

Weierstrass Institute for Applied Analysis and Stochastics



# Some results on minimization involving self-concordant functions and barriers

#### **Pavel Dvurechensky**

Based on joint works with Yurii Nesterov (UCLouvain), Petr Ostroukhov (MBZUAI), Kamil Safin (MIPT), Shimrit Shtern (Technion), Mathias Staudigl (Mannheim University)

# ALGOPT2024 workshop on Algorithmic Optimization: Tools for Al and Data Science

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de 27.08.2024





Happy 50th anniversary of research career in Optimization, Prof. Yurii Nesterov!

Minimization involving self-concordance · 27.08.2024 · Page 2 (48)









- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm





## Problem statement

- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





E – finite dimensional vector space with inner product  $\langle\cdot,\cdot\rangle$  and norm  $\|\cdot\|.$  We consider the problem:

$$\min_{x} f(x) \quad \text{s.t.:} \mathbf{A}x = b, \ x \in \bar{\mathsf{K}}. \tag{P}$$





E – finite dimensional vector space with inner product  $\langle\cdot,\cdot\rangle$  and norm  $\|\cdot\|.$  We consider the problem:

$$\min_{x} f(x) \quad \text{s.t.:} \mathbf{A}x = b, \ x \in \mathsf{K}. \tag{P}$$

Denote:  $L = \{x \in E | Ax = b\}, \overline{X} = \overline{K} \cap L, X = K \cap L.$ 





E – finite dimensional vector space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\|\cdot\|$ . We consider the problem:

$$\min_{x} f(x) \quad \text{s.t.:} \mathbf{A}x = b, \ x \in \bar{\mathsf{K}}. \tag{P}$$

Denote:  $L = \{x \in E | Ax = b\}, \overline{X} = \overline{K} \cap L, X = K \cap L.$ Assumptions:

 f : E → ℝ is possibly non-convex, continuous on X
 and continuously differentiable on X;





E – finite dimensional vector space with inner product  $\langle\cdot,\cdot\rangle$  and norm  $\|\cdot\|.$  We consider the problem:

$$\min_{x} f(x) \quad \text{s.t.:} \mathbf{A}x = b, \ x \in \bar{\mathsf{K}}. \tag{P}$$

Denote:  $L = \{x \in E | Ax = b\}, \overline{X} = \overline{K} \cap L, X = K \cap L.$ Assumptions:

- f : E → ℝ is possibly non-convex, continuous on X
   and continuously differentiable on X;
- 2.  $\bar{K} \subset E$  is closed convex either set or pointed one (i.e.,  $\bar{K} \cap (-\bar{K}) = \{0\}$ );





E – finite dimensional vector space with inner product  $\langle\cdot,\cdot\rangle$  and norm  $\|\cdot\|.$  We consider the problem:

$$\min_{x} f(x) \quad \text{s.t.:} \mathbf{A}x = b, \ x \in \bar{\mathsf{K}}. \tag{P}$$

Denote:  $L = \{x \in E | Ax = b\}, \overline{X} = \overline{K} \cap L, X = K \cap L.$ Assumptions:

- f : E → ℝ is possibly non-convex, continuous on X
   and continuously differentiable on X;
- 2.  $\bar{K} \subset E$  is closed convex either set or pointed one (i.e.,  $\bar{K} \cap (-\bar{K}) = \{0\}$ );
- 3. Linear operator  $\mathbf{A}: \mathsf{E} \to \mathbb{R}^m$  has full rank, i.e.,  $\operatorname{im}(\mathbf{A}) = \mathbb{R}^m$ ,  $b \in \mathbb{R}^m$ ;
- 4. Problem (P) admits a global solution. We let  $f_{\min}(X) = \min\{f(x)|x \in \overline{X}\}$ .





Unconstrained or "Projection"-based, treating  $\bar{X}$  as a simple set.

[Nesterov, Polyak, '06], [Agarwal et al., '17], [Carmon et al., '17], [Cartis, Gould,

Toint, '12, '18, '19], [Ghadimi, Lan, '16], [Birgin, Martinez, '18], [Curtis et al., '17].





- Unconstrained or "Projection"-based, treating X as a simple set. [Nesterov, Polyak, '06], [Agarwal et al., '17], [Carmon et al., '17], [Cartis, Gould, Toint, '12, '18, '19], [Ghadimi, Lan, '16], [Birgin, Martinez, '18], [Curtis et al., '17].
- Augmented Lagrangian algorithms.

[Bolte et al., '18], [Andreani et al., '19, '21], [Birgin, Martinez, '20], [Grapiglia, Yuan, '20], [Khanh, Mordukhovich, Tran, '23].



- Unconstrained or "Projection"-based, treating X as a simple set. [Nesterov, Polyak, '06], [Agarwal et al., '17], [Carmon et al., '17], [Cartis, Gould, Toint, '12, '18, '19], [Ghadimi, Lan, '16], [Birgin, Martinez, '18], [Curtis et al., '17].
- Augmented Lagrangian algorithms.

[Bolte et al., '18], [Andreani et al., '19, '21], [Birgin, Martinez, '20], [Grapiglia, Yuan, '20], [Khanh, Mordukhovich, Tran, '23].

Barrier methods for non-negative orthant and/or quadratic programming
 [Ye, '92], [Faybusovich, Lu, '06], [Lu, Yuan, '07], [Tseng et al., '11], [Bian et al., '15], [Bomze et al., '19], [Haeser, Liu, Ye, '19], [O'Neill, Wright, '20].





- Unconstrained or "Projection"-based, treating X as a simple set. [Nesterov, Polyak, '06], [Agarwal et al., '17], [Carmon et al., '17], [Cartis, Gould, Toint, '12, '18, '19], [Ghadimi, Lan, '16], [Birgin, Martinez, '18], [Curtis et al., '17].
- Augmented Lagrangian algorithms.

[Bolte et al., '18], [Andreani et al., '19, '21], [Birgin, Martinez, '20], [Grapiglia, Yuan, '20], [Khanh, Mordukhovich, Tran, '23].

 Barrier methods for non-negative orthant and/or quadratic programming [Ye, '92], [Faybusovich, Lu, '06], [Lu, Yuan, '07], [Tseng et al., '11], [Bian et al., '15], [Bomze et al., '19], [Haeser, Liu, Ye, '19], [O'Neill, Wright, '20].

Our goals:

- Feasible iterates  $\Rightarrow$  Interior-point algorithms.
- General sets or cones ⇒ (Logarithmically homogeneous) self-concordant barriers.
- Favorable global complexity guarantees  $\Rightarrow$  Quadratic/cubic regularization.





- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





A function  $h : \bar{\mathsf{K}} \to (-\infty, \infty]$  with dom  $h = \mathsf{K}$  is called a  $\nu$ -self-concordant barrier (SCB) [Nesterov, Nemirovski, 1994] for the set  $\bar{\mathsf{K}}$  if:

(a) h is a standard *self-concordant function*:

 $|D^{3}h(x)[u, u, u]| \le 2D^{2}h(x)[u, u]^{3/2};$ 





A function  $h : \overline{K} \to (-\infty, \infty]$  with dom h = K is called a  $\nu$ -self-concordant barrier (SCB) [Nesterov, Nemirovski, 1994] for the set  $\overline{K}$  if:

(a) h is a standard *self-concordant function*:

$$|D^{3}h(x)[u, u, u]| \le 2D^{2}h(x)[u, u]^{3/2};$$

(b) h is a  $\nu$ -self-concordant barrier for  $\overline{K}$ :

 $\sup_{u\in\mathbb{R}^n} \{2Dh(x)[u] - D^2h(x)[u,u]\} \le \nu; \quad (\langle \nabla h(x), (\nabla^2 h(x))^{-1} \nabla h(x) \rangle \le \nu)$ 





A function  $h : \bar{\mathsf{K}} \to (-\infty, \infty]$  with  $\operatorname{dom} h = \mathsf{K}$  is called a  $\nu$ -self-concordant barrier (SCB) [Nesterov, Nemirovski, 1994] for the set  $\bar{\mathsf{K}}$  if:

(a) h is a standard *self-concordant function*:

$$|D^{3}h(x)[u, u, u]| \le 2D^{2}h(x)[u, u]^{3/2};$$

(b) h is a  $\nu$ -self-concordant barrier for  $\overline{K}$ :

 $\sup_{u\in\mathbb{R}^n} \{2Dh(x)[u] - D^2h(x)[u,u]\} \le \nu; \quad (\langle \nabla h(x), (\nabla^2 h(x))^{-1} \nabla h(x) \rangle \le \nu)$ 

If additionally  $\overline{K}$  is a regular cone: closed convex, solid, contains no lines,  $K \neq \emptyset$  and (c) h is *logarithmically homogeneous:* 

$$h(tx) = h(x) - \nu \ln(t) \qquad \forall x \in \mathsf{K}, t > 0.$$

Then h is called a logarithmically homogeneous  $\nu$ -self-concordant barrier (LHSCB).





