
~
C++ roundup + NUMA recap

Scientific Computing Winter 2016/2017

Lecture 4

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

With material from from http://www.cplusplus.com/ and from “Introduction
to High-Performance Scientific Computing” by Victor Eijkhout
(http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

made wit pandoc

http://www.cplusplus.com/
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

Admin

I Starting Oct. 31, on Mondays we will try out UNIX pool room MA 269
I Computer work in groups of two. Need list of names
I Homework will be this afternoon on homepage

http://www.wias-berlin.de/people/fuhrmann/teach.html
I Consulting for first steps on UNIX on Monday

http://www.wias-berlin.de/people/fuhrmann/teach.html

~

Recap from last time

The Preprocessor
I Before being sent to the compiler, the source code is sent through the

preprocessor
I It is a legacy from C which is slowly being squeezed out of C++
I Preprocessor commands start with #
I Include contents of file file.h found on a default search path known to the

compiler:

#include <file.h>

I Include contents of file file.h found on user defined search path

#include "file.h"

I Define a piece of text (mostly used for constants in pre-C++ times),
Avoid! Use const instead.

#define N 15

I Define preprocessor macro for inlining code.
Avoid! Use inline functions instead

#define MAX(x,y) (((x)>(y))?(x):(y))

Why macros are evil ?

(Argumentation from stackoverflow)

I You can not debug macros.
I a debugger allows to execute the the program statement by statement in

order to find errors. Within macros, this is not possible
I Macro expansion can lead to strange side effects.

#define MAX(x,y) (((x)>(y))?(x):(y))
auto a=5, b=4;
auto c=MAX(++a,b); // gives c=7
auto d=std::max(++a,b); // gives d=6

I Macros have no “namespace”, so it is easy to “replace” functions without
notification. If one uses a function, the compiler would issue a warning.

I Macros may affect things you don’t realize. The semantics of macros is
completely arbitrary and not detectable by the compiler

http://stackoverflow.com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives

Emulating modules
I Until now C++ has no well defined module system.
I A module system usually is emulated using the preprocessor and

namespaces. Here we show the ideal way to do this
I File mymodule.h containing interface declaratiions

#ifndef MYMODULE_H
#define MYMODULE_H
namespace mymodule
{

void my_function(int i, double x);
}
#endif

I File mymodule.cpp containing function definitions
#include "mymodule.h"
namespace mymodule
{

void my_function(int i, double x)
{

...body of function definition...
}

}
#endif

I File using mymodule:
#include "mymodule.h"
...
mymodule::my_function(3,15.0);

Compiling. . .

src3.c

src2.c

src1.c

src3.o

src2.o

src1.o

program output

g++ -O3 -c -o src3.o src3.cxx

g++ -O3 -c -o src2.o src2.cxx

g++ -O3 -c -o src1.o src1.cxx

g++ -o program src1.o src2.o src3.o

link ./program

$ g++ -O3 -c -o src3.o src3.cxx
$ g++ -O3 -c -o src2.o src2.cxx
$ g++ -O3 -c -o src1.o src1.cxx
$ g++ -o program src1.o src2.o src3.o
$./program

Shortcut: invoke compiler and linker at once

$ g++ -O3 -o program src1.cxx src2.cxx src3.cxx
$./program

Arrays

I Focusing on numerical methods for PDEs results in work with finite
dimensional vectors which are represented as arrays - sequences of
consecutively stored objects

I Stemming from C, in C++ array objects represent just the fixed amount of
consecutive memory. No size info or whatsoever

I No bounds check
I First array index is always 0

double x[9]; // uninitialized array of 9 elements
double y[3]={1,2,3}; // initialized array of 3 elements
double z[]={1,2,3}; // Same
double z[]{1,2,3}; //Same

I Accessing arrays
I [] is the array access operator in C++
I Each element of an array has an index

double a=x[3]; // undefined value because x was not initialized
double b=y[12]; // undefined value because out of bounds
y[12]=19; // may crash program ("segmentation fault"),
double c=z[0]; // Acces to first element in array, now c=1;

Arrays, pointers and pointer arithmetic

I Arrays are strongly linked to pointers
I Array object can be treated as pointer

double x[]={1,2,3,4};
double b=*x; // now x=1;
double *y=x+2; // y is a pointer to third value in arrax
double c=*y; // now c=3
ptrdiff_t d=y-x; // We can also do differences between pointers

I Pointer arithmetic is valid only in memory regions belonging to the same
array

Memory: stack and heap

I Stack: pre-allocated memory where main() and all functions called from
there put their data.

I All data declared in {} blocks are placed on the stack
I Stack size is limited
I Handling stack memory is cheap

{
double a[10000];
for (int i=0;i<10000;i++) a[i]=0.0;
// stack memory implicitely freed at end of block

}

I Heap: Additional memory available from system on request
I Mix between array and pointer arithmetic allows to access stack and heap

allocated arrays in the same way.
I only the pointer is placed on the stack
I new/delete are expensive operations

{
double *a= new double[10000];
for (int i=0;i<10000;i++) a[i]=0.0;
delete[] a; // need to release memory explicitely

}

Classes and members
I Classes are data types which collect different kinds of data, and methods to

work on them.
class class_name
{

private:
private_member1;
private_member2;
...

public:
public_member1;
public_member2;
...

};

I If not declared otherwise, all members are private
I struct data types are defined in the same way as classes, but by default all

members are public
I Accessing members of a class object:
class_name x;
x.public_member1=...

I Accessing members of a pointer to class object:
class_name *x;
(*x).public_member1=...
x->public_member1=...

