C ++ roundup + NUMA recap

Scientific Computing Winter 2016/2017
Lecture 4
Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de
With material from from http://www.cplusplus.com/ and from "Introduction to High-Performance Scientific Computing" by Victor Eijkhout (http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

Admin

- Starting Oct. 31, on Mondays we will try out UNIX pool room MA 269
- Computer work in groups of two. Need list of names
- Homework will be this afternoon on homepage http://www.wias-berlin.de/people/fuhrmann/teach.html
- Consulting for first steps on UNIX on Monday

Recap from last time

The Preprocessor

- Before being sent to the compiler, the source code is sent through the preprocessor
- It is a legacy from C which is slowly being squeezed out of $\mathrm{C}++$
- Preprocessor commands start with \#
- Include contents of file file.h found on a default search path known to the compiler:
\#include <file.h>
- Include contents of file file.h found on user defined search path

```
#include "file.h"
```

- Define a piece of text (mostly used for constants in pre-C++ times), Avoid! Use const instead.

```
#define N 15
```

- Define preprocessor macro for inlining code. Avoid! Use inline functions instead

```
#define MAX(x,y) (((x)>(y))?(x):(y))
```


Why macros are evil ?

(Argumentation from stackoverflow)

- You can not debug macros.
- a debugger allows to execute the the program statement by statement in order to find errors. Within macros, this is not possible
- Macro expansion can lead to strange side effects.

```
#define MAX(x,y) (((x)>(y))?(x):(y))
auto a=5, b=4;
auto c=MAX(++a,b); // gives c=7
auto d=std::max(++a,b); // gives d=6
```

- Macros have no "namespace", so it is easy to "replace" functions without notification. If one uses a function, the compiler would issue a warning.
- Macros may affect things you don't realize. The semantics of macros is completely arbitrary and not detectable by the compiler

Emulating modules

- Until now $\mathrm{C}++$ has no well defined module system.
- A module system usually is emulated using the preprocessor and namespaces. Here we show the ideal way to do this
- File mymodule.h containing interface declarations

```
#ifndef MYMODULE_H
#define MYMODULE_H
namespace mymodule
{
    void my_function(int i, double x);
}
#endif
```

- File mymodule.cpp containing function definitions

```
#include "mymodule.h"
namespace mymodule
{
    void my_function(int i, double x)
    {
        ...body of function definition...
    }
}
#endif
```

- File using mymodule:

```
#include "mymodule.h"
mymodule::my_function(3,15.0);
```


Compiling. . .


```
$ g++ -03 -c -o src3.o src3.cxx
$ g++ -03 -c -o src2.o src2.cxx
$ g++ -03 -c -o src1.o src1.cxx
$ g++ -o program src1.o src2.o src3.o
$ ./program
```

Shortcut: invoke compiler and linker at once

```
$ g++ -03 -o program src1.cxx src2.cxx src3.cxx
$ ./program
```


Arrays

- Focusing on numerical methods for PDEs results in work with finite dimensional vectors which are represented as arrays - sequences of consecutively stored objects
- Stemming from C, in C++ array objects represent just the fixed amount of consecutive memory. No size info or whatsoever
- No bounds check
- First array index is always 0

```
double x[9]; // uninitialized array of 9 elements
double y[3]={1,2,3}; // initialized array of 3 elements
double z[]={1,2,3}; // Same
double z[]{1,2,3}; //Same
```

- Accessing arrays
- [] is the array access operator in C++
- Each element of an array has an index

```
double a=x[3]; // undefined value because x was not initialized
double b=y[12]; // undefined value because out of bounds
y[12]=19; // may crash program ("segmentation fault"),
double c=z[0]; // Acces to first element in array, now c=1;
```

Arrays, pointers and pointer arithmetic

- Arrays are strongly linked to pointers
- Array object can be treated as pointer

```
double }x[]={1,2,3,4}
double b=*x; // now }x=1\mathrm{ ;
double *y=x+2; // y is a pointer to third value in arrax
double c=*y; // now c=3
ptrdiff_t d=y-x; // We can also do differences between pointers
```

- Pointer arithmetic is valid only in memory regions belonging to the same array

Memory: stack and heap

- Stack: pre-allocated memory where main() and all functions called from there put their data.
- All data declared in \{\} blocks are placed on the stack
- Stack size is limited
- Handling stack memory is cheap

```
{
    double a[10000];
    for (int i=0;i<10000;i++) a[i]=0.0;
    // stack memory implicitely freed at end of block
}
```

