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Abstract

When lattice Boltzmann methods are used to simulate fluid-structure interaction
problems, they need to be coupled with additional routines to evaluate the bound-
ary forces without destroying the efficiency and accuracy of the original method.
We use the asymptotic expansion technique to analyze one such approach, the Mo-

mentum Exchange algorithm, investigating in detail its properties, whether it can
be improved and in which cases it can be successfully used. A statement regarding
the accuracy is presented, together with results of numerical tests which illustrate
the theoretical considerations.
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1 Introduction

In recent years, applications of the lattice Boltzmann method (LBM) have
been extending towards fluid-structure interaction problems, taking advantage
of the ability of the LBM in modeling flows through complex geometries. Such
problems, however, require special routines to evaluate the boundary forces due
to the fluid flow.

Since the best characteristics of the LBM lie in its efficiency, the additional al-
gorithm should be able to preserve this property, in order to keep the LBM nu-
merically competitive. We focus on the Momentum Exchange algorithm (pro-
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posed in [1]), which models the fluid-boundary interaction based on simple
particle dynamics, and which requires only a low additional computational ef-
fort. In fact, this method has been used in numerical simulations [2,3] but, to
the knowledge of the authors, has not been investigated theoretically in depth.
In this paper, we present an asymptotic analysis of the algorithm, discussing
in general the consistency and the accuracy of the method.

In section 2 we set up the flow model and the benchmarks. LBM and MEA
are described in section 3. Section 4 contains a first analysis of the MEA,
together with the numerical tests. Finally, in section 4.1 we analyze in detail
the evaluation of local forces and enunciate a theoretical result regarding the
accuracy of the MEA.

2 The flow model

In order to study the boundary force evaluation within the lattice Boltzmann
method, we consider a two-dimensional flow in the unit square Ω = [0, 1)2

with periodic boundary conditions. A disk ΩS(t) ⊂ Ω with radius R < 1 is
considered as a solid body which is separated from the fluid region ΩF (t) by
the common interface Γ(t), i.e. Ω = ΩF ∪ Γ ∪ΩS (see fig. 1a). Physically, this
situation models a cross section through a flow around a periodic array of long
cylinders. For this reason, we refer to the problem as cylinder-in-flow (CiF).

For simplicity, we assume that ΩS(t) moves with a given velocity along a
prescribed path. This will help us to formulate simple test problems for which
the exact boundary forces are known. If the state of the system is known
at the initial time t = 0, the dynamics of the fluid can be described by an
incompressible Navier-Stokes problem with initial and boundary values











∇ · u = 0

∂tu + ∇p + ∇ · (u ⊗ u) = ν∇2u + G
t > 0, x ∈ ΩF (t)

u(t,x) = uB(t,x), t > 0, x ∈ Γ(t)

u(0,x) = u0(x) x ∈ ΩF (0)

(1)

where uB(t,x) is the given velocity of the interface point x ∈ Γ(t) at time t

and G is the volume force acting on the fluid 1 .

1 We consider incompressible flows where the density of the fluid is given by a
constant reference density ρ0. In the formulation of the Navier-Stokes equation (1)
we denote with p the kinematic pressure, which is defined as the dynamic pressure
divided by the density. Using a scaling where ρ0 = 1, the two quantities coincide.
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The total boundary force 2 is evaluated according to

FS(t) =
∫

Γ(t)
(−p(t,x)I + S(t,x)) · n(x)dσ(x) (2)

where

S = ν
(

∇u + ∇uT
)

(3)

is the viscous stress tensor and n the normal vector to Γ pointing out of the
solid domain. If t denotes the tangential vector to Γ, which is obtained by
following the interface counterclockwise, the local stresses are

ft = (S · n) · t, fn = −p + (S · n) · n. (4)

In order to test the lattice Boltzmann algorithm presented below, we use two
simple exact solutions of (1) denoted CiF0 and CiF1. In the case of CiF0,
we move the disk with constant velocity u0 in a flow with the same constant
velocity, zero pressure, and vanishing body force G = 0. As a consequence,
the local stresses vanish and the total boundary force is zero.

In the case CiF1, we again move the body with a constant velocity u0 in the
constant flow field u(t,x) = u0. However, to obtain a non-trivial local force,
we choose a periodic function p0 and define the body force G = ∇p0 which
generates a pressure p(t,x) = p0(x). For the particular choice

p0(x, y) = sin (2πx) cos (2πy) (5)

we obtain

ft(t, θ) = 0,

fn(t, θ) = − sin (2π(xC(t) + R cos θ)) cos (2π(yC(t) + R sin θ)).
(6)

3 The lattice Boltzmann method

The lattice Boltzmann method can be viewed as a discretized form of a finite
velocity model Boltzmann equation

∂tfi + ci · ∇fi = Ji(f), i = 0, . . . , N (7)

2 The total torque acting on the solid,

T(t) =

∫

Γ(t)
(x − xCM ) × [(−p(t,x)I + S(t,x)) · n(x)] dσ(x),

could be considered in the same way.
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where V = {ci}i=0,...,N is the finite velocity set. In equation (7), the variable
fi(t,x) represents the mass density distribution of the particles moving in
direction ci, at time t and position x. On the right hand side, the collision
operator Ji(f) models the effects of the collisions between particles, producing
variations in the distributions. In the presented numerical results, the two-
dimensional D2Q9 model has been used with velocities

c0 = (0, 0),

c1 = (1, 0), c2 = (1, 1), c3 = (0, 1), c4 = (−1, 1),

c5 = (−1, 0), c6 = (−1,−1), c7 = (0,−1), c8 = (1,−1).

