u: temperature

> f: volume heat source

> )\: heat conduction coefficient
> v: Ambient temperature

> «: Heat transfer coefficient



The finite volume idea

> Assume €2 is a polygon
» Subdivide the domain  into a finite number of control volumes :

Q= UkeN Wk
such that
> wy are open (not containing their boundary) convex domains

> wi Nwy =0 ifwk 75(;)/
> oy = Wi N, are either empty, points or straight lines

> we will write |oy| for the length
> if |ow| > 0 we say that wy, w; are neigbours

> neigbours of wx: Ny = {l € N : |ow| > 0}
» To each control volume wy assign a collocation point: xx € @&, such that

> admissibility condition: if / € N then the line xxx, is orthogonal to oy
> if wy is situated at the boundary, i.e. v = Owy NOQ # B, then x, € O



Discretization ansatz

» Given control volume wy, integrate equation over control volume

0=/ (=V - AVu—f)dw
wik

f/ AVu - nidy — / fdw
Wk

—Z/ AV - ngdy — /)\Vu~nd'y—/ fdw

LEN Wi

g
~ ) (o= ) + ek — vi) — el e
e~ ki

» Here,
> up = u(xk)
> v = v(xg)
> fi = f(xx)

= |N] equations (one for each control volume)

(Gauss)

= |N| unknowns (one in each collocation point = control volume)



1D finite volume grid

-1,k R k1

I ‘ I
Trp—-1 Tk—-1,k Tk Tk,k+1 Th+1

» Q=10,X]

» Collocation points:
O=x1<x < - <Xpo1 < X=X

» Control volumes:

w1 = (x, (a + x)/2)
w2 = (1 + x2)/2, (x2 + x3)/2)

wn—1 = ((xn—2 + xn=1)/2, (xn—1 + xn)/2)
wy = ((xn—1 + xn)/2, xn)

» Maximum number of neighbours: 2



Discretization matrix (1D)

Assume A =1, hy = h and we count collocation points from 1... N. For
k=2...N—1, wgk = h, and

1 1 h
a+y =3 tn 5h +av
_1 2 _1 hf
h h h ) 2 2
“h A Th us hts
12 1
~h El _2g . un-—2 hfn—2
h h ~ % un-—1 hfn_1

1 1 h
~h g"rOé un §fN+OéVn



General tridiagonal matrix

b1 C1
a2 b o
as b3

dn

051
u2
u3
Cn—1
by Un

fi
f
f3



Gaussian elimination for tridiagonal systems
» TDMA (tridiagonal matrix algorithm)
» “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
> “Progonka method” (Gelfand, Lokutsievski, 1952, published 1960)
aiuj—1 + bjui + ciujy1 =f;, a1 =0, cy =0

For i=1...n— 1, assume there are coefficients «;, 8; such that
Ui = Qip1Uit1 + Bit1.

Then, we can express uj—1 and u; via Ujy1:
(aiciciyr + cioupr + bi)uiyr + ajaifivs + aifi + 6ifis1 — i =0

This is true independently of u if

3oyl + Cijy1 + bi =0
aiaifiy1 + aifi + cifiyi—fi =0

orfori=1...n—1:

. — __bi
Qit1 = ajaj+c;
Bi _ fi—aip;

i+1 ajaj+c;



Progonka algorithm
Forward sweep:

b
Qo = T;
2 —
fori=2...n—1
Ajy1 = ajai+ci
3; _ fizaiBi
i+l = Faitq
Backward sweep:
fo — an,Bn
Up = ————
anQin + Cn

forn—1...1:

Ui = ait1liz1 + Bitt



Progonka algorithm - properties

» n unknowns, one forward sweep, one backward sweep = O(n) operations
vs. O(n?) for algorithm using full matrix
> No pivoting = stability issues

> Stability for diagonally dominant matrices (|b;i| > |ai| + |ci|)
> Stability for symmetric positive definite matrices



2D finite volume grid

Red circles: discretization nodes

Thin lines: original “grid”

Thick lines: boundaries of control volumes

Each discretization point has not more then 4 neighbours

vvyVvyy



Sparse matrices

> Regardless of number of unknowns n, the number of non-zero entries per
row remains limited by n,

> If we find a scheme which allows to store only the non-zero matrix entries,
we would need nn, = O(n) storage locations instead of n?

» The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once:
martrix-vector multiplication uses O(n) instead of O(n?) operartions

> In the special case of tridiagonal matrices, progonka gives an algorithm
which allows to solve the nonlinear system with O(n) operations



Sparse matrix questions

» What is a good format for sparse matrices?

> Is there a way to implement Gaussian elimination for general sparse
matrices which allows for linear system solution with O(n) operation

> s there a way to implement Gaussian elimination with pivoting for general
sparse matrices which allows for linear system solution with O(n)
operations?

> Is there any algorithm for sparse linear system solution with O(n)
operations?



Coordinate (triplet) format

> store all nonzero elements along with their row and column indices
> one real, two integer arrays, length = nnz= number of nonzero elements

Lo 0 2 0

3.4 0. 5 0

A=[6 0 7. 8 9

0. 0. 10. 1L 0.

0. 0. 0. 0. 12
AA [12.9. 7.5 1 2. 11 3. 6. 4 8 10.]
JR |5 3 3 2 1 1 423 23 4|
IC 553 4 1 4 4 1 1 2 4 3|

Y.Saad, Iterative Methods, p.92



Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

> real array AA, length nnz, containing all nonzero elements row by row

> integer array JA, length nnz, containing the column indices of the elements
of AA

> integer array IA, length n+1, containing the start indizes of each row in the
arrays IA and JA and IA(n+1)=nnz+1

1. 0. 0 2. 0.
340 5. 0.
A=16. 0. 7 8 9.

0. 0. 0. 0. 12.

AA |1 2.3 4.5 6 7.8 9 10.1L 12|
JA- 1 4 1 2 4 1 3 45 3 45|
IA [ 1 3 6 101213

Y.Saad, Iterative Methods, p.93

> Used in most sparse matrix packages



The big schism

Worse than catholics vs. protestants or shia vs. sunni. ..
Should array indices count from zero or from one ?
Fortran, Matlab, Julia count from one

C/C++, python count from zero

| am siding with the one fraction

but | am tolerant, so for this course ...

vVVyVYyVvVYyy

> It matters when passing index arrays to sparse matrix packages

MAN, YOURE BEING INCONSISTENT
WITH YOUR ARRAY INDICES. SOME
PARE FROM ONE, S0ME. Fiom ZERD.

DIFFERENT TASks CAWL FOR VAT, WHAT?

DIFFERENT CONVENTIONS. TO ,

QUOTE STANFORD ALGOR ITHMS WELL, THATS WHAT HE
ESPERT DONALD KNUTH, SAID WHEN | ASKED

"\WHO ARE You? HOW DID Him ABOUT IT.

YOU GET IN MY HOUSE?"
I

http://xked.com/1739/



CRS again

Ne o

b
|
e W
=
I

cooro
N
oo
=}

AA: 1. 2. 3. 4. 5. 6.7.8.9.10. 11. 12
JA: 030130234234
IA: 0240 11 12

» some package APIs provide the possibility to specify array offset
» index shift is not very expensive compared to the rest of the work



Sparse direct solvers

» Sparse direct solvers implement Gaussian elimination with different pivoting
strategies

UMFPACK

Pardiso (omp + MPI parallel)

SuperLU

MUMPS (MPI parallel)

Pastix

v

>
>
>
>

> Quite efficient for 1D/2D problems
> They suffer from fill-in: = huge memory usage for 3D



