
Advanced Topics from Scienti�c Computing

TU Berlin Winter 2024/25

Notebook 03

 Jürgen Fuhrmann

These are the slides of a talk given at the 1st MaRDI workshop on Scienti�c Computing,

October 2022

�st MaRDI Workshop on Scienti�c

Computing

Reproducibility infrastructure

of the Julia language

Jürgen Fuhrmann

WIAS Berlin

The Two Language Problem

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

1 of 10 10/22/24, 22:04

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://wwuindico.uni-muenster.de/event/1180/contributions/1542/
https://wwuindico.uni-muenster.de/event/1180/contributions/1542/
https://workshop.mardi.ovh/
https://workshop.mardi.ovh/

... is at least a three language problem: you need to

consider the build system, and at present we are

talking about CMake...

• Each project needs its own guru to maintain

the build system and to help to compile the

code on new machines or to maintain docker

containers

• Python APIs are easy to explain to general

users, e��cient algorithms are implemented in

C/C++. Python project codebases are

intransparent for many of their users

• Containers are the new binaries

We are in an exponential boundary layer hitting a

wall regarding the complexity of build systems

dreamstudio.ai CC01.0

Julia

• Syntax comparable to matlab, python/

numpy

• Just-ahead-of time compilation to

native code high potential for

performance without need to vectorize

or to call a computational kernel in

another language

• Performant multi-dimensional arrays

• Comprehensive linear algebra

• Parallelization: SIMD, multithreading,

distributed

• Interoperability with C, C++, python, R

• Use of modern knowledge in language

design

• Open source (MIT License)

https://julialang.org

The Julia Programming Language

Download Documentation

Packages

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

2 of 10 10/22/24, 22:04

https://julialang.org/
https://julialang.org/

Packages extend Julia's core functionality. Each

package is a git repository with standardized

structure.

• Package Registries provide the infrastructure

for �nding package repositories via package

names

• Default General Registry: ≈ 11500 open source

packages (October 2024)

• Pkg.jl - the built-in Package Manager is part

of the Julia standard library

• Composability of packages due to generic

Julia source code (like C++ header only libs)

xkcd.com

Anatomy of a Julia package

Julia packages have a standardized structure

• Locally, each package is stored in a directory named e.g.

MyPack for package MyPack.jl .

• Structure of a package directory:

◦ MyPack/src : subdirectory for package source code

▪ MyPack/src/MyPack.jl : code de�ning a module

MyPack

▪ Further Julia sources included by MyPack.jl

◦ MyPack/test : code for unit testing

◦ MyPack/docs : markdown sources + code for

documentation

◦ LICENSE: (open source) license

◦ Project.toml: Metadata

PcZ48
├─ .github
│ ⋮
│
├─ .gitignore
├─ LICENSE.md
├─ Project.toml
├─ README.md
├─ benchmarks
│ ⋮
│
├─ docs
│ ⋮
│
├─ ext
│ ⋮
│
├─ src
│ ⋮
│
└─ test
 ⋮

Package metadata

Contents of Project.toml for the ForwardDi�f.jl package

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

3 of 10 10/22/24, 22:04

https://pkgdocs.julialang.org/v1/
https://pkgdocs.julialang.org/v1/

name = "ForwardDiff"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.36"

[deps]
CommonSubexpressions = "bbf7d656-a473-5ed7-a52c-81e309532950"
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
DiffRules = "b552c78f-8df3-52c6-915a-8e097449b14b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LogExpFunctions = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
Preferences = "21216c6a-2e73-6563-6e65-726566657250"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"

[compat]
Calculus = "0.2, 0.3, 0.4, 0.5"
CommonSubexpressions = "0.3"
DiffResults = "0.0.1, 0.0.2, 0.0.3, 0.0.4, 1.0.1"
DiffRules = "1.4.0"
DiffTests = "0.0.1, 0.1"
LogExpFunctions = "0.3"
NaNMath = "0.2.2, 0.3, 1"
Preferences = "1"
SpecialFunctions = "0.8, 0.9, 0.10, 1.0, 2"
StaticArrays = "0.8.3, 0.9, 0.10, 0.11, 0.12, 1.0"
julia = "1"

[extensions]
ForwardDiffStaticArraysExt = "StaticArrays"

Package metadata

Contents of Project.toml

• Package name

• UUID to identify package, name is secondary

◦ manage di�ferent packages with the

same name

• Version according to Semantic Versioning

• [deps] section: list of package dependecies

with UUIDs

• [compat] section: version compatibility

bounds for dependencies and julia

• Further info: author, additional packages for

testing

dreamstudio.ai CC01.0

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

4 of 10 10/22/24, 22:04

http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#
http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

Adding a package

julia> Pkg.add("MyPkg")

�. Package name and UUID are looked up in a

registry

�. Package git repo URL read from registry

(nowadays packages are cached and served

from a package server by default)

�. Calculation of version compatibility for

package and dependencies

�. Code of package and dependencies

downloaded to ~/.julia/packages/

�. Package and dependencies recorded in current

active environment

A�ter adding a package, using MyPkg allows to use

the package content in a Julia session or project

source.

