
~

Next steps in C++
Scientific Computing Winter 2016/2017

Lecture 3

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

With material from from http://www.cplusplus.com/

made wit pandoc

http://www.cplusplus.com/

~

Recap from last time

Von Neumann architecture

I Data and instructions in same memory
I decode-fetch-compute-store cycle
I Hierarchical memory system

I Random access memory bandwith is slow
I Latency (start-up time) of memory transfer is large
I Fast but expensive cache memory used for intermediate storage of often used

data
I Data transfer between cache and RAM in larger chunks – cache lines

C++ : scalar data types
|--------------------+---------+-------+------+----------------------+----------------------|
| name | fmt | bytes | bits | min | max |
|--------------------+---------+-------+------+----------------------+----------------------|
char	%c (%d)	1	8	-128	127
unsigned char	%c (%d)	1	8	0	255
short int	%d	2	16	-32768	32767
unsigned short int	%u	2	16	0	65535
int	%d	4	32	-2147483648	2147483647
unsigned int	%u	4	32	0	4294967295
long int	%ld	8	64	-9223372036854775808	9223372036854775807
unsigned long int	%lu	8	64	0	18446744073709551615
float	%e	4	32	1.175494e-38	3.402823e38
double	%e	8	64	2.225074e-308	1.797693e308
long double	%Le	16	128	3.362103e-4932	1.189731e4932
bool	%d	1	8	0	1
--------------------+---------+-------+------+----------------------+----------------------					

I Type sizes are the “usual ones” on 64bit systems. The standard only
guarantees that
sizeof(short ...) <= sizeof(...) <=sizeof(long ...)

I E.g. on embedded systems these may be different
I Declaration and output (example)

#include <cstdio>
...
int i=3;
double x=15.0;
std::printf("i=%d, x=%e\n",i,x);

Scopes, Declaration, Initialization

I All variables are typed and must be declared
I Declared variables “live” in scopes defined by braces { }
I Good practice: initialize variables along with declaration
I “auto” is a great innovation in C++11 which is useful with complicated

types which arise in template programming
I type of lvalue (left hand side value) is detected from type of rvalue (value at the

right hand side)

{
auto i=15; // int
auto i=15u; // unsigned int
auto i=15l; // long int

auto z=1.00e5; // double
auto x=1.0e5f; // float

}

Functions
I Functions have to be declared as any other variable
I ‘(...) holds parameter list

I each parameter has to be defined with its type
I type part of declaration describes type of return value

I void for returning nothing

double multiply(double x, double y);

I Functions are defined by attaching a scope to the declaration
I Values of parameters are copied into the scope

double multiply(double x, double y)
{

return x*y;
}

I Functions are called by statements invoking the function with a particular
set of parameters

{
double s=3.0, t=9.0;
double result=multiply(s,t);
printf("s=%e, t=%e, s*t= %e\n",s,t,result); // s and t keep their values

}

Addresses and pointers
I Objects are stored in memory, and in order to find them they have an

address
I We can determine the address of an object by the & operator

I The result of this operation can be assigned to a variable called pointer
I “pointer to type x” is another type denoted by *x

I Given an address (pointer) object we can refer to the content using the *
operator

int i=15; // i is an object
int *j= &i; // j is a pointer
int k=*j; // now, k=15

I The nullptr object can be assigned to a pointer in order to indicate that it
points to “nothing”

int *p=nullptr;

I Instead of values, addresses can be passed to functions
void do_multiplication(double x, double y, double *result)
{

*result=x*y;
}
...
double x=5,y=9;
double result=0;
do_multiplication(x,y,&result) // result now contains 45

Language elements so far

I Scalar data types
I Addresses, pointers
I Functions
I Flow control
I Printing

~

Preprocessor, modules, compiler, arrays

The Preprocessor
I Before being sent to the compiler, the source code is sent through the

preprocessor
I It is a legacy from C which is slowly being squeezed out of C++
I Preprocessor commands start with #
I Include contents of file file.h found on a default search path known to the

compiler:

#include <file.h>

I Include contents of file file.h found on user defined search path

#include "file.h"

I Define a piece of text (mostly used for constants in pre-C++ times),
Avoid! Use const instead.

