
Advanced Topics from Scientific Computing
TU Berlin Winter 2024/25
Notebook 13

 Jürgen Fuhrmann

begin
 using PlutoUI
 using HypertextLiteral
 using ExtendableGrids, VoronoiFVM, GridVisualize, PlutoVista
 GridVisualize.default_plotter!(PlutoVista)
end;

: @htl, @htl_str

1
2
3
4
5
6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The Voronoi finite volume method for
the discetization of PDEs

The Voronoi finite volume method for the dis cetization of PDEs
Motivation
Constructing control volumes

1D case
2D Rectangular domain
2D, polygonal domain

Discretization of second order PDE
Discretization of continuity equation
Approximation of flux between control volumes
Approximation of boundary fluxes
Approximation of right hand side

Discretized system of equations
Matrix properties
Penalty method for Dirichlet boundary conditions

VoronoiFVM.jl
Linear diffusion problem with Dirichlet boundary conditions

1D Discretization grid
System creation and solution
2D Linear diffusion
3D Linear diffusion

Nonlinear diffusion
1D Nonlinear diffusion
2D Nonlinear diffusion
3D Nonlinear diffusion

Behind the scenes
Assembling Jacobi matrices

Motivation

Regard a stationary second order PDE with Robin boundary conditions as a system of two first
order equations in a Lipschitz domain :

The derivation of the continuity equation was based on the consideration of species
balances of an representative elementary volume (REV)
Why not just subdivide the computational domain into a finite number of REV's ?

Assign a value of to each REV
Call REVs control volumes or finite volumes

Constructing control volumes

Assume is a polygonal domain such that , where are straight lines.
We denote the normal vector .

Subdivide into into a finite number of control volumes such that

the closure of is the union of the closures of the control volumes:
the control volumes are open convex domains
two different control volumes don't intersect: if
The intersections of the closures are either empty, points or straight lines

If is a straight line (d=2) or a point (d=1) we say that , are neighbours. We set
 to the length of that line or 1, respectively. Otherwise it is 0.

Let denote the normal of at
Let denote the set of neighbours of

Assume that the boundary parts of are straight lines (2D), points
(1D) or empty.

: set of non-empty boundary parts of . Obviously,
 for control volumes in the interior of .

We always have

To each control volume assign a collocation point: such that

Admissibility condition:if then the line is orthogonal to
For a function this will allow to associate its value as the
value of an unknown at .
For two neigboring control volumes , this will allow to approximate

 where .
Placement of boundary unknowns at the boundary: if is situated at the boundary, i.e. for

, then
This will allow to apply boundary conditions in a direct manner
There are other possibilities to handle boundary conditions which do not require this
placement condition

1D case

Let be subdivided into intervals by . Then
we set

2D Rectangular domain

Let .
Assume subdivisions and

 1D control volumes and
Set and .

Green: Control volume boundaries
Gray: original grid lines and points

2D, polygonal domain

Obtain a boundary conforming Delaunay triangulation with vertices
Construct restricted Voronoi cells with
Corners of Voronoi cells are either cell circumcenters or midpoints of boundary edges
Admissibility condition fulfilled in a natural way
Triangulation edges connected neigborhood graph of Voronoi cells
Triangulation nodes collocation points
Boundary placement of collocation points of boundary control volumes

Discretization of second order PDE

Discretization of continuity equation

Stationary continuity equation:
Integrate over control volume :

We have seen this during the derivation of conservation laws.