- Heap: Additional memory available from system on request
- Mix between array and pointer arithmetic allows to access stack and heap allocated arrays in the same way.
- only the pointer is placed on the stack
- new/delete are expensive operations

```
{
    double *a= new double[10000];
    for (int i=0;i<10000;i++) a[i]=0.0;
    delete[] a; // need to release memory explicitely
}
```


Classes and members

- Classes are data types which collect different kinds of data, and methods to work on them.

```
class class_name
{
    private:
        private_member1;
        private_member2;
    public:
        public_member1;
        public_member2;
};
```

- If not declared otherwise, all members are private
- struct data types are defined in the same way as classes, but by default all members are public
- Accessing members of a class object:
class_name x;
x.public_member1=...
- Accessing members of a pointer to class object:

```
class_name *x;
(*x).public_member1=...
x->public_member1=...
```


Templated vector class

- We want to be able to have vectors of any basic data type.
- We do not want to write new code for each type

```
template <typename T>
class vector
{
    private:
        T *data=nullptr; // Plain C-style pointer to data array
        int _size=0; // Private size information
    public:
        int size() {return _size;} // Retrieval of size information
        T & operator[](int i) { return data[i]); // Array access operator
        vector( int size): _size(size) { data = new T[size];} // Constructor
        ~vector() { delete [] data;} // Destructor
};
{
    vector<double> v(5);
    vector<int> iv(3);
}
```

- A vector class like this is available from the C++ standard template library

C ++ standard template libray (STL)

- The standard template library (STL) became part of the $\mathrm{C}++11$ standard
- "Whenever you can, use the classes available from there"
- For one-dimensional data, std::vector is appropriate
- For two-dimensional data, things become more complicated
- There is no reasonable matrix class
- std::vectorstd::vector is possible but has to allocate each matrix row and is inefficient.
- it is not possible to create an std::vector from already existing data
- STL vector constructors are not able to use already allocated memory, as it becomes available e.g. from mesh generators like TetGen, or when interfacing numpy array from python
- The way forward in projects: existing C++ linear algebra libraries
- Eigen
- Armadillo
- numcpp
- For teaching: develop own small library, explaining all internal mechanisms

Inheritance and smart pointers

Inheritance

- Classes in C++ can be extended, creating new classes which retain characteristics of the base class.
- The derived class inherits the members of the base class, on top of which it can add its own members.

```
class vector2d
{
private:
    double *data;
    vector2d<int> shape;
    int size
public:
    double & operator(int i, int j);
    vector2d(int nrow, ncol);
    ~vector2d();template <t
}
class matrix: public vector2d
{
    public:
    apply(const vector1d& u, vector1d &v);
    solve(vector1d&u, const vector1d&rhs);
}
```

- All operations which can be performed with instances of vector2d can be performed with instances of matrix as well
- In addition, matrix has methods for linear system solution and matrix-vector multiplication

Smart pointers

... with a little help from Timo Streckenbach from WIAS who introduced smart pointers into our simulation code.

- Automatic book-keeping of pointers to objects in memory.
- Instead of the meory addres of an object aka. pointer, a structure is passed around by value which holds the memory address and a pointer to a reference count object. It delegates the member access operator \rightarrow and the address resolution operator $*$ to the pointer it contains.
- Each assignment of a smart pointer increases this reference count.
- Each destructor invocation from a copy of the smart pointer structure decreses the reference count.
- If the reference count reaches zero, the memory is freed.
- std::shared_ptr is part of the C++11 standard

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Smart pointer schematic

(this is one possibe way to implement it)
class C;

Smart pointer schematic

(this is one possibe way to implement it)

```
class C;
```


Smart pointers vs. *-pointers

- When writing code using smart pointers, write

```
#include <memory>
class R;
std::shared_ptr<R> ReturnObjectOfClassR(void);
void PassObjectOfClassR(std::shared_ptr<R> o);
std::shared_ptr<R> o;
o->member=5;
{
    auto o=std::make_shared<R>();
    PassObjectOfClassR(o)
    // Smart pointer object is deleted at end of scope and frees memory
}
```

instead of

```
class R;
R* ReturnObjectOfClassR(void);
void PassObjectOfClassR(R* o);
R*O;
o->member=5;
{
    R* o=new R;
    PassObjectOfClassR(o);
    delete o;
}
```


Smart pointer advantages vs. *-pointers

- "Forget" about memory deallocation
- Automatic book-keeping in situations when members of several different objects point to the same allocated memory
- Proper reference counting when working together with other libraries, e.g. numpy