dreamstudio.ai CC01.0

Registries

A registry is a directory collecting metadata of

packages for look-up

• Default: https://github.com/JuliaRegistries/

General

◦ Like blockchain: no deletions, continued

forever

◦ Packages must be open source

◦ Automated heuristic decision process for

new packages to be registered

• Local copy kept up-to-date for each Julia

installation

• Multiple (e.g. institutional) registries are

possible

dreamstudio.ai CC01.0

Environments

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

5 of 10 10/22/24, 22:04

https://github.com/JuliaRegistries/General
https://github.com/JuliaRegistries/General
https://github.com/JuliaRegistries/General
https://github.com/JuliaRegistries/General

Environment: directory with Project.toml and

Manifest.toml

• Project.toml : name + UUIDs of all packages added

• Manifest.toml : name + UUID + version + git-hash

of package and all of its depedencies and their

dependencies

• Each project can have its own environment

◦ $ julia : activate default environment for

julia version, e.g. ~/.julia/environments/

v1.7

◦ $ julia --project=@xyz : activate

environment in ~/.julia/environments/xyz

◦ $ julia --project=dir and julia>

Pkg.activate("dir") activate environment in

directory dir

dreamstudio.ai CC01.0

Further features & details

• Consistent package updates

• Package garbage collection

• Access to older revisions and git branches

• Standardized test environment for Julia packages. Julia core developers can test new

julia versions with the registered packages to �nd out regressions

• Artifacts: Artifacts.toml records BLOBS available at given URL + content hash to

be installed along with a project/package without the need to have them in git

• Binary (jll) packages: pre-built, cross compiled libraries for all relevant architectures

managed as Artifacts allow to use libraries implemented in other languages in a

simple an reliable way

◦ See the Yggdrasil repository for the build scripts for all registered jlls

Reproducible projects

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

6 of 10 10/22/24, 22:04

Transferring Project.toml and Manifest.toml

allows to reproduce the exact package composition

of a project

• Alice, working on Linux, creates a project

using Julia and a number of Julia packages.

She develops the code in a directory which is

activated as a Julia environment. She sets up a

git repository containing source code,

documentation and both Project.toml and

Manifest.toml �les.

• Bob, working on windows with the same Julia

version, checks out the code from the repo. A

call to Pkg.instantiate() installs all

packages in the exact combination of versions

as Alice had them on her computer.

dreamstudio.ai CC01.0

Reproducible Notebooks: Pluto.jl

Browser based notebooks implemented in Julia

and Javascript

• Easy installation: installed as a single Julia

package on Linux, MacOS, Windows

• Reactive: cell results are automatically

recalculated

• Version controllable: no computational

results in the notebook

• Reproducible: notebooks contain their

own environment

• E��cient interaction with HTML+Javascript

• Created by Fons van der Plas & his friends

PlutoVista.jl+vtk.js+webgl: 132651 nodes

More Pluto.jl Bene�ts

f(x,y,z)=sin(x)*cos(3y)*z;1

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

7 of 10 10/22/24, 22:04

https://github.com/fonsp/pluto.jl
https://github.com/fonsp/pluto.jl

• Clara teaches a Julia based course in

scienti�c computing. She prepares the

course material as Pluto notebooks.

A�ter installation with simple

instructions, students run them on

their computers. The package

environment automatically installs all

packages necessary for a notebook.

HTML and PDF previews available as

well.

• Students prepare their exam projects

as Pluto notebooks. Clara can receive

their work and run it on her computer.

• MIT (Computational Thinking), TU

Berlin (Scienti�c Computing)

Download Julia and install it

according to the procedure on you

particular operating system. Invoke

Julia and issue the following

commands:

using Pkg
Pkg.add("Pluto")
using Pluto
Pluto.run()

A menu will show up in the

browser which allows to start the

notebooks downloaded from the

course homepage.

Further infrastructure

• DrWatson.jl manages code and computational

results in a Julia project repository

◦ Automatic generation of data �le names from

simulation parameters

• Documenter.jl: documentation

◦ from docstrings in package sources

• Visual Studio Code integration

• Jupyter notebook support

• Integration with quarto for reproducible

publications

Some Issues

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

8 of 10 10/22/24, 22:04

https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDocs/Documenter.jl
https://github.com/JuliaDocs/Documenter.jl
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaLang/IJulia.jl
https://quarto.org/docs/computations/julia.html
https://quarto.org/docs/computations/julia.html

• Package loading and using latency due to JIT

precompilation aka "Time to �rst plot"

◦ Currently, the Julia community

undertakes dedicated successful e�forts

towards �xing this problem

• Missing formal interface descriptions

◦ Julia alternative to C++20 concepts ?

Traits ?

◦ Bottom up design process, fear to lose

opportunities due to too rigid

formalizations

• Resources for keeping infrastructure running

◦ Many volunteers are involved at central

points

◦ Competitivity depends on package

contributions

◦ Server infrastructure costs

dreamstudio.ai CC01.0

Conclusions

Julia provides as well a fresh approach to

reproducibility, learning from the experiences of of

conda , npm etc.

• Package management is part of the standard

Julia work�low, available without further

installation

• Transparent package and project source code

without the need to know two languages or

handling of build systems

• Introductions to Julia at an early stage should

explain working with environments etc.

• Can we contribute to Julia and its infrastructure

from the NFDI context ? (Same question for

other open source ecosystems)

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

9 of 10 10/22/24, 22:04

nb03-julia-reproducibility http://localhost:1234/edit?id=0fdb84ec-90a1-11ef-28de-e557bc9012b7#

10 of 10 10/22/24, 22:04