A function  $h : \bar{K} \to (-\infty, \infty]$  with dom h = K is called a  $\nu$ -self-concordant barrier (SCB) [Nesterov, Nemirovski, 1994] for the set  $\bar{K}$  if:

(a) h is a standard *self-concordant function*:

$$|D^{3}h(x)[u, u, u]| \le 2D^{2}h(x)[u, u]^{3/2};$$

(b) h is a  $\nu$ -self-concordant barrier for  $\overline{K}$ :

 $\sup_{u\in\mathbb{R}^n} \{2Dh(x)[u] - D^2h(x)[u,u]\} \le \nu; \quad (\langle \nabla h(x), (\nabla^2 h(x))^{-1} \nabla h(x) \rangle \le \nu)$ 

If additionally  $\overline{K}$  is a regular cone: closed convex, solid, contains no lines,  $K \neq \emptyset$  and (c) *h* is *logarithmically homogeneous:* 

$$h(tx) = h(x) - \nu \ln(t) \qquad \forall x \in \mathsf{K}, t > 0.$$

Then h is called a logarithmically homogeneous  $\nu$ -self-concordant barrier (LHSCB). Example:  $h(x) = -\ln(x)$ . Indeed  $|-2/x^3| \le 2(1/x^2)^{3/2}$ ,  $-1/x \cdot (1/x^2)^{-1}(-1/x) = 1$ ,  $-\ln(tx) = -\ln(x) - \ln t$ .





The Hessian  $H(x) riangleq 
abla^2 h(x): \mathsf{E} o \mathsf{E}^*$  gives rise to a local norm and its dual

$$||u||_x \triangleq \langle H(x)u, u \rangle^{1/2}, \qquad ||s||_x^* \triangleq \langle [H(x)]^{-1}s, s \rangle^{1/2}.$$
 (1)





The Hessian  $H(x) riangleq 
abla^2 h(x): \mathsf{E} o \mathsf{E}^*$  gives rise to a local norm and its dual

$$||u||_x \triangleq \langle H(x)u, u \rangle^{1/2}, \qquad ||s||_x^* \triangleq \langle [H(x)]^{-1}s, s \rangle^{1/2}.$$
 (1)

Let  $d\in\mathsf{E}.$  For all  $t\in[0,\frac{1}{\|d\|_x})$  , we have

$$x + td \in \mathsf{K} \tag{2}$$

$$h(x+td) \le h(x) + t\langle \nabla h(x), d \rangle + t^2 \|d\|_x^2 \omega(t\|d\|_x), \tag{3}$$

where  $\omega(t) \triangleq \frac{-t - \ln(1-t)}{t^2}, t \in [0, 1).$ 





- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





Given  $\varepsilon \ge 0$ , a point  $\bar{x} \in \mathsf{E}$  is an  $\varepsilon$ -KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in \mathsf{K}$ 



Minimization involving self-concordance · 27.08.2024 · Page 12 (48)



Given  $\varepsilon \ge 0$ , a point  $\bar{x} \in E$  is an  $\varepsilon$ -KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in K$  and

Option A:  $\overline{\mathsf{K}}$  be a convex set:  $\langle \nabla f(\overline{x}) - \mathbf{A}^* \overline{y}, x - \overline{x} \rangle \ge -\varepsilon \quad \forall x \in \overline{\mathsf{K}}.$ 





Given  $\varepsilon \ge 0$ , a point  $\bar{x} \in E$  is an  $\varepsilon$ -KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in K$  and

Option B:  $\overline{K}$  be a convex cone:

$$\bar{s} = \nabla f(\bar{x}) - \mathbf{A}^* \bar{y} \in \bar{\mathsf{K}}^*,$$
$$(0 \le) \langle \bar{s}, \bar{x} \rangle \le \varepsilon.$$



Given  $\varepsilon \ge 0$ , a point  $\bar{x} \in \mathsf{E}$  is an  $\varepsilon$ -KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in \mathsf{K}$  and

Option A:  $\bar{\mathsf{K}}$  be a convex set:  $\langle \nabla f(\bar{x}) - \mathbf{A}^* \bar{y}, x - \bar{x} \rangle \ge -\varepsilon \quad \forall x \in \bar{\mathsf{K}}.$ 

Option B:  $\overline{K}$  be a convex cone:

$$\bar{s} = \nabla f(\bar{x}) - \mathbf{A}^* \bar{y} \in \bar{\mathsf{K}}^*,$$
$$(0 \le) \langle \bar{s}, \bar{x} \rangle \le \varepsilon.$$

Motivation:  $\varepsilon$ -perturbation of the standard first-order stationarity condition  $\langle \nabla f(\bar{x}) - \mathbf{A}^* \bar{y}, x - \bar{x} \rangle \ge 0, \quad \forall x \in \bar{\mathsf{K}}.$ 





Given  $\varepsilon_1, \varepsilon_2 \ge 0$ , a point  $\bar{x} \in \mathsf{E}$  is an  $(\varepsilon_1, \varepsilon_2)$ -2KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in \mathsf{K}$  and

■ Option A: K be a convex set: (∇f(x) - A\*y, x - x) ≥ -ε<sub>1</sub> ∀x ∈ K.
 ■ Option B: K be a convex cone:

$$\bar{s} = \nabla f(\bar{x}) - \mathbf{A}^* \bar{y} \in \bar{\mathsf{K}}^*,$$
$$(0 \le) \langle \bar{s}, \bar{x} \rangle \le \varepsilon_1.$$





Given  $\varepsilon_1, \varepsilon_2 \ge 0$ , a point  $\bar{x} \in \mathsf{E}$  is an  $(\varepsilon_1, \varepsilon_2)$ -2KKT point for problem (P) if there exists  $\bar{y} \in \mathbb{R}^m$  such that  $\mathbf{A}\bar{x} = b, \bar{x} \in \mathsf{K}$  and

■ Option A: K be a convex set: ⟨∇f(x) - A\*y, x - x⟩ ≥ -ε₁ ∀x ∈ K.
 ■ Option B: K be a convex cone:

 $\bar{s} = \nabla f(\bar{x}) - \mathbf{A}^* \bar{y} \in \bar{\mathsf{K}}^*,$  $(0 \le) \langle \bar{s}, \bar{x} \rangle \le \varepsilon_1.$ 

 $\blacksquare \ \nabla^2 f(\bar{x}) + \sqrt{\varepsilon_2} H(\bar{x}) \succeq 0 \ \text{ on } \ \mathsf{L}_0 = \{ v \in \mathsf{E} | \mathbf{A} v = 0 \}.$ 





- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





# Potential function:

$$F_{\mu}(x) \triangleq f(x) + \mu h(x) \qquad \forall x \in \mathsf{K}, \mu > 0.$$
(4)





#### Potential function:

$$F_{\mu}(x) \triangleq f(x) + \mu h(x) \qquad \forall x \in \mathsf{K}, \mu > 0.$$
(4)

Define the set of feasible directions  $\mathcal{T}_x \triangleq \{v \in \mathsf{E} | \mathbf{A}v = 0, \|v\|_x < 1\}.$ 

# Local smoothness assumption

 $f:\mathsf{E}\to\mathbb{R}\cup\{+\infty\}$  is continuously differentiable on X and there exists a constant M>0 such that for all  $x\in\mathsf{X}$  and  $v\in\mathcal{T}_x$  we have

$$f(x+v) - f(x) - \langle \nabla f(x), v \rangle \le \frac{M}{2} \|v\|_{\boldsymbol{x}}^2.$$
(5)





#### Potential function:

$$F_{\mu}(x) \triangleq f(x) + \mu h(x) \quad \forall x \in \mathsf{K}, \mu > 0.$$
 (4)

Define the set of feasible directions  $\mathcal{T}_x \triangleq \{v \in \mathsf{E} | \mathbf{A}v = 0, \|v\|_x < 1\}.$ 

#### Local smoothness assumption

 $f: \mathsf{E} \to \mathbb{R} \cup \{+\infty\}$  is continuously differentiable on X and there exists a constant M > 0 such that for all  $x \in \mathsf{X}$  and  $v \in \mathcal{T}_x$  we have

$$f(x+v) - f(x) - \langle \nabla f(x), v \rangle \le \frac{M}{2} \|v\|_{x}^{2}.$$
 (5)

If the set X is bounded, we have  $\lambda_{\min}(H(x)) \ge \sigma$  for some  $\sigma > 0$ . If f has a M-Lipschitz continuous gradient, then our assumption holds. Indeed,

$$f(x+v) - f(x) - \langle \nabla f(x), v \rangle \le \frac{M}{2} \|v\|^2 \le \frac{M}{2\sigma} \|v\|_x^2.$$





1

Step direction: 
$$v_{\mu}(x) \triangleq \underset{v \in \mathsf{E}: \mathbf{A}v=0}{\operatorname{argmin}} \{F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \|v\|_{x}^{2}\}.$$
 (6)





Step direction: 
$$v_{\mu}(x) \triangleq \underset{v \in \mathsf{E}: \mathbf{A}v=0}{\operatorname{argmin}} \{F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \|v\|_{x}^{2}\}.$$
 (6)

Optimality conditions ( $y_{\mu}(x)$  is a Lagrange multiplier):

$$\nabla F_{\mu}(x) + H(x)v_{\mu}(x) - \mathbf{A}^{*}y_{\mu}(x) = 0,$$
(7)

$$-\mathbf{A}v_{\mu}(x) = 0. \tag{8}$$

1



Step direction: 
$$v_{\mu}(x) \triangleq \underset{v \in \mathsf{E}: \mathbf{A}v=0}{\operatorname{argmin}} \{F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \|v\|_{x}^{2}\}.$$
 (6)

Optimality conditions ( $y_{\mu}(x)$  is a Lagrange multiplier):

$$\nabla F_{\mu}(x) + H(x)v_{\mu}(x) - \mathbf{A}^{*}y_{\mu}(x) = 0,$$
(7)

$$-\mathbf{A}v_{\mu}(x) = 0. \tag{8}$$

1

Parameterized arcs  $x^+(t) \triangleq x + tv_\mu(x) \in \mathsf{X}$  for  $t \in I_{x,\mu} \triangleq [0, \frac{1}{\|v_\mu(x)\|_x})$ 