$C++$ topics not covered so far

- To be covered on occurence
- character strings
- overloading
- optional arguments, variable parameter lists
- Functor classes, lambdas
- threads
- malloc/free/realloc (C-style memory management)
- cmath library
- Interfacing C/Fortran
- Interfacing Python/numpy
- To be omitted (probably)
- Exceptions
- Move semantics
- Expression templates
- Expression templates allow to write code like $\mathrm{c}=\mathrm{A} * \mathrm{~b}$ for a matrix A and vectors b, c.
- Realised e.g. in Eigen, Armadillo
- Too complicated for teaching (IMHO)
- GUI libraries
- Graphics (we aim at python here)

Recap from numerical analysis

Floating point representation

- Scientific notation of floating point numbers: e.g. $x=6.022 \cdot 10^{23}$
- Representation formula:

$$
x= \pm \sum_{i=0}^{\infty} d_{i} \beta^{-i} \beta^{e}
$$

- $\beta \in \mathbb{N}, \beta \geq 2$: base
- $d_{i} \in \mathbb{N}, 0 \leq d_{i} \leq \beta$: mantissa digits
- $e \in \mathbb{Z}$: exponent
- Representation on computer:

$$
x= \pm \sum_{i=0}^{t-1} d_{i} \beta^{-i} \beta^{e}
$$

- $\beta=2$
- t : mantissa length, e.g. $t=53$ for IEEE double
- $L \leq e \leq U$, e.g. $-1022 \leq e \leq 1023$ (10 bits) for IEEE double
- $d_{0} \neq 0 \Rightarrow$ normalized numbers, unique representation

Floating point limits

- symmetry wrt. 0 because of sign bit
- smallest positive normalized number: $d_{0}=1, d_{i}=0, i=1 \ldots t-1$
$x_{\text {min }}=\beta^{L}$
- smallest positive denormalized number: $d_{i}=0, i=0 \ldots t-2, d_{t-1}=1$ $x_{\text {min }}=\beta^{1-t} \beta^{L}$
- largest positive normalized number: $d_{i}=\beta-1,0 \ldots t-1$ $x_{\text {max }}=\beta\left(1-\beta^{1-t}\right) \beta^{U}$

Machine precision

- Exact value x
- Approximation \tilde{x}
- Then: $\left|\frac{\tilde{x}-x}{x}\right|<\epsilon$ is the best accuracy estimate we can get, where
- $\epsilon=\beta^{1-t}$ (truncation)
- $\epsilon=\frac{1}{2} \beta^{1-t}$ (rounding)
- Also: ϵ is the smallest representable number such that $1+\epsilon>1$.
- Relative errors show up in partiular when
- subtracting two close numbers
- adding smaller numbers to larger ones

Matrix + Vector norms

- Vector norms: let $x=\left(x_{i}\right) \in \mathbb{R}^{n}$
- $\|x\|_{1}=\sum_{i}={ }^{n}\left|x_{i}\right|:$ sum norm, l_{1}-norm
- $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$: Euclidean norm, l_{2}-norm
- $\|x\|_{\infty}=\max _{i=1 \ldots n}\left|x_{i}\right|:$ maximum norm, l_{∞}-norm
- Matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$
- Representation of linear operator $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $\mathcal{A}: x \mapsto y=A x$ with

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Induced matrix norm:

$$
\begin{aligned}
\|A\|_{\nu} & =\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}} \\
& =\max _{x \in \mathbb{R}^{n},\|x\|_{\nu}=1} \frac{\|A x\|_{\nu}}{\|x\|_{\nu}}
\end{aligned}
$$

Matrix norms

- $\|A\|_{1}=\max _{j=1 \ldots n} \sum_{i=\bar{n}^{1}}^{n}\left|a_{i j}\right|$ maximum of column sums
- $\|A\|_{\infty}=\max _{i=1 \ldots n} \sum_{j=1}^{\bar{n}^{1}}\left|a_{i j}\right|$ maximum of row sums
- $\|A\|_{2}=\sqrt{\lambda_{\max }}$ with $\lambda_{\max }$: largest eigenvalue of $A^{T} A$.

Matrix condition number and error propagation

Problem: solve $A x=b$, where b is inexact.

$$
A(x+\Delta x)=b+\Delta b
$$

Since $A x=b$, we get $A \Delta x=\Delta b$. From this,

$$
\begin{gathered}
\left\{\begin{aligned}
\Delta x=A^{-1} \Delta b \\
A x=b
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
\|A\| \cdot\|x\| & \geq\|b\| \\
\|\Delta x\| & \leq\left\|A^{-1}\right\| \cdot\|\Delta b\|
\end{aligned}\right. \\
\Rightarrow \frac{\|\Delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\Delta b\|}{\|b\|}
\end{gathered}
$$

where $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$ is the condition number of A.

Approaches to linear system solution

Solve $A x=b$
Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- Only approximate
- Cheaper in space and (possibly) time
- Convergence not guaranteed