#define N 15

I Define preprocessor macro for inlining code.
Avoid! Use inline functions instead

#define MAX(X,Y) (((x)>(y))?(x):(y))

Conditional compilation and pragmas

I Conditional compilation of pieces of source code, mostly used to dispatch
between system dependent variant of code. Rarely necessary nowadays. . .

#ifdef MACOSX
statements to be compiled only for MACOSX

#else
statements for all other systems

#endif

I There are more complex logic involving constant expressions
I A pragma gives directions to the compiler concerning code generarion

#pragma omp parallel

Headers and namespaces
I If we want to use functions from the standard library we need to include a

header file which contains their declarations
I The #include statement comes from the C-Preprocessor and leads to the

inclusion of the file referenced therein into the actual source
I Include files with names in < > brackets are searched for in system dependent

directories known to the compiler

#include <iostream>

I Namespaces allow to prevent clashes between names of functions from
different projects

I All functions from the standard library belong to the namespace std

namespace foo
{

void cool_function(void);
}

namespace bar
{

void cool_function(void);
}

...

{
using namespace bar;
foo::cool function()
cool_function() // equivalent to bar::cool_function()

}

Emulating modules
I Until now C++ has no well defined module system.
I A module system usually is emulated using the preprocessor and

namespaces. Here we show the ideal way to do this
I File mymodule.h containing interface declaratiions

#ifndef MYMODULE_H
#define MYMODULE_H
namespace mymodule
{

void my_function(int i, double x);
}
#endif

I File mymodule.cpp containing function definitions
#include "mymodule.h"
namespace mymodule
{

void my_function(int i, double x)
{

...body of function definition...
}

}
#endif

I File using mymodule:
#include "mymodule.h
...
mymodule::my_function(3,15.0);

main

Now we are able to write a complete program in C++

I main() is the function called by the system when running the program.
Everything else needs to be called from there.

I Assume the follwing content of the file run42.cxx:

#include <cstdio>

int main(int argc, char** argv)
{

int i=4,j=2;
int answer=10*4+2;
printf("Hello world, the answer is %d!\n",answer);
return 0;

}

Then the sequence of command line commands

$ g++ -o run42 run42.cxx
$./run42

gives the right answer to (almost) anything.

Command line instructions to control compiler

I By default, the compiler command performs the linking process as well
I Compiler command (Linux)

g++	GNU C++ compiler
g++-5	GNU C++ 5.x
clang++	CLANG compiler from LLVM project
icpc	Intel compiler

I Options (common to all of those named above, but not standardized)

-o name	Name of output file
-g	Generate debugging instructions
-O0, -O1, -O2, -O3	Optimization levels
-c	Avoid linking
-I<path>	Add <path> to include search path
-D<symbol>	Define preprocessor symbol
-std=c++11	Use C++11 standard

Compiling. . .

src3.c

src2.c

src1.c

src3.o

src2.o

src1.o

program output

g++ -O3 -c -o src3.o src3.cxx

g++ -O3 -c -o src2.o src2.cxx

g++ -O3 -c -o src1.o src1.cxx

g++ -o program src1.o src2.o src3.o

link ./program

$ g++ -O3 -c -o src3.o src3.cxx
$ g++ -O3 -c -o src2.o src2.cxx
$ g++ -O3 -c -o src1.o src1.cxx
$ g++ -o program src1.o src2.o src3.o
$./program

Shortcut: invoke compiler and linker at once

$ g++ -O3 -o program src1.cxx src2.cxx src3.cxx
$./program

Arrays

I Focusing on numerical methods for PDEs results in work with finite
dimensional vectors which are represented as arrays - sequences of
consecutively stored objects

I Stemming from C, in C++ array objects represent just the fixed amount of
consecutive memory. No size info or whatsoever