Step direction: 
$$v_{\mu}(x) \triangleq \underset{v \in \mathsf{E}: \mathbf{A}v=0}{\operatorname{argmin}} \{F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \|v\|_{x}^{2}\}.$$
 (6)

Optimality conditions ( $y_{\mu}(x)$  is a Lagrange multiplier):

$$\nabla F_{\mu}(x) + H(x)v_{\mu}(x) - \mathbf{A}^{*}y_{\mu}(x) = 0,$$
(7)

$$-\mathbf{A}v_{\mu}(x) = 0. \tag{8}$$

 $\begin{array}{l} \text{Parameterized arcs } x^+(t) \triangleq x + t v_\mu(x) \in \mathsf{X} \text{ for } t \in I_{x,\mu} \triangleq [0, \frac{1}{\|v_\mu(x)\|_x}) \\ \text{If } t \|v_\mu(x)\|_x \leq 1/2 \text{:} \end{array}$ 

$$F_{\mu}(x^{+}(t)) - F_{\mu}(x) \leq -t \|v_{\mu}(x)\|_{x}^{2} \left(1 - \frac{M + 2\mu}{2}t\right) \triangleq -\eta_{x}(t).$$
(9)



Minimization involving self-concordance · 27.08.2024 · Page 16 (48)
#### Main algorithm ideas



Step direction: 
$$v_{\mu}(x) \triangleq \underset{v \in \mathsf{E}: \mathbf{A}v=0}{\operatorname{argmin}} \{F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \|v\|_{x}^{2}\}.$$
 (6)

Optimality conditions ( $y_{\mu}(x)$  is a Lagrange multiplier):

$$\nabla F_{\mu}(x) + H(x)v_{\mu}(x) - \mathbf{A}^{*}y_{\mu}(x) = 0,$$
(7)

$$-\mathbf{A}v_{\mu}(x) = 0. \tag{8}$$

Parameterized arcs  $x^+(t) \triangleq x + tv_{\mu}(x) \in \mathsf{X}$  for  $t \in I_{x,\mu} \triangleq [0, \frac{1}{\|v_{\mu}(x)\|_x})$ If  $t \|v_{\mu}(x)\|_x \leq 1/2$ :

$$F_{\mu}(x^{+}(t)) - F_{\mu}(x) \leq -t \|v_{\mu}(x)\|_{x}^{2} \left(1 - \frac{M + 2\mu}{2}t\right) \triangleq -\eta_{x}(t).$$
(9)

Minimizing w.r.t.  $t \in [0, \frac{1}{2\|v_{\mu}(x)\|_{x}}]$ , we obtain stepsize:

$$\mathbf{t}_{\mu,M}(x) \triangleq \frac{1}{\max\{M + 2\mu, 2\|v_{\mu}(x)\|_x\}} = \min\left\{\frac{1}{M + 2\mu}, \frac{1}{2\|v_{\mu}(x)\|_x}\right\}.$$





**Result:** Point 
$$x^k$$
, dual variables  $y^k$ ,  $s^k = \nabla f(x^k) - \mathbf{A}^* y^k$ .

#### repeat

Set 
$$i_k = 0$$
. Find  $v^k \triangleq v_\mu(x^k)$  and  $y^k \triangleq y_\mu(x^k)$  from  

$$\min_{v \in \mathsf{E}: \mathbf{A}v = 0} \{F_\mu(x^k) + \langle \nabla F_\mu(x^k), v \rangle + \frac{1}{2} ||v||_{x^k}^2 \}.$$
repeat  

$$\begin{vmatrix} \text{Set } \alpha_k \triangleq \min\left\{\frac{1}{2^{i_k}L_k + 2\mu}, \frac{1}{2||v^k||_{x^k}}\right\};\\ \text{Set } z^k = x^k + \alpha_k v^k, i_k = i_k + 1;\\ \text{until}\\ f(z^k) \leq f(x^k) + \langle \nabla f(x^k), z^k - x^k \rangle + 2^{i_k - 1}L_k ||z^k - x^k||_{x^k}^2. \quad (10)\\ ;\\ \text{Set } L_{k+1} = 2^{i_k - 1}L_k, x^{k+1} = z^k, k = k + 1;\\ \text{until } ||v^k||_{x^k} < \frac{\varepsilon}{3\nu}; \end{aligned}$$





Let our assumptions hold. Set h - SCB if  $\bar{\mathsf{K}}$  is a convex set or h - LHSCB if  $\bar{\mathsf{K}}$  is a convex cone.





Let our assumptions hold. Set h - SCB if  $\overline{K}$  is a convex set or h - LHSCB if  $\overline{K}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $L_0 > 0$  for the Lip. const. in (5),



Minimization involving self-concordance · 27.08.2024 · Page 18 (48)



Let our assumptions hold. Set *h* - SCB if K is a convex set or *h* - LHSCB if K is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $L_0 > 0$  for the Lip. const. in (5), the regularization parameter  $\mu = \frac{\varepsilon}{u}$ ,





Let our assumptions hold. Set h - SCB if  $\overline{\mathsf{K}}$  is a convex set or h - LHSCB if  $\overline{\mathsf{K}}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $L_0 > 0$  for the Lip. const. in (5), the regularization parameter  $\mu = \frac{\varepsilon}{\nu}$ , and  $x^0$  to be a  $\nu$ -analytic center:  $h(x) \ge h(x^0) - \nu \quad \forall x \in \mathsf{X}$ .



Let our assumptions hold. Set h - SCB if  $\overline{\mathsf{K}}$  is a convex set or h - LHSCB if  $\overline{\mathsf{K}}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $L_0 > 0$  for the Lip. const. in (5), the regularization parameter  $\mu = \frac{\varepsilon}{\nu}$ , and  $x^0$  to be a  $\nu$ -analytic center:  $h(x) \ge h(x^0) - \nu \quad \forall x \in \mathsf{X}$ . Let  $(x^k)_{k \ge 0}$  be the trajectory generated by FAHBA. Then the algorithm stops in no more than

$$K_I(\varepsilon, x^0) = \left[ 40(f(x^0) - f_{\min}(\mathsf{X}) + \varepsilon) \frac{\nu^2(\max\{M, L_0\} + \varepsilon/\nu)}{\varepsilon^2} \right] = O\left(\frac{1}{\varepsilon^2}\right)$$

outer iterations, and the number of inner iterations is no more than  $2(K_I(\varepsilon,x^0)+1) + \max\{\log_2(M/L_0),0\}.$ 





Let our assumptions hold. Set h - SCB if K is a convex set or h - LHSCB if K is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $L_0 > 0$  for the Lip. const. in (5), the regularization parameter  $\mu = \frac{\varepsilon}{\nu}$ , and  $x^0$  to be a  $\nu$ -analytic center:  $h(x) \ge h(x^0) - \nu \quad \forall x \in X$ . Let  $(x^k)_{k \ge 0}$  be the trajectory generated by FAHBA. Then the algorithm stops in no more than

$$K_I(\varepsilon, x^0) = \left[ 40(f(x^0) - f_{\min}(\mathsf{X}) + \varepsilon) \frac{\nu^2(\max\{M, L_0\} + \varepsilon/\nu)}{\varepsilon^2} \right] = O\left(\frac{1}{\varepsilon^2}\right)$$

outer iterations, and the number of inner iterations is no more than  $2(K_I(\varepsilon, x^0) + 1) + \max\{\log_2(M/L_0), 0\}.$ Moreover, the last iterate obtained by FAHBA constitutes a  $2\varepsilon$ -KKT point for problem (P) in the sense of definition on slide 12.





Define  $\varepsilon_i = 2^{-i} \varepsilon_0$  for  $i \ge 0$ .

*i*-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x_i^0$  that is the output of the previous restart.





Define  $\varepsilon_i = 2^{-i} \varepsilon_0$  for  $i \ge 0$ .

*i*-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x_i^0$  that is the output of the previous restart.

 $p = \left\lceil \log_2 \frac{\varepsilon_0}{\varepsilon} \right\rceil \text{ restarts to achieve any } \varepsilon \in (0, \varepsilon_0].$ 





Define  $\varepsilon_i = 2^{-i} \varepsilon_0$  for  $i \ge 0$ .

i-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x^0_i$  that is the output of the previous restart.

$$\begin{split} p &= \left\lceil \log_2 \frac{\varepsilon_0}{\varepsilon} \right\rceil \text{ restarts to achieve any } \varepsilon \in (0, \varepsilon_0]. \\ \text{The total complexity is } \sum_{i=0}^p O(\varepsilon_i^{-2}) = O(\varepsilon^{-2}). \end{split}$$





Define 
$$\varepsilon_i = 2^{-i} \varepsilon_0$$
 for  $i \ge 0$ .

*i*-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x_i^0$  that is the output of the previous restart.  $p = \left[\log_2 \frac{\varepsilon_0}{\varepsilon}\right]$  restarts to achieve any  $\varepsilon \in (0, \varepsilon_0]$ .

The total complexity is  $\sum_{i=0}^p O(\varepsilon_i^{-2}) = O(\varepsilon^{-2}).$ 

Discussion:

Same complexity  $O(\varepsilon^{-2})$  as for unconstrained setting.





Define 
$$\varepsilon_i = 2^{-i} \varepsilon_0$$
 for  $i \ge 0$ .

*i*-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x_i^0$  that is the output of the previous restart.  $p = \lceil \log_2 \frac{\varepsilon_0}{\varepsilon} \rceil$  restarts to achieve any  $\varepsilon \in (0, \varepsilon_0]$ . The total complexity is  $\sum_{i=0}^p O(\varepsilon_i^{-2}) = O(\varepsilon^{-2})$ .