Approximation of flux between control volumes

Utilize flux law: and admissibility condition which results in

Let ,
: distance between neigboring collocation points

Finite difference approximation of normal derivative:

 flux between neigboring control volumes:

where is called flux function

Approximation of boundary fluxes

Utilize boundary condition
Assume ,
Approximation of at the boundary of :

Approximation of flux from through :

Approximation of right hand side

Let or
Approximate

Discretized system of equations

The discrete system of equations then writes for :

This can be rewritten as matrix equation such that

with coefficients

Matrix properties

 equations (one for each control volume)
 unknowns (one for each collocation point)

Matrix is sparse: nonzero entries only for neighboring control volumes
Matrix graph is connected: nonzero entries correspond to edges in Delaunay triangulation

 irreducible
 is irreducibly diagonally dominant if at least for one ,

Main diagonal entries are positive, off diagonal entries are non-positive
 has the M-property.

 is symmetric is positive definite

Due to the connection between Voronoi diagram and Delaunay triangulation, one can
assemble the discrete system based on the triangulation
Assembly in two loops:

Loop over all triangles, calculate triangle contribution to matrix entries
Loop over all boundary segments, calculate contribution to matrix entries

One solution value per control volume allocated to the collocation point
piecewise constant function on collection of control volumes
But: are at the same time nodes of the corresponding Delaunay mesh representation
as piecewise linear function on triangles

Penalty method for Dirichlet boundary conditions
A Dirichlet boundary condition can be approximated using the so-called penalty
method. For a small value , regard the a Robin condition

with and . If is small, the solution of the Robin problem will closely
approximate the solution of the Dirichlet problem. In fact, an implementation can be chosen in
such a way, that in the floating point aritmetic, the approximation is exact.

This approach significantly eases the implementation.

VoronoiFVM.jl

The VoronoiFVM.jl Julia package implements the Voronoi finite volume method for systems of
nonlinear PDEs.

We show how to define scalar linear and nonlinear diffusion problems in the VoronoiFVM
package and disscuss its inner workings starting with two examples.

For more information, see its documentation.

Linear diffusion problem with Dirichlet
boundary conditions

Regard

The following data characterize the problem:

Flux
Dirichlet data
Source/sink term
Domain

The package works with multiple interacting species. Therefore we need to define a species
index for this particular problem:

const spec_idx 1 =

Diffusion coefficient :

const D 10.0 =

Diffusion flux .

The following function defines the flux through an interface between two neigboring control
volumes which for the Voronoi finite volume method is equivalent to the flux along a
triangulation edge. It receives the current unknown data in the two-dimensional array u . The
first index is the species number, the second index denotes the local index at the given edge. For
our problem, we then have u[1,1] and u[1,2] .

The result is written into f for species index 1, so this is a mutating function, which guarantees
to cause no allocations.

Additional geometrical data optionally can be obtained from the edge parameter.

diffusion_flux! (generic function with 1 method)

const spec_idx = 11

const D = 10.01

function diffusion_flux!(f, u, edge, data)
 f[spec_idx] = D * (u[spec_idx, 1] - u[spec_idx, 2])
 return nothing
end

1
2
3
4

https://j-fu.github.io/VoronoiFVM.jl
https://j-fu.github.io/VoronoiFVM.jl/stable/

Right hand side function (just for an example). Once again, the species index is 1.

diffusion_source! (generic function with 1 method)

Boundary value β:

const β 0.1 =

Here, we use the boundary_dirichlet! function which helps to manage the Dirichlet penalty
method for working with Dirichlet boundary conditions.

dirichlet_bc! (generic function with 1 method)

1D Discretization grid

Grid in domain consisting of N= 51 points.

X

[0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3
 =

grid1d ExtendableGrids.ExtendableGrid{Float64, Int32}
 dim = 1
 nnodes = 51
 ncells = 50
 nbfaces = 2

 =

0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1
c1

b1

b2

System creation and solution
Here, we bring together the "physics" part of the problem described in the flux function etc. and
the geometry part described by the discretization grid.

function diffusion_source!(f, node, data)
 f[spec_idx] = 1
 return nothing
end

1
2
3
4

const β = 0.11

function dirichlet_bc!(f, u, bnode, data)
 boundary_dirichlet!(f, u, bnode; value = β)
 return nothing
end

1
2
3
4

X = collect(range(0, 1; length = N))1

grid1d = simplexgrid(X)1

gridplot(grid1d; size = (600, 200), legend = :lt)1

https://plotly.com/
https://plotly.com/

system1d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=51, ncells=50,
 nbfaces=2),
 physics = Physics(flux=diffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

Using default settings, the system is solved. Optionally, we can obtain information on the
solution history.