I No bounds check
I First array index is always 0

double x[9]; // uninitialized array of 9 elements
double y[3]={1,2,3}; // initialized array of 3 elements
double z[]={1,2,3}; // Same
double z[]{1,2,3}; //Same

I Accessing arrays
I [] is the array access operator in C++
I Each element of an array has an index

double a=x[3]; // undefined value because x was not initialized
double b=y[12]; // undefined value because out of bounds
y[12]=19; // may crash program ("segmentation fault"),
double c=z[0]; // Acces to first element in array, now c=1;

Arrays, pointers and pointer arithmetic

I Arrays are strongly linked to pointers
I Array object can be treated as pointer

double x[]={1,2,3,4};
double b=*x; // now x=1;
double *y=x+2; // y is a pointer to third value in arrax
double c=*y; // now c=3
ptrdiff_t d=y-x; // We can also do differences between pointers

I Pointer arithmetic is valid only in memory regions belonging to the same
array

Arrays and functions
I Arrays are passed by passing the pointer referring to its first element
I As they contain no length information, we need to pass that as well

void func_on_array1(double[] x, int len);
void func_on_array2(double* x, int len); // same
void func_on_array3(const double[] x, int len); // same, but does not allow to change x
...
double x[]={3,4,5};
int len=sizeof(x)/sizeof(x[0]);
func_on_array1(x,len);

I Be careful with array return
double * some_func(void)
{

double a[]={-1,-2,-3};
return a; // illegal as with the end of scope, the life time of a is over

// smart compilers at least warn
}

I This one is also illegal, though often compilers accept it
void another_func(int n)
{

int b[n];
}

I Even in main() this will be illegal. How can we work on problems where size
information is obtained only during runtime, e.g. user input ?

Memory: stack
I pre-allocated memory where main() and all functions called from there can

put their data.
I Any time a function is called, the current position in the instruction stream is

stored in the stack as the return address, and the called function is allowed to
work with the memory space after that

By R. S. Shaw, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1956587

I Stack space should be considered scarce - Stack size for a program is set by
the system - On UNIX, use ulimit -s to check/set stack size

I All previous examples had their data on the stack, even large arrays;

Memory: heap

I Chunks from all remaining free system memory can be reserved –
“allocated” – on demand in order to provide memory space for objects

I new reserves the memory and returns an address which can be assigned to a
pointer variable

I delete (delete[]) for arrays releases this memory
I Compared to declarations on the stack, these operations are expensive
I Use cases:

I Problem sizes unknown at compile time
I Large amounts of data
I . . . so, yes, we will need this. . .

double *x= new double(5); // allocate space for a double and initialize this with 5
double *y=new double[5]; // allocate space of five doubles, uninitialized
x[3]=1; // Segmentation fault
y[3]=1; // Perfect...
delete x; // Choose the right delete!
delete[] y; // Choose the right delete!

Multidimensional Arrays

I It is easy to declare multidimensional array on the stack when the size the
array is known at compile time

double x[5][6];

for (int i=0;i<5;i++)
for (int j=0;j<6;j++)

x[i][j]=0;

I Determining array dimensions from function parameters may work with
some compilers, but are not backed by the standard!

Intermediate Summary

I This was mostly all (besides structs) of the C subset of C++
I Most “old” C libraries and code written in previous versions of C++ are

mostly compatible to modern C++
I you will find many “classical” programs around which use the “(int size,

double*data)" way of doing things, especially in numerics
I UMFPACK, Pardiso direct solvers
I PetsC library for distributed linear algebra
I triangle, tetgen mesh generators
I . . .

I On this level it is possible to call Fortran programs from C++, and you
might want to do this too:

I BLAS, LAPACK dense matrix linear algebra
I ARPACK eigenvalue computations
I . . .

I The C++ in C++ will follow anyway

~

Getting "real" with C++

Classes and members
I Classes are data types which collect different kinds of data, and methods to

work on them.
class class_name
{

private:
private_member1;
private_member2;
...

public:
public_member1;
public_member2;
...

};

I If not declared otherwise, all members are private
I struct data types are defined in the same way as classes, but by default all

members are public
I Accessing members of a class object:
class_name x;
x.public_member1=...