Discussion:

- Same complexity  $O(\varepsilon^{-2})$  as for unconstrained setting.
- Previous works consider particular case  $\bar{\mathsf{K}} = \mathbb{R}^n_+$ .





Define 
$$\varepsilon_i = 2^{-i} \varepsilon_0$$
 for  $i \ge 0$ .

*i*-th restart/epoch: run FAHBA with the accuracy  $\varepsilon_i$  as an input and starting point  $x_i^0$  that is the output of the previous restart.  $p = \lceil \log_2 \frac{\varepsilon_0}{\varepsilon} \rceil$  restarts to achieve any  $\varepsilon \in (0, \varepsilon_0]$ . The total complexity is  $\sum_{i=0}^p O(\varepsilon_i^{-2}) = O(\varepsilon^{-2})$ .

Discussion:

- Same complexity  $O(\varepsilon^{-2})$  as for unconstrained setting.
- Previous works consider particular case  $\bar{\mathsf{K}} = \mathbb{R}^n_+$ .
- The closest to ours result [Haeser, Liu, Ye, 2019] is O(ε<sup>-2</sup>) complexity under similar assumptions, but only for K
   = ℝ<sup>n</sup><sub>+</sub>. (see detailed discussion in the paper).





## **1** Barrier algorithms for non-convex optimization

- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

#### 2 Minimizing self-concordant functions

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





 $f: \mathsf{E} \to \mathbb{R} \cup \{+\infty\}$  is twice continuously differentiable on X and there exists a constant M > 0 such that, for all  $x \in \mathsf{X}$  and  $v \in \mathcal{T}_x$ , we have

$$\|\nabla f(x+v) - \nabla f(x) - \nabla^2 f(x)v\|_x^* \le \frac{M}{2} \|v\|_x^2.$$
(11)





 $f:\mathsf{E}\to\mathbb{R}\cup\{+\infty\}$  is twice continuously differentiable on X and there exists a constant M>0 such that, for all  $x\in\mathsf{X}$  and  $v\in\mathcal{T}_x$ , we have

$$\|\nabla f(x+v) - \nabla f(x) - \nabla^2 f(x)v\|_x^* \le \frac{M}{2} \|v\|_x^2.$$
(11)

Then: 
$$f(x+v) - \left[f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2} \langle \nabla^2 f(x)v, v \rangle \right] \le \frac{M}{6} \|v\|_x^3.$$
(12)



 $f:\mathsf{E}\to\mathbb{R}\cup\{+\infty\}$  is twice continuously differentiable on X and there exists a constant M>0 such that, for all  $x\in\mathsf{X}$  and  $v\in\mathcal{T}_x$ , we have

$$\|\nabla f(x+v) - \nabla f(x) - \nabla^2 f(x)v\|_x^* \le \frac{M}{2} \|v\|_x^2.$$
(11)

Then: 
$$f(x+v) - \left[f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2} \langle \nabla^2 f(x)v, v \rangle \right] \le \frac{M}{6} \|v\|_x^3.$$
(12)

The above assumption subsumes the standard Lipschitz Hessian setting if X is bounded.





 $f:\mathsf{E}\to\mathbb{R}\cup\{+\infty\}$  is twice continuously differentiable on X and there exists a constant M>0 such that, for all  $x\in\mathsf{X}$  and  $v\in\mathcal{T}_x$ , we have

$$\|\nabla f(x+v) - \nabla f(x) - \nabla^2 f(x)v\|_x^* \le \frac{M}{2} \|v\|_x^2.$$
(11)

Then: 
$$f(x+v) - \left[f(x) + \langle \nabla f(x), v \rangle + \frac{1}{2} \langle \nabla^2 f(x)v, v \rangle \right] \le \frac{M}{6} \|v\|_x^3.$$
(12)

The above assumption subsumes the standard Lipschitz Hessian setting if X is bounded.

Step direction:

$$v_{\mu,L}(x) \in \operatorname*{Argmin}_{v \in \mathsf{E}: \mathbf{A}v = 0} \{ Q_{\mu,L}^{(2)}(x,v) \triangleq F_{\mu}(x) + \langle \nabla F_{\mu}(x), v \rangle + \frac{1}{2} \langle \nabla^2 f(x)v, v \rangle + \frac{L}{6} \|v\|_x^3 \}$$





**Result:** Point 
$$x^k$$
, dual variables  $y^{k-1}$ ,  $s^k = \nabla f(x^k) - \mathbf{A}^* y^{k-1}$ .  
Set  $144\varepsilon \triangleq \underline{L} < M_0$  – guess for  $M$ ,  $\mu = \frac{\varepsilon}{4\nu}$ ,  $k = 0$ ,  $x^0 \in X - 4\nu$ -a.c.; repeat

$$\begin{split} & \operatorname{repeat} \\ & \operatorname{Find} v^{k} \triangleq v_{\mu,L_{k}}(x^{k}) \text{ and } y^{k} \triangleq y_{\mu,L_{k}}(x^{k}) \text{ from} \\ & \min_{v:\mathbf{A}v=0} \left\{ F_{\mu}(x^{k}) + \langle \nabla F_{\mu}(x^{k}), v \rangle + \frac{1}{2} \langle \nabla^{2}f(x^{k})v, v \rangle + \frac{L_{k}}{6} \|v\|_{x^{k}}^{3} \right\}. \\ & \operatorname{Set} \ \alpha_{k} \triangleq \min \left\{ 1, \frac{1}{2\|v^{k}\|_{x^{k}}} \right\}. \\ & \operatorname{until} \\ f(x^{k} + \alpha_{k}v^{k}) \leq f(x^{k}) + \alpha_{k} \langle \nabla f(x^{k}), v^{k} \rangle + \frac{\alpha_{k}^{2}}{2} \langle \nabla^{2}f(x^{k})v^{k}, v^{k} \rangle + \frac{L_{k}\alpha_{k}^{3}}{6} \|v^{k}\|_{x^{k}}^{3}, \\ & \operatorname{and} \|\nabla f(x^{k} + \alpha_{k}v^{k}) - \nabla f(x^{k}) - \alpha_{k}\nabla^{2}f(x^{k})v^{k}\|_{x^{k}}^{*} \leq \frac{L_{k}\alpha_{k}^{2}}{2} \|v^{k}\|_{x^{k}}^{2}. \\ & \operatorname{Set} \ M_{k+1} = \max\{2^{i_{k}-1}M_{k}, \underline{L}\}, x^{k+1} = x^{k} + \alpha_{k}v^{k}, k = k+1; \\ & \operatorname{until} \left[ \|v^{k-1}\|_{x^{k-1}} < \Delta_{k-1} \triangleq \sqrt{\frac{\varepsilon}{12L_{k-1}\nu}} \text{ and } \|v^{k}\|_{x^{k}} < \Delta_{k} \triangleq \sqrt{\frac{\varepsilon}{12L_{k}\nu}}; \end{split}$$







Let our assumptions hold. Set h - SCB if  $\bar{K}$  is a convex set or h - LHSCB if  $\bar{K}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $M_0 > 144\varepsilon$  for the Lip. const. in (11), the regularization parameter  $\mu = \frac{\varepsilon}{4\nu}$ , and  $x^0$  to be a  $4\nu$ -analytic center. Let  $(x^k)_{k>0}$  be the trajectory generated by SAHBA.





Let our assumptions hold. Set h - SCB if  $\bar{K}$  is a convex set or h - LHSCB if  $\bar{K}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $M_0 > 144\varepsilon$  for the Lip. const. in (11), the regularization parameter  $\mu = \frac{\varepsilon}{4\nu}$ , and  $x^0$  to be a  $4\nu$ -analytic center. Let  $(x^k)_{k\geq 0}$  be the trajectory generated by SAHBA. Then the algorithm stops in no more than

$$K_{II}(\varepsilon, x^0) = \left\lceil \frac{576\nu^{3/2}\sqrt{2\max\{M, M_0\}}(f(x^0) - f_{\min}(\mathsf{X}) + \varepsilon)}{\varepsilon^{3/2}} \right\rceil = O\left(\frac{1}{\varepsilon^{\frac{3}{2}}}\right)$$

outer iterations, and the number of inner iterations is no more than  $2(K_{II}(\varepsilon,x^0)+1)+2\max\{\log_2(2M/M_0),1\}.$ 





Let our assumptions hold. Set h - SCB if  $\bar{K}$  is a convex set or h - LHSCB if  $\bar{K}$  is a convex cone. Fix  $\varepsilon > 0$ , some initial guess  $M_0 > 144\varepsilon$  for the Lip. const. in (11), the regularization parameter  $\mu = \frac{\varepsilon}{4\nu}$ , and  $x^0$  to be a  $4\nu$ -analytic center. Let  $(x^k)_{k\geq 0}$  be the trajectory generated by SAHBA. Then the algorithm stops in no more than

$$K_{II}(\varepsilon, x^0) = \left\lceil \frac{576\nu^{3/2}\sqrt{2\max\{M, M_0\}}(f(x^0) - f_{\min}(\mathsf{X}) + \varepsilon)}{\varepsilon^{3/2}} \right\rceil = O\left(\frac{1}{\varepsilon^{\frac{3}{2}}}\right)$$

outer iterations, and the number of inner iterations is no more than  $2(K_{II}(\varepsilon,x^0)+1)+2\max\{\log_2(2M/M_0),1\}.$  Moreover, the output of SAHBA is an  $(\varepsilon,\frac{\max\{M,M_0\}\varepsilon}{24\nu})$ -2KKT point for problem (P) in the sense of definition on slide 13.