(seconds = 4.99, tasm = 4.0, tlinsolve = 0.263, iters = 2, absnorm = 9.6e-16, relnorm = 8.53e-

1×51 VoronoiFVM.DenseSolutionArray{Float64, 2}:
 0.1 0.10098 0.10192 0.10282 0.10368 … 0.10368 0.10282 0.10192 0.10098 0.1

We can plot the solution using the scalarplot method from the GridVisualize.jl package.

0 0.2 0.4 0.6 0.8 1

0.1

0.105

0.11

x

y

2D Linear diffusion
For solving a 2D problem, we just need to replace the 1D grid with a 2D grid.

Grid in domain consisting of N2= 11 points in each coordinate direction

X2 [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] =

grid2d ExtendableGrids.ExtendableGrid{Float64, Int32}
 dim = 2
 nnodes = 121
 ncells = 200
 nbfaces = 40

 =

system1d = VoronoiFVM.System(
 grid1d;
 flux = diffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

begin
 solution = solve(system1d; inival = 0.0, log = true)
 history_summary(solution)
end

1
2
3
4

solution1

scalarplot(grid1d, solution[spec_idx, :]; size = (500, 200))1

X2 = collect(range(0, 1; length = N2))1

grid2d = simplexgrid(X2, X2)1

https://plotly.com/
https://plotly.com/

We can define and solve the 2D problem with the same physics functions as the 1D problem:

system2d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=2, nnodes=121, ncells=200,
 nbfaces=40),
 physics = Physics(flux=diffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

(seconds = 0.00352, tasm = 0.0028, tlinsolve = 0.000652, iters = 2, absnorm = 7.05e-17, relnor

3D Linear diffusion

grid3d ExtendableGrids.ExtendableGrid{Float64, Int32}
 dim = 3
 nnodes = 1331
 ncells = 6000
 nbfaces = 1200

 =

gridplot(grid2d; size = (300, 300))1

system2d = VoronoiFVM.System(
 grid2d;
 flux = diffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

begin
 solution2d = solve(system2d; log = true)
 history_summary(solution2d)
end

1
2
3
4

scalarplot(grid2d, solution2d[1, :]; size = (300, 300))1

grid3d = simplexgrid(X2, X2, X2)1

system3d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=3, nnodes=1331, ncells=6000
 nbfaces=1200),
 physics = Physics(flux=diffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

sol3
1×1331 VoronoiFVM.DenseSolutionArray{Float64, 2}:
 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

Nonlinear diffusion
Here, we define a nonlinear diffusion problem with diffusion coefficient depending on the
solution:

gridplot(grid3d; xplanes = [0.4], size = (400, 400))1

system3d = VoronoiFVM.System(
 grid3d;
 flux = diffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

sol3 = solve(system3d; inival = 0)1

scalarplot(grid3d, sol3[1, :]; size = (400, 400))1

Let with . In order to obtain the diffusion coefficient along the
discretization edge, we evaluate it a the average of the solutions at both ends of the
discretization edge. Just note that there are more sophisticated ways to define this.

nlD (generic function with 1 method)

nldiffusion_flux! (generic function with 1 method)

1D Nonlinear diffusion

nlsystem1d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=1, nnodes=51, ncells=50,
 nbfaces=2),
 physics = Physics(flux=nldiffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

(seconds = 0.528, tasm = 0.528, tlinsolve = 0.000319, iters = 13, absnorm = 8.32e-13, relnorm

Here, Newton's method is used in order to solve the nonlinear system of equations. The Jacobi
matrix is assembled from the partial derivatives of the flux function .