Templated vector class

I We want to be able to have vectors of any basic data type.
I We do not want to write new code for each type

template <typename T>
class vector
{

private:
T *data=nullptr; // Plain C-style pointer to data array
int _size=0; // Private size information

public:
int size() {return _size;} // Retrieval of size information
T & operator[](int i) { return data[i]); // Array access operator
vector(int size): _size(size) { data = new T[size];} // Constructor
~vector() { delete [] data;} // Destructor

};
...
{

vector<double> v(5);
vector<int> iv(3);

}

I A vector class like this is available from the C++ standard template library

C++ standard template libray (STL)

I The standard template library (STL) became part of the C++11 standard
I “Whenever you can, use the classes available from there”
I For one-dimensional data, std::vector is appropriate
I For two-dimensional data, things become more complicated

I There is no reasonable matrix class
I std::vector< std::vector> is possible but has to allocate each matrix row and is

inefficient.
I it is not possible to create an std::vector from already existing data

I STL vector constructors are not able to use already allocated memory, as it
becomes available e.g. from mesh generators like TetGen, or when
interfacing numpy array from python

I The way forward in projects: existing C++ linear algebra libraries
I Eigen
I Armadillo
I numcpp

I For teaching: develop own small library, explaining all internal mechanisms

~

Inheritance and smart pointers

Inheritance
I Classes in C++ can be extended, creating new classes which retain

characteristics of the base class.
I The derived class inherits the members of the base class, on top of which it

can add its own members.

class vector2d
{
private:

double *data;
vector2d<int> shape;
int size

public:
double & operator(int i, int j);
vector2d(int nrow, ncol);
~vector2d();template <t

}

class matrix: public vector2d
{

public:
apply(const vector1d& u, vector1d &v);
solve(vector1d&u, const vector1d&rhs);

}

I All operations which can be performed with instances of vector2d can be
performed with instances of matrix as well

I In addition, matrix has methods for linear system solution and
matrix-vector multiplication

Smart pointers

. . . with a little help from Timo Streckenbach from WIAS who introduced smart
pointers into our simulation code.

I Automatic book-keeping of pointers to objects in memory.
I Instead of the meory addres of an object aka. pointer, a structure is passed

around by value which holds the memory address and a pointer to a
reference count object. It delegates the member access operator -> and the
address resolution operator * to the pointer it contains.

I Each assignment of a smart pointer increases this reference count.
I Each destructor invocation from a copy of the smart pointer structure

decreses the reference count.
I If the reference count reaches zero, the memory is freed.
I std::shared_ptr is part of the C++11 standard

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=1

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=2

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=3

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

Smart pointers vs. *-pointers
I When writing code using smart pointers, write

#include <memory>
class R;
std::shared_ptr<R> ReturnObjectOfClassR(void);
void PassObjectOfClassR(std::shared_ptr<R> o);
...
std::shared_ptr<R> o;
o->member=5;
...
{

auto o=std::make_shared<R>();
PassObjectOfClassR(o)
// Smart pointer object is deleted at end of scope and frees memory

}

instead of

class R;
R* ReturnObjectOfClassR(void);
void PassObjectOfClassR(R* o);
...
R*o;
o->member=5;
...
{

R* o=new R;
PassObjectOfClassR(o);
delete o;

}

Smart pointer advantages vs. *-pointers

I “Forget” about memory deallocation
I Automatic book-keeping in situations when members of several different

objects point to the same allocated memory
I Proper reference counting when working together with other libraries,

e.g. numpy

C++ topics not covered so far

I To be covered on occurence
I character strings
I overloading
I optional arguments, variable parameter lists
I Functor classes, lambdas
I threads
I malloc/free/realloc (C-style memory management)
I cmath library
I Interfacing C/Fortran
I Interfacing Python/numpy

I To be omitted (probably)
I Exceptions
I Move semantics
I Expression templates

I Expression templates allow to write code like c=A*b for a matrix A and vectors b,c.
I Realised e.g. in Eigen, Armadillo
I Too complicated for teaching (IMHO)

I GUI libraries
I Graphics (we aim at python here)

~

Recap from numerical analysis

Floating point representation

I Scientific notation of floating point numbers: e.g. x = 6.022 · 1023
I Representation formula:

x = ±
∞∑
i=0

diβ
−iβe

I β ∈ N, β ≥ 2: base
I di ∈ N, 0 ≤ di ≤ β: mantissa digits
I e ∈ Z : exponent

I Representation on computer:

x = ±
t−1∑
i=0

diβ
−iβe

I β = 2
I t: mantissa length, e.g. t = 53 for IEEE double
I L ≤ e ≤ U, e.g. −1022 ≤ e ≤ 1023 (10 bits) for IEEE double
I d0 6= 0 ⇒ normalized numbers, unique representation

Floating point limits

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

Machine precision

I Exact value x
I Approximation x̃
I Then: | x̃−x

x | < ε is the best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1 + ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

Matrix + Vector norms

I Vector norms: let x = (xi) ∈ Rn

I ||x ||1 =
∑

i =
n |xi |: sum norm, l1-norm

I ||x ||2 =
√∑n

i=1 x2
i : Euclidean norm, l2-norm

I ||x ||∞ = maxi=1...n |xi |: maximum norm, l∞-norm
I Matrix A = (aij) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =

n∑
j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν=1

||Ax ||ν
||x ||ν

Matrix norms

I ||A||1 = maxj=1...n
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxi=1...n

∑n
j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of AT A.

Matrix condition number and error propagation

Problem: solve Ax = b, where b is inexact.

A(x + ∆x) = b + ∆b.

Since Ax = b, we get A∆x = ∆b. From this,{
∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A)

||∆b||
||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

Approaches to linear system solution

Solve Ax = b

Direct methods:

I Deterministic
I Exact up to machine precision
I Expensive (in time and space)

Iterative methods:

I Only approximate
I Cheaper in space and (possibly) time
I Convergence not guaranteed