Same restarting strategy can be applied to achieve any-time convergence via a "path-following" method with same complexity  $O(\varepsilon^{-3/2})$  up to a constant factor.





- Same restarting strategy can be applied to achieve any-time convergence via a "path-following" method with same complexity  $O(\varepsilon^{-3/2})$  up to a constant factor.
- Similar bound  $O(\varepsilon^{-3/2})$  as for unconstrained setting.





Same restarting strategy can be applied to achieve any-time convergence via a "path-following" method with same complexity  $O(\varepsilon^{-3/2})$  up to a constant factor.

Similar bound  $O(\varepsilon^{-3/2})$  as for unconstrained setting.

The closest to ours result [Haeser, Liu, Ye, 2019] (trust-region method), [O'Neill, Wright, 2020] (Newton-CG method) is O(ε<sup>-3/2</sup>) complexity under similar assumptions, but with K
 = R<sup>n</sup><sub>+</sub>. Later [He, Lu, 2022] obtained close results for convex cones.



- Same restarting strategy can be applied to achieve any-time convergence via a "path-following" method with same complexity  $O(\varepsilon^{-3/2})$  up to a constant factor.
- Similar bound  $O(\varepsilon^{-3/2})$  as for unconstrained setting.
- The closest to ours result [Haeser, Liu, Ye, 2019] (trust-region method), [O'Neill, Wright, 2020] (Newton-CG method) is O(ε<sup>-3/2</sup>) complexity under similar assumptions, but with K
   = R<sup>n</sup><sub>+</sub>. Later [He, Lu, 2022] obtained close results for convex cones.
- P. Dvurechensky, M. Staudigl, Hessian barrier algorithms for non-convex <u>conic</u> optimization, Mathematical Programming, 2024 (arXiv:2111.00100, 2021).



Same restarting strategy can be applied to achieve any-time convergence via a "path-following" method with same complexity  $O(\varepsilon^{-3/2})$  up to a constant factor.

Similar bound  $O(\varepsilon^{-3/2})$  as for unconstrained setting.

The closest to ours result [Haeser, Liu, Ye, 2019] (trust-region method), [O'Neill, Wright, 2020] (Newton-CG method) is O(ε<sup>-3/2</sup>) complexity under similar assumptions, but with K
 = R<sup>n</sup><sub>+</sub>. Later [He, Lu, 2022] obtained close results for convex cones.

P. Dvurechensky, M. Staudigl, Hessian barrier algorithms for non-convex <u>conic</u> optimization, Mathematical Programming, 2024 (arXiv:2111.00100, 2021).
P. Dvurechensky, M. Staudigl, Barrier Algorithms for Constrained Non-Convex Optimization, ICML 2024.





Extensions for convex setting:

If f is convex, level sets of  $F_{\mu}$  are bounded (e.g., f coercive) or  $\bar{K}$  is compact, slightly modified algorithms guarantee  $f(x_k) - f_{\min}(X) \leq \varepsilon$  in

• 
$$O\left((f(x^0) - f_{\min}(\mathsf{X})) + \frac{1}{\varepsilon}\right)$$
 by the first-order method.  
•  $O\left((f(x^0) - f_{\min}(\mathsf{X})) + \frac{1}{\sqrt{\varepsilon}}\right)$  by the second-order method.

- Inexact oracle information, inexact resolution of subproblems.
- Numerical implementation.





#### 1 Barrier algorithms for non-convex optimization

#### 2 Minimizing self-concordant functions

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions



#### Content



## **1** Barrier algorithms for non-convex optimization

- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

## 2 Minimizing self-concordant functions

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





$$f^* = \min_{x \in \mathsf{E}} f(x), \tag{13}$$

$$|D^3 f(x)[u, u, u]| \le 2M_f D^2 f(x)[u, u]^{3/2}.$$
(14)





$$f^* = \min_{x \in \mathsf{E}} f(x), \tag{13}$$

$$|D^{3}f(x)[u,u,u]| \le 2M_{f}D^{2}f(x)[u,u]^{3/2}.$$
(14)

Standard approach (e.g., [Nesterov, 2004]): apply Damped Newton Method (DNM)

$$x_{+} = x - \frac{[\nabla^2 f(x)]^{-1} \nabla f(x)}{1 + M_f \lambda_f(x)},$$
(15)

where  $\lambda_f(x) = \|\nabla f(x)\|_x^*$ .





$$f^* = \min_{x \in \mathsf{E}} f(x), \tag{13}$$

$$|D^3 f(x)[u, u, u]| \le 2M_f D^2 f(x)[u, u]^{3/2}.$$
(14)

Standard approach (e.g., [Nesterov, 2004]): apply Damped Newton Method (DNM)

$$x_{+} = x - \frac{[\nabla^2 f(x)]^{-1} \nabla f(x)}{1 + M_f \lambda_f(x)},$$
(15)

where  $\lambda_f(x) = \|\nabla f(x)\|_x^*$ . Local quadratic convergence if  $x \in \mathbb{Q} \triangleq \left\{ x \in \mathsf{E} : \ \lambda_f(x) \leq \frac{1}{2M_f} \right\}$ .





$$f^* = \min_{x \in \mathsf{E}} f(x), \tag{13}$$

$$|D^3 f(x)[u, u, u]| \le 2M_f D^2 f(x)[u, u]^{3/2}.$$
(14)

Standard approach (e.g., [Nesterov, 2004]): apply Damped Newton Method (DNM)

$$x_{+} = x - \frac{[\nabla^2 f(x)]^{-1} \nabla f(x)}{1 + M_f \lambda_f(x)},$$
(15)

where  $\lambda_f(x) = \|\nabla f(x)\|_x^*$ . Local quadratic convergence if  $x \in \mathbb{Q} \triangleq \left\{ x \in \mathsf{E} : \lambda_f(x) \leq \frac{1}{2M_f} \right\}$ . Complexity to reach  $\mathbb{Q}$ :

$$N \le \frac{\Delta(x_0)}{\omega\left(\frac{1}{2}\right)} = O(\Delta(x_0)), \quad \Delta(x_0) \ \triangleq \ M_f^2(f(x_0) - f^*). \tag{16}$$





Start from some  $x_0 \in E$ . Define the central path x(t) for  $0 \le t \le 1$ :

$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$




$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$

Clearly,  $x(1)=x_0 \ {\rm and} \ x(0)=x^*$ 





$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$

Clearly,  $x(1) = x_0$  and  $x(0) = x^*$  and this is a trajectory of minimizers:

$$x(t) = \arg\min_{x \in \mathsf{E}} \left\{ f_t(x) \triangleq f(x) - t \langle \nabla f(x_0), x \rangle \right\}, \quad 0 \le t \le 1.$$
(18)





$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$

Clearly,  $x(1) = x_0$  and  $x(0) = x^*$  and this is a trajectory of minimizers:

$$x(t) = \arg\min_{x \in \mathsf{E}} \left\{ f_t(x) \triangleq f(x) - t \langle \nabla f(x_0), x \rangle \right\}, \quad 0 \le t \le 1.$$
 (18)

Define:  $\beta = 0.026$ ,  $\gamma = 0.1125$ .

Our goal is to follow the central path approximately:

$$\lambda_{f_t}(x) \equiv \|\nabla f(x) - t\nabla f(x_0)\|_x^* \le \frac{\beta}{M_f}$$
(19)





$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$

Clearly,  $x(1) = x_0$  and  $x(0) = x^*$  and this is a trajectory of minimizers:

$$x(t) = \arg\min_{x \in \mathsf{E}} \left\{ f_t(x) \triangleq f(x) - t \langle \nabla f(x_0), x \rangle \right\}, \quad 0 \le t \le 1.$$
 (18)

Define:  $\beta=0.026,$   $\gamma=0.1125.$ 

Our goal is to follow the central path approximately:

$$\lambda_{f_t}(x) \equiv \|\nabla f(x) - t\nabla f(x_0)\|_x^* \le \frac{\beta}{M_f}$$
(19)

by the path-following (PF) scheme:

$$(t_{+}, x_{+}) = \mathcal{P}(t, x) \equiv \begin{cases} t_{+} = \max\left\{t - \frac{\gamma}{M_{f} \|\nabla f(x_{0})\|_{x}^{*}}, 0\right\}, \\ x_{+} = x - [\nabla^{2} f(x)]^{-1} (\nabla f(x) - t_{+} \nabla f(x_{0})). \end{cases}$$
(20)





$$\nabla f(x(t)) = t \nabla f(x_0). \tag{17}$$

Clearly,  $x(1) = x_0$  and  $x(0) = x^*$  and this is a trajectory of minimizers:

$$x(t) = \arg\min_{x \in \mathsf{E}} \left\{ f_t(x) \triangleq f(x) - t \langle \nabla f(x_0), x \rangle \right\}, \quad 0 \le t \le 1.$$
 (18)

Define:  $\beta = 0.026$ ,  $\gamma = 0.1125$ .

Our goal is to follow the central path approximately:

$$\lambda_{f_t}(x) \equiv \|\nabla f(x) - t\nabla f(x_0)\|_x^* \le \frac{\beta}{M_f}$$
(19)

by the path-following (PF) scheme:

$$(t_{+}, x_{+}) = \mathcal{P}(t, x) \equiv \begin{cases} t_{+} = \max\left\{t - \frac{\gamma}{M_{f} \|\nabla f(x_{0})\|_{x}^{*}}, 0\right\}, \\ x_{+} = x - [\nabla^{2} f(x)]^{-1} (\nabla f(x) - t_{+} \nabla f(x_{0})). \end{cases}$$
(20)

Unlike the standard setting, f is only a SCF, not SCB.