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

solution

x

y

We can plot the solver history

2 4 6 8 10 12

1e−12

1e−9

1e−6

1e−3

1

x

y

nlD(u) = u^21

function nldiffusion_flux!(f, u, edge, data)
 avgu = (u[spec_idx, 1] + u[spec_idx, 2]) / 2
 f[spec_idx] = nlD(avgu) * (u[spec_idx, 1] - u[spec_idx, 2])
 return nothing
end

1
2
3
4
5

nlsystem1d = VoronoiFVM.System(
 grid1d;
 flux = nldiffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

begin
 nlsolution1d = solve(nlsystem1d; inival = 0.1, log = true)
 nlhistory1d = history(nlsolution1d)
 summary(nlhistory1d)
end

1
2
3
4
5

scalarplot(grid1d, nlsolution1d[1, :]; size = (500, 200), title = "solution")1

scalarplot(nlhistory1d; yscale = :log, size = (500, 200))1

https://plotly.com/
https://plotly.com/
https://plotly.com/
https://plotly.com/

2D Nonlinear diffusion

nlsystem2d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=2, nnodes=121, ncells=200,
 nbfaces=40),
 physics = Physics(flux=nldiffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

(seconds = 0.0171, tasm = 0.0154, tlinsolve = 0.00168, iters = 12, absnorm = 3.71e-12, relnorm

2 4 6 8 10 12
1e−12

1e−9

1e−6

1e−3

1

x

y

3D Nonlinear diffusion

nlsystem3d
VoronoiFVM.System{Float64, Float64, Int32, Int64, Matrix{Int32}}(
 grid = ExtendableGrids.ExtendableGrid{Float64, Int32}(dim=3, nnodes=1331, ncells=6000
 nbfaces=1200),
 physics = Physics(flux=nldiffusion_flux!, storage=default_storage,
 source=diffusion_source!, breaction=dirichlet_bc!,),
 num_species = 1)

 =

nlsystem2d = VoronoiFVM.System(
 grid2d;
 flux = nldiffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

begin
 nlsolution2d = solve(nlsystem2d; inival = 0.1, log = true)
 nlhistory2d = history(nlsolution2d)
 summary(nlhistory2d)
end

1
2
3
4
5

scalarplot(grid2d, nlsolution2d[1, :]; size = (300, 300), title = "solution")1

scalarplot(nlhistory2d; yscale = :log, size = (500, 200))1

nlsystem3d = VoronoiFVM.System(
 grid3d;
 flux = nldiffusion_flux!,
 source = diffusion_source!,
 bcondition = dirichlet_bc!,
 species = [spec_idx]
)

1
2
3
4
5
6
7

https://plotly.com/
https://plotly.com/

nlsol3d
1×1331 VoronoiFVM.DenseSolutionArray{Float64, 2}:
 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 … 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 =

Behind the scenes

Assembling Jacobi matrices
We show how to assemble the Jacobi matrix for a nonlinear system of equations coming from
the finite volume method.

Linear system of equations in 1D case:

Nonlinear system of equations A(u)=f in 1D case: as in the linear case, the equations only couple
neigboring unknowns.

We have

nlsol3d = solve(nlsystem3d; inival = 0.1)1

scalarplot(grid3d, nlsol3d[1, :]; size = (400, 400))1

with , in the case of nonlinear diffusion, so each contribution can be
assembled by a calculation on the the corresponding discretization edge. This works in 1D and
can be generalized to the 2D and 3D cases.

For a given equation , the only dependencies come from unknowns in the neigbourhood of a
given discretization point.

An iteration step (-th step) of Newton's method:

Calculate residual:
Solve linear system for update:
Update solution:

requires the calculation of the Jacobi matrix. Given the structure described above, we see, that
the Jacobi matrix is sparse and can be assembled from contributions from the discretization
edges:

Assembly of and the Jacobi matrix can be realized by a loop over all simplices of a
triangulation.

Derivatives are be calculated locally from the constitutive functions on each edge resp. node
using forward moda automatic differentiaton performed by Julia's ForwardDiff.jl package.