I Accessing members of a pointer to class object:
class_name *x;
(*x).public_member1=...
x->public_member1=...

Example class

I Define a class vector which holds data and length information

class vector
{

private:
double *data;

public:
int size;

double get_value(int i) {return data[i];};
void set_value(int i, double value); {data[i]=value;};

};

...

{
vector v;
v.data=new double(5); // would work if data would be public
v.size=5;
v.set_value(3,5);

b=v.get_value(3); // now, b=5
v.size=6; // we changed the size, but not the length of the data array...

// and who is responsible for delete[] at the end of scope ?
}

I Methods of a class know all its members
I It would be good to have a method which constructs the vector and another

one which destroys it.

Constructors and Destructors
class vector
{

private:
double *data=nullptr;
int size=0;

public:
int get_size(return size);
double get_value(int i) {return data[i];};
void set_value(int i, double value); {data[i]=value;};

Vector(int new_size) { data = new double[size];}
~Vector() { delete [] data;}

};

...

{
vector v(5);
for (int i=0;i<5;i++) v.set_value(i,0.0);

v.set_value(3,5);
b=v.get_value(3); // now, b=5
v.size=6; // Size is now private and can not be set;
// Destructor is automatically called at end of scope.
vector w(5);

for (int i=0;i<5;i++) w.set_value(i,v.get_value(i));
}

I Constructors are declared as classname(...)
I Destructors are declared as ~classname()

Interlude: References

I C style access to objects is direct or via pointers
I C++ adds another option - references

I References essentially are alias names for already existing variables
I Must always be initialized
I Can be used in function parameters and in return values
I No pointer arithmetics with them

I Declaration of refrence

double a=10.0;
double &b=a;

b=15; // a=15 now as well

I Reference as function parameter: no copying of data!

void do_multiplication(double x, double y, double &result)
{

result=x*y;
}
...
double x=5,y=9;
double result=0;
do_multiplication(x,y,result) // result now contains 45

Vector class again

I We can define () and [] operators!

class vector
{

private:
double *data=nullptr;
int size=0;

public:
int get_size(return size);
double & operator()(int i) { return data[i]);
double & operator[](int i) { return data[i]);
vector(int new_size) { data = new double[size];}
~vector() { delete [] data;}

};

...

{
vector v(5);
for (int i=0;i<5;i++) v[i]=0.0;

v[3]=5;
b=v[3]; // now, b=5
vector w(5);

for (int i=0;i<5;i++) w(i)=v(i);

// Destructors are automatically called at end of scope.
}

Matrix class

I We can define (i,j) but not [i,j]

class matrix
{

private:
double *data=nullptr;
int size=0;
int nrows=0;
int ncols=0;

public:
int get_size(return size);
int get_nrows(return nrows);
int get_ncols(return ncols);
double & operator()(int i,int j) { return data[i*nrow+j]);
matrix(int new_rows,new_cols) { nrows=new_rows;ncols=new_cols; size=nrows*ncols; data = new double[size];}
~matrix() { delete [] data;}

};

...
{

matrix m(3,3);
for (int i=0;i<3;i++)
for (int j=0;j<3;j++)

m(i,j)=0.0;
}

Generic programming: templates

I We want do be able to have vectors of any basic data type.
I We do not want to write new code for each type

template <typename T>
class vector
{

private:
T *data=nullptr;
int size=0;

public:
int get_size(return size);
T & operator[](int i) { return data[i]);
vector(int new_size) { data = new T[size];}
~vector() { delete [] data;}

};
...
{

vector<double> v(5);
vector<int> iv(3);

}

C++ template libray

I the standard template library (STL) became part of the C++11 standard
I whenever you can, use the classes available from there
I for one-dimensional data, std::vector is appropriate
I for two-dimensional data, things become more complicated

I There is no reasonable matrix class
I std::vector< std::vector> is possible but has to allocate each matrix row and is

inefficient
I it is not possible to create an std::vector from already existing data