Minimization involving self-concordance · 27.08.2024 · Page 29 (48)





Let f be a  $M_f$ -self-concordant function.





# Complexity theorem for the path-following scheme [D., Nesterov, 2018]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \quad k \ge 0,$$
 (21)

where  $\mathcal{P}$  is defined in (20).



Minimization involving self-concordance · 27.08.2024 · Page 30 (48)



# Complexity theorem for the path-following scheme [D., Nesterov, 2018]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \quad k \ge 0,$$
 (21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ .



Minimization involving self-concordance · 27.08.2024 · Page 30 (48)



### Complexity theorem for the path-following scheme [D., Nesterov, 2018]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \ (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \ k \ge 0,$$
 (21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)





## Complexity theorem for the path-following scheme [D., Nesterov, 2018]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \ (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \ k \ge 0,$$
 (21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.





Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \ (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \ k \ge 0,$$
 (21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .





Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \quad k \ge 0,$$
(21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .

Global super linear convergence.





Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \quad k \ge 0,$$
(21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)

Moreover, when  $t_{k+1}=0,$  the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .

Global super linear convergence.

Improved, "accelerated", complexity  $\widetilde{O}(\sqrt{\Delta(x_0)})$  (cf.  $\widetilde{O}(\Delta(x_0))$  for the DNM).





Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \mathcal{P}(t_k, x_k), \quad k \ge 0,$$
(21)

where  $\mathcal{P}$  is defined in (20). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\gamma(\gamma - 2\beta)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\gamma(\gamma - 2\beta)N^2}{2M_f^2(f(x_0) - f^*)}\right\}.$$
 (22)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .

Global super linear convergence.

Improved, "accelerated", complexity  $\widetilde{O}(\sqrt{\Delta(x_0)})$  (cf.  $\widetilde{O}(\Delta(x_0))$  for the DNM).

Adaptive version: iteratively try step-sizes  $\gamma_k = 2^{1-i_k} \gamma_{k-1}$ .





Define:  $\beta=0.0015,$   $\gamma=0.1158.$ 

Predictor-corrector path-following (PCPF) scheme:

$$(t_{+}, x_{+}) = \widetilde{\mathcal{P}}(t, x) \equiv \begin{cases} t_{+} = \max\left\{t - \frac{\gamma}{M_{f} \|\nabla f(x_{0})\|_{x}^{*}}, 0\right\} \\ y = x - \frac{\gamma}{M_{f} \|\nabla f(x_{0})\|_{x}^{*}} [\nabla^{2} f(x)]^{-1} \nabla f(x_{0}) \\ x_{+} = y - [\nabla^{2} f(y)]^{-1} (\nabla f(y) - t_{+} \nabla f(x_{0})). \end{cases}$$
(23)

Unlike the standard setting, f is only an SCF, not SCB.





# Complexity theorem for PCPF scheme [D., Nesterov, 2022]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \widetilde{\mathcal{P}}(t_k, x_k), \quad k \ge 0,$$
 (24)

where  $\mathcal{P}$  is defined in (23). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\kappa(\beta, \gamma)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\kappa(\beta, \gamma)N^2}{M_f^2(f(x_0) - f^*)}\right\}.$$
 (25)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .

- Global super linear convergence.
- Improved, "accelerated", complexity  $\widetilde{O}(\sqrt{\Delta(x_0)})$  (cf.  $\widetilde{O}(\Delta(x_0))$  for the DNM).
- Adaptive version: iteratively try step-sizes  $\gamma_k = 2^{1-i_k} \gamma_{k-1}$ .





# Complexity theorem for PCPF scheme [D., Nesterov, 2022]

Let f be a  $M_f$ -self-concordant function. Consider the following process:

$$t_0 = 1, \ x_0 \in \mathbb{E}, \quad (t_{k+1}, x_{k+1}) = \widetilde{\mathcal{P}}(t_k, x_k), \quad k \ge 0,$$
 (24)

where  $\mathcal{P}$  is defined in (23). Assume that  $\lambda_f(x_k) \geq \frac{1}{2M_f}$  for all  $k = 0, \dots, N$ . Then

$$t_N \le \left(1 - \frac{\kappa(\beta, \gamma)N}{2M_f^2(f(x_0) - f^*)}\right)^N \le \exp\left\{-\frac{\kappa(\beta, \gamma)N^2}{M_f^2(f(x_0) - f^*)}\right\}.$$
 (25)

Moreover, when  $t_{k+1} = 0$ , the scheme automatically switches to the quadratically-convergent Newton method.

Finally, the complexity to find  $x_N \in Q$  is  $\widetilde{O}(\sqrt{\Delta(x_0)})$ .

- Global super linear convergence.
- Improved, "accelerated", complexity  $\widetilde{O}(\sqrt{\Delta(x_0)})$  (cf.  $\widetilde{O}(\Delta(x_0))$  for the DNM).
- Adaptive version: iteratively try step-sizes  $\gamma_k = 2^{1-i_k} \gamma_{k-1}$ .
- Improved constant factor compared to path-following scheme.





Find 
$$x$$
 s.t.  $x \in Q \subset \mathbb{R}^n$  and  $Ax = b$ , (26)

where  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ , Q – closed, convex with  $0 \in intQ$ .



Minimization involving self-concordance · 27.08.2024 · Page 33 (48)



Find 
$$x$$
 s.t.  $x \in Q \subset \mathbb{R}^n$  and  $Ax = b$ , (26)

where  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ , Q – closed, convex with  $0 \in intQ$ .

Improved constants in the complexity for minimization with primal method

$$\min \langle c, x \rangle \quad \text{s.t.} \quad x \in Q \subset \mathbb{R}^n, \tag{27}$$

Q – convex compact with nonempty interior.





Find 
$$x$$
 s.t.  $x \in Q \subset \mathbb{R}^n$  and  $Ax = b$ , (26)

where  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ , Q – closed, convex with  $0 \in intQ$ .

Improved constants in the complexity for minimization with primal method

$$\min \langle c, x \rangle \quad \text{s.t.} \quad x \in Q \subset \mathbb{R}^n, \tag{27}$$

Q – convex compact with nonempty interior.

Improved constants in the complexity for minimization with dual method

$$\min\langle c, x \rangle$$
 s.t.  $Bx = 0, \quad x \in Q \subset \mathbb{R}^n,$  (28)

where  $B \in \mathbb{R}^{m \times n}$  and  $0 \in intQ$ .





Find 
$$x$$
 s.t.  $x \in Q \subset \mathbb{R}^n$  and  $Ax = b$ , (26)

where  $x \in \mathbb{R}^n$ ,  $b \in \mathbb{R}^m$ ,  $A \in \mathbb{R}^{m \times n}$ , Q – closed, convex with  $0 \in intQ$ .

Improved constants in the complexity for minimization with primal method

$$\min \langle c, x \rangle \quad \text{s.t.} \quad x \in Q \subset \mathbb{R}^n, \tag{27}$$

Q – convex compact with nonempty interior.

Improved constants in the complexity for minimization with dual method

$$\min\langle c, x \rangle$$
 s.t.  $Bx = 0, x \in Q \subset \mathbb{R}^n$ , (28)

where  $B \in \mathbb{R}^{m \times n}$  and  $0 \in intQ$ .

P. Dvurechensky, Y. Nesterov. Global performance guarantees of second-order methods for unconstrained convex minimization. CORE Discussion Paper 2018/32.
P. Dvurechensky, Y. Nesterov. Improved global performance guarantees of second-order methods in convex minimization. arXiv:2408.11022.

Minimization involving self-concordance · 27.08.2024 · Page 33 (48)



### Content



# **1** Barrier algorithms for non-convex optimization

- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

# 2 Minimizing self-concordant functions

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \}, \tag{29}$$

where f is a  $M_f$  -self-concordant function,  $\psi$  is a simple closed convex function.



Minimization involving self-concordance · 27.08.2024 · Page 35 (48)



$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \}, \tag{29}$$

where f is a  $M_f\mbox{-self-concordant function}, \psi$  is a simple closed convex function. Related works

Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].





$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \},$$
(29)

where f is a  $M_f\mbox{-self-concordant function}, \psi$  is a simple closed convex function. Related works

- Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].
- Composite PF method [Tran-Dinh, Liang, Toh, 2022] with  $\psi$  Lipschitz.





$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \},$$
(29)

where f is a  $M_f$  -self-concordant function,  $\psi$  is a simple closed convex function. Related works

- Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].
- Composite PF method [Tran-Dinh, Liang, Toh, 2022] with  $\psi$  Lipschitz.
- Cubic regularization [Hanzely et al., 2022] for \u03c6 = 0 and semi-strongly self-concordant f, sublinear rate.





$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \},$$
(29)

where f is a  $M_f$  -self-concordant function,  $\psi$  is a simple closed convex function. Related works

- Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].
- Composite PF method [Tran-Dinh, Liang, Toh, 2022] with  $\psi$  Lipschitz.
- Cubic regularization [Hanzely et al., 2022] for  $\psi = 0$  and semi-strongly self-concordant f, sublinear rate.
- Newton algorithms with gradient norm regularization for *f* with Lipschitz Hessian [Mishchenko, 2021], [Doikov, Nesterov, 2021], [Doikov, Mishchenko, Nesterov, 2022] or quasi-self-concordant [Doikov, 2023].





$$\min_{x \in \mathsf{E}} \{ F(x) \triangleq f(x) + \psi(x) \},$$
(29)

where f is a  $M_f\mbox{-self-concordant function}, \psi$  is a simple closed convex function. Related works

- Proximal DNM [Tran-Dinh, Kyrillidis, Cevher, 2015].
- Composite PF method [Tran-Dinh, Liang, Toh, 2022] with  $\psi$  Lipschitz.
- Cubic regularization [Hanzely et al., 2022] for  $\psi = 0$  and semi-strongly self-concordant f, sublinear rate.
- Newton algorithms with gradient norm regularization for *f* with Lipschitz Hessian [Mishchenko, 2021], [Doikov, Nesterov, 2021], [Doikov, Mishchenko, Nesterov, 2022] or quasi-self-concordant [Doikov, 2023].

We analyze a Newton method with gradient norm regularization for self-concordant functions (GRN-SCF).





$$x^{+} = \arg\min_{y \in \mathsf{E}} \left\{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} f(x)(y - x), y - x \rangle \right. \tag{30}$$

$$+ \frac{\sigma \|F'(x)\|_x}{2} \|y - x\|_x^2 + \psi(y) \Big\},$$
(31)

where  $\sigma \geq 0$  and  $F'(x) \in \partial F(x),$  meaning that we use (sub)gradient regularization.



Minimization involving self-concordance · 27.08.2024 · Page 36 (48)



$$x^{+} = \arg\min_{y \in \mathsf{E}} \left\{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} f(x)(y - x), y - x \rangle \right. \tag{30}$$

$$+ \frac{\sigma \|F'(x)\|_x}{2} \|y - x\|_x^2 + \psi(y) \Big\},$$
(31)

where  $\sigma \geq 0$  and  $F'(x) \in \partial F(x),$  meaning that we use (sub)gradient regularization.

NB: if  $\psi$  is an indicator of a convex set, GRN-SCF requires projection.





$$x^{+} = \arg\min_{y\in\mathsf{E}} \left\{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} f(x)(y - x), y - x \rangle \right. \tag{30}$$

$$+ \frac{\sigma \|F'(x)\|_x}{2} \|y - x\|_x^2 + \psi(y) \Big\},$$
(31)

where  $\sigma \geq 0$  and  $F'(x) \in \partial F(x),$  meaning that we use (sub)gradient regularization.

NB: if  $\psi$  is an indicator of a convex set, GRN-SCF requires projection.

We show that the iterates stay on the sublevel set defined by the starting point  $\mathcal{L}(x^0) \triangleq \{x \in \operatorname{dom} \psi : F(x) \leq F(x_0)\}.$ 

We assume that this sublevel set is bounded.



$$x^{+} = \arg\min_{y\in\mathsf{E}} \left\{ \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} f(x)(y - x), y - x \rangle \right. \tag{30}$$

$$+ \frac{\sigma \|F'(x)\|_x}{2} \|y - x\|_x^2 + \psi(y) \Big\},$$
(31)

where  $\sigma \geq 0$  and  $F'(x) \in \partial F(x),$  meaning that we use (sub)gradient regularization.

NB: if  $\psi$  is an indicator of a convex set, GRN-SCF requires projection.

We show that the iterates stay on the sublevel set defined by the starting point  $\mathcal{L}(x^0) \triangleq \{x \in \operatorname{dom} \psi : F(x) \leq F(x_0)\}.$ 

We assume that this sublevel set is bounded. This implies

$$D(x^0) \triangleq \sup_{x,y \in \mathcal{L}(x^0)} \|y - x\|_x < +\infty.$$
(32)





# Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$  -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma=3M_f.$ 





# Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \ge 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$





# Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \ge 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$

Moreover, if  $\|F'(x^0)\|_{x^0}^* \leq rac{4}{45M_f}$ , GRN-SCF has local quadratic convergence

$$||F'(x^{k+1})||_{x^{k+1}}^* \le \frac{45M_f}{4} (||F'(x^k)||_{x^k}^*)^2.$$





# Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \geq 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$

Moreover, if  $\|F'(x^0)\|_{x^0}^* \leq rac{4}{45M_f}$ , GRN-SCF has local quadratic convergence

$$||F'(x^{k+1})||_{x^{k+1}}^* \le \frac{45M_f}{4} (||F'(x^k)||_{x^k}^*)^2.$$

We propose also an adaptive version.


#### **Complexity theorem**



## Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \ge 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$

Moreover, if  $\|F'(x^0)\|_{x^0}^* \leq rac{4}{45M_f}$ , GRN-SCF has local quadratic convergence

$$\|F'(x^{k+1})\|_{x^{k+1}}^* \le \frac{45M_f}{4} (\|F'(x^k)\|_{x^k}^*)^2.$$

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.



#### **Complexity theorem**



## Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \ge 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$

Moreover, if  $\|F'(x^0)\|_{x^0}^* \leq rac{4}{45M_f}$ , GRN-SCF has local quadratic convergence

$$\|F'(x^{k+1})\|_{x^{k+1}}^* \le \frac{45M_f}{4} (\|F'(x^k)\|_{x^k}^*)^2.$$

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence. Future work: combination of HBA and gradient regularization.



### **Complexity theorem**



## Complexity theorem for GRN-SCF [D., 2024]

Let in (29) f be a  $M_f$ -self-concordant function, sublevel set  $\mathcal{L}(x^0)$  be bounded,  $\sigma = 3M_f$ . Then, GRN-SCF has global linear convergence rate, i.e., for  $k \ge 1$ ,

$$F(x^{k}) - F(x^{*}) \le \exp\left(-\frac{k}{54M_{f}D(x^{0})}\right) \left(F(x^{0}) - F(x^{*})\right) + \exp\left(-\frac{k}{4}\right) g_{0}D(x^{0}).$$

Moreover, if  $\|F'(x^0)\|_{x^0}^* \leq rac{4}{45M_f}$ , GRN-SCF has local quadratic convergence

$$\|F'(x^{k+1})\|_{x^{k+1}}^* \le \frac{45M_f}{4} (\|F'(x^k)\|_{x^k}^*)^2.$$

We propose also an adaptive version.

Ours vs [Hanzely et al., 2022]: wider problem class and linear convergence.

Future work: combination of HBA and gradient regularization.

P. Dvurechensky. Newton method with gradient regularization for minimizing self-concordant functions. In preparation.



#### Content



# 1 Barrier algorithms for non-convex optimization

- Problem statement
- Self-concordant barriers
- Approximate optimality conditions
- First-order algorithm
- Second-order algorithm

## 2 Minimizing self-concordant functions

- Unconstrained minimization by path-following methods
- Composite minimization by gradient regularization of Newton method
- Projection-free constrained minimization of self-concordant functions





$$\min_{\in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f$ -self-concordant function,

x





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x), \tag{P}$$

where f is  $M_f$ -self-concordant function,

 $\mathcal{X}$  – convex compact with atomic or another Linear Minimization Oracle (LMO)

friendly structure:  $\ell_1$ -ball, Spectrahedron, etc.  $\Rightarrow$  Frank-Wolfe (FW)/Conditional

Gradient (CG) methods [Frank & Wolfe, 1956], [Levitin & Polyak, 1966], [Jaggi, 2013].





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f$ -self-concordant function,

 $\mathcal{X}$  – convex compact with atomic or another Linear Minimization Oracle (LMO) friendly structure:  $\ell_1$ -ball, Spectrahedron, etc.  $\Rightarrow$  Frank-Wolfe (FW)/Conditional Gradient (CG) methods [Frank & Wolfe, 1956], [Levitin & Polyak, 1966], [Jaggi, 2013]. Standard analysis relies on Lipschitz gradient/bounded curvature.

Minimization involving self-concordance · 27.08.2024 · Page 39 (48)



$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f\mbox{-self-concordant}$  function,

 $\mathcal{X}$  – convex compact with atomic or another Linear Minimization Oracle (LMO) friendly structure:  $\ell_1$ -ball, Spectrahedron, etc.  $\Rightarrow$  Frank-Wolfe (FW)/Conditional Gradient (CG) methods [Frank & Wolfe, 1956], [Levitin & Polyak, 1966], [Jaggi, 2013]. Standard analysis relies on Lipschitz gradient/bounded curvature. Related works

Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f$ -self-concordant function,

- Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.
- [Odor et al., 2016] FW algorithm for Poisson inverse problem in phase retrieval.





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f\mbox{-self-concordant}$  function,

- Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.
- [Odor et al., 2016] FW algorithm for Poisson inverse problem in phase retrieval.
- Liu et al., 2020] Newton-FW algorithm for minimizing self-concordant functions.





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f\mbox{-self-concordant}$  function,

- Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.
- [Odor et al., 2016] FW algorithm for Poisson inverse problem in phase retrieval.
- Liu et al., 2020] Newton-FW algorithm for minimizing self-concordant functions.
- [Carderera & Pokutta, 2020] Newton-FW approach for objectives with Lipschitz Hessians.





$$\min_{x \in \mathcal{X} \subset \mathsf{E}} f(x),$$

where f is  $M_f\mbox{-self-concordant}$  function,

- Bach, 2010], [Ostrovskii & Bach, 2018] Non-Lipschitz smooth losses in ML.
- [Odor et al., 2016] FW algorithm for Poisson inverse problem in phase retrieval.
- Liu et al., 2020] Newton-FW algorithm for minimizing self-concordant functions.
- [Carderera & Pokutta, 2020] Newton-FW approach for objectives with Lipschitz Hessians.
- [Zhao & Freund, 2020] FW for composite minimization involving LHSCB.





 $\text{Linear minimization oracle: } s(x) = \operatorname{argmin}_{s \in \mathcal{X}} \langle \nabla f(x), s \rangle.$ 



Minimization involving self-concordance · 27.08.2024 · Page 40 (48)



$$\begin{split} \text{Linear minimization oracle: } s(x) &= \operatorname{argmin}_{s \in \mathcal{X}} \langle \nabla f(x), s \rangle. \\ \text{FW gap } \operatorname{Gap}(x) &= \langle \nabla f(x), x - s(x) \rangle \text{ (NB: } \operatorname{Gap}(x) \geq f(x) - f^*). \end{split}$$





$$\begin{split} \text{Linear minimization oracle:} & s(x) = \operatorname{argmin}_{s \in \mathcal{X}} \langle \nabla f(x), s \rangle. \\ \text{FW gap } \operatorname{Gap}(x) = \langle \nabla f(x), x - s(x) \rangle \text{ (NB: } \operatorname{Gap}(x) \geq f(x) - f^*). \end{split}$$

# Frank-Wolfe method for SCF:

 $\label{eq:constant} \begin{array}{l} \mbox{While } {\rm Gap}(x^k) > \varepsilon \mbox{ do} \\ \mbox{1. Obtain } s^k = s(x^k); \end{array}$ 





$$\begin{split} \text{Linear minimization oracle: } s(x) &= \operatorname{argmin}_{s \in \mathcal{X}} \langle \nabla f(x), s \rangle. \\ \text{FW gap } \operatorname{Gap}(x) &= \langle \nabla f(x), x - s(x) \rangle \text{ (NB: } \operatorname{Gap}(x) \geq f(x) - f^*). \end{split}$$

## Frank-Wolfe method for SCF:

$$\begin{array}{l} \text{While } {\rm Gap}(x^k) > \varepsilon \ {\rm do} \\ \text{1. Obtain } s^k = s(x^k); \\ \text{2. Set } \alpha_k = \min \Big\{ 1, \frac{{\rm Gap}(x^k)}{M_f \|s^k - x^k\|_{x^k} ({\rm Gap}(x^k) + M_f \|s^k - x^k\|_{x^k})} \Big\}; \end{array}$$





$$\begin{split} \text{Linear minimization oracle: } s(x) &= \operatorname{argmin}_{s \in \mathcal{X}} \langle \nabla f(x), s \rangle. \\ \text{FW gap } \operatorname{Gap}(x) &= \langle \nabla f(x), x - s(x) \rangle \text{ (NB: } \operatorname{Gap}(x) \geq f(x) - f^*). \end{split}$$







# Let

$$S(x^0) = \{x \in \mathcal{X} | f(x) \le f(x^0)\}, \text{ and } L_{\nabla f} = \max_{x \in S(x^0)} \lambda_{\max}(\nabla^2 f(x)).$$





## Let

$$S(x^0) = \{x \in \mathcal{X} | f(x) \le f(x^0)\}, \text{ and } L_{\nabla f} = \max_{x \in S(x^0)} \lambda_{\max}(\nabla^2 f(x)).$$

Complexity theorem for FW-SCF [D., Ostroukhov, Safin, Shtern, Staudigl, 2020]

For given 
$$\varepsilon > 0$$
, define  $N_{\varepsilon}(x^0) = \min\{k \ge 0 | f(x^k) - f^* \le \varepsilon\}$ . Then,

$$N_{\varepsilon}(x^{0}) \leq \frac{1}{c_{1}} \ln \left( \frac{c_{1}}{(f(x^{0}) - f^{*})c_{2}} \right) + \frac{4L_{\nabla f} \operatorname{diam}(\mathcal{X})}{\varepsilon},$$

where  $c_1, c_2$  are explicit constants depending on  $M_f, L_{\nabla f}, \operatorname{diam}(\mathcal{X})$ .





We also propose extensions:

Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];





We also propose extensions:

- Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];
- Line-search variants;





We also propose extensions:

- Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];
- Line-search variants;
- Linearly Convergent Variants on polytopes;





We also propose extensions:

- Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];
- Line-search variants;
- Linearly Convergent Variants on polytopes;
- A conditional gradient homotopy method for conic-constrained problems:

$$\min_{x} g(x) \quad \text{s.t. } x \in X, Ax \in K \subseteq H, \tag{P}$$

where g is a closed convex lsc function,  $X \subset \mathsf{E}$  is a LMO-friendly convex compact,  $A : \mathsf{E} \to H$  is an affine mapping, and K is a closed convex pointed cone.





We also propose extensions:

- Minimization of generalized self-concordant functions [Sun & Tran-Dinh, 2018];
- Line-search variants;
- Linearly Convergent Variants on polytopes;
- A conditional gradient homotopy method for conic-constrained problems:

$$\min_{x} g(x) \quad \text{s.t. } x \in X, Ax \in K \subseteq H, \tag{P}$$

where g is a closed convex lsc function,  $X \subset \mathsf{E}$  is a LMO-friendly convex compact,  $A : \mathsf{E} \to H$  is an affine mapping, and K is a closed convex pointed cone.

P. Dvurechensky, P. Ostroukhov, K. Safin, S. Shtern, M. Staudigl, Self-Concordant Analysis of Frank-Wolfe Algorithms, ICML 2020

- P. Dvurechensky, K. Safin, S. Shtern, M. Staudigl, Generalized Self-Concordant
- Analysis of Frank-Wolfe algorithms, Math. Progr., 2022
- P. Dvurechensky, S. Shtern, M. Staudigl, A conditional gradient homotopy method with applications to Semidefinite Programming. arXiv:2207.03101, 2022





# Thank you for your attention!



Minimization involving self-concordance · 27.08.2024 · Page 43 (48)



P. Dvurechensky, M. Staudigl, Hessian barrier algorithms for non-convex <u>conic</u> optimization, Mathematical Programming, 2024 (arXiv:2111.00100, 2021).
P. Dvurechensky, M. Staudigl, Barrier Algorithms for Constrained Non-Convex Optimization, ICML 2024.

P. Dvurechensky, Y. Nesterov. Global performance guarantees of second-order methods for unconstrained convex minimization. CORE Discussion Paper 2018/32.

P. Dvurechensky, Y. Nesterov. Improved global performance guarantees of second-order methods in convex minimization. arXiv:2408.11022.

P. Dvurechensky. Newton method with gradient regularization for minimizing self-concordant functions. To appear on arXiv.

P. Dvurechensky, P. Ostroukhov, K. Safin, S. Shtern, M. Staudigl, Self-Concordant Analysis of Frank-Wolfe Algorithms, ICML, 2020

P. Dvurechensky, K. Safin, S. Shtern, M. Staudigl, Generalized Self-Concordant Analysis of Frank-Wolfe algorithms, Math. Progr., 2022

P. Dvurechensky, S. Shtern, M. Staudigl, A conditional gradient homotopy method

with applications to Semidefinite Programming, arXiv:2207.03101, 2022





Regularized non-linear regression problem: training input convex neural networks (ICNN) with sparsity penalty ICNN:  $\Phi(z, x)$ , where z is the input data and x are parameters. If  $x \ge 0$  and ReLU

nonlinearity is used, then  $\Phi(\cdot, x)$  is convex. But, the training problem is non-convex.

$$\min_{x \ge 0} \left\{ f(x) = \|\Phi(\hat{z}, x) - \hat{y}\|_2^2 + \lambda \|x\|_p^p \right\},\tag{33}$$

where  $\ell(x)$  is a non-convex loss function,  $\lambda > 0, p \in (0, 1)$ .





Recent interest in non-Lipschitz smooth losses

- **[**Bach, 2010] Logistic regression as a generalized self-concordant function.
- [Owen, 2013] Self-concordance for empirical likelihood.
- [Odor et al., 2016] Poisson inverse problem in phase retrieval.
- [Ostrovskii & Bach, 2018] Finite-sample analysis of M-estimators using self-concordance.
- [Marteau-Ferey et al., 2019] Beyond least-squares: Fast rates for regularized empirical risk minimization through self-concordance.





[Nesterov & Nemirovski, 1994]

Portfolio Optimization

$$f(x) = -\sum_{t=1}^{T} \ln(\langle r_t, x \rangle), x \in \mathcal{X} = \Delta_n$$

Covariance Estimation:

$$f(x) = -\ln(\det(x)) + \operatorname{tr}(\Sigma x),$$
  
$$x \in \mathcal{X} = \{x \in \mathcal{S}^n_+ : \|\operatorname{vec}(x)\|_1 \le R\}.$$

Poisson Inverse Problem

$$f(x) = \sum_{i=1}^{m} \langle w_i, x \rangle - \sum_{i=1}^{m} y_i \ln(\langle w_i, x \rangle),$$
$$x \in \mathcal{X} = \{ x \in \mathbb{R}^n | \|x\|_1 \le R \}.$$







• Logistic Loss (
$$\nu = 2$$
 or  $\nu = 3$ ).

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp(b_i \langle a_i, x \rangle)\right) + \frac{\mu}{2} ||x||_2^2.$$

where  $b_i \in \{-1,1\}, \mu > 0, a_i \in \mathbb{R}^n$ .

**Robust regression** ( $\nu = 2$ )

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \varphi(b_i - \langle a_i, x \rangle), \ \varphi(u) = \ln(e^u + e^{-u}).$$

Distance-Weighted Discrimination ( $\nu = 2(q+3)/(q+2)$ )

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} (a_i^{\top} w + \beta y_i + \xi_i)^{-q} + \langle c, \xi \rangle, \ x = (w, \beta, \xi).$$