(8)

Details and overviews of the lattice Boltzmann method, as well as description
of this model, can be found in [4].

In describing the LBM a dimensionless lattice units reference system is used,
where space and time units are represented by grid size and time step. In
problem relevant scales, time step ∆t and space step h are related by the
diffusive scaling ∆t = h2 which is a prerequisite to recover the incompressible
Navier-Stokes equations in the limit (see [5] for a detailed discussion). The
numerical results of LBM, at time tn = nh2 and at position xj = hj, are

expressed by functions f̂i(n, j) : N × Z
2 → R. With the BGK approximation

of Ji on the right hand side of (7), the general iteration of the algorithm reads

f̂i(n + 1, j + ci) = f̂i(n, j) +
1

τ
(f eq

i (f̂) − f̂i)(n, j) + gi(n, j). (9)

The equilibrium distribution f eq is a function of f̂ , through the moments ρ̂ =
∑

i f̂i and û =
∑

i cif̂i, denoted as

f
eq
i (f) = H

eq
i (ρ(f),u(f)) . (10)

The expression of Heq depends on the model. For the considered D2Q9 model
(as well as for the three-dimensional D3Q15), it reads

H
eq
i (ρ,u) = f ∗

i

(

ρ + c−2
s ci · u +

c−4
s

2

(

|ci · u|2 − c2
su

2
)

)

. (11)

The relaxation time τ in equation (9) is related to a dimensionless viscosity
through ν = c2

s(τ − 1
2
). Model depending are the lattice sound speed cs and

the weights f ∗

i (see [4]). The term gi is responsible for the force

gi(n, j) = c−2
s h3f ∗

i ci ·G(tn,xj).

In practice, the algorithm is implemented by splitting collision and transport,
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introducing the post-collisional distribution

f̂ c
i (n, j) = f̂i(n, j) +

1

τ
(f eq

i (f̂) − f̂i)(n, j) + gi(n, j), (12)

corresponding to the right hand side of equation (9).
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Figure 1. (a) The CiF problem. In a periodic square [0, 1] × [0, 1] a circle of radius
R = 0.2, located in the center, interacts with the flow. The coordinate on the interface
is denoted with θ. (b) A grid point xk ∈ ΩF (◦) is called boundary node if it has
at least one neighbor xk + hci (×) in the solid domain ΩS. The outgoing direction i

will then intersect the boundary Γ at the point bi(k) (�). (c) To update f̂i∗ according
to the Dirichlet condition, the BFL rule uses a combination of the populations after

collision at two neighbor nodes, involving the distance q between the boundary and xk,
and the velocity at the point bi(k) on the boundary.

Boundary conditions. To include the Dirichlet boundary conditions for the
average velocity, an additional boundary algorithm has to be coupled to (9).
Among the available approaches, we consider the BFL rule, described in [6].
From the computational point of view, we consider those grid points as fluid
nodes which belong to the fluid domain ΩF or to the interface Γ. According to
the notation in figure 1b-c, for a boundary node xk = hk ∈ ΩF ∪ Γ such that
xk + hci ∈ ΩS , we define

f̂i∗(n + 1,k) =



























2qf̂ c
i (n,k) + (1 − 2q)f̂ c

i (n,k − ci)+

2c−2
s f ∗

i ci · uB

q ≤ 1
2

1
2q

f̂ c
i (n,k) + (1 − 1

2q
)f̂ c

i∗(n,k)+
1
q
c−2
s f ∗

i ci · uB

q > 1
2

(13)

where i∗ is such that ci∗ = −ci, q ∈ [0, 1) is the node-boundary distance along
the link ci and uB is evaluated at

bi(k) = xk + qhci. (14)

Notice that the variable q can assume the value zero, since the interface Γ has
been considered as part of the computational fluid domain.

Moving boundaries. When the solid disk is moving through the computa-
tional domain according to the prescribed velocity, certain nodes which have
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been solid nodes at time step n will become fluid nodes in step n + 1. Con-
versely, fluid nodes may disappear and become solid nodes. To deal with this
problem, we use the method presented in [8] which amounts to an extrapo-
lation of the missing information. This is needed for the practical implemen-
tation of the presented benchmarks. However, in the present context details
concerning the movement are not relevant. In fact, the boundary forces are re-
lated to the state of the system (i.e. p and ∇u) which is stationary (in leading
order) for the test cases considered here. The special choice of the stationary
solution is an expedient to have numerical results which do not depend on the
particular algorithm chosen to deal with moving boundaries, since we do not
consider this topic here. However, the following analysis is valid in general,
also for time depending solutions.

Momentum Exchange algorithm Finally, we approximate the integral (2)
using the Momentum Exchange Algorithm (MEA), proposed in its original
form by Ladd[1], which allows to evaluate the interaction between fluid and
boundary using directly the variables of LBM. The idea is to consider the mo-
mentum transferred to the solid from each boundary fluid node xk, interacting
with the boundary along a link ci (see fig. 1), given by the difference between
the distributions moving in opposite directions

φi(n,k) = cif̂
c
i (n,k) − ci∗ f̂i∗(n + 1,k) = ci

(

f̂i∗(n + 1,k) + f̂ c
i (n,k)

)

. (15)

Defining the boundary set

B(Γ) =
{

(k, i) ∈ Z
2 × V | xk ∈ ΩF ∪ Γ,xk+ci

∈ ΩS

}

(16)

which collects the boundary nodes and the directions crossing the boundary,
the approximation of the force (denoted with F̂) acting on the boundary is
obtained by taking the sum of all the contributions (15)

F̂ =
∑

(k,i)∈B(Γ)

φi(n,k). (17)

In practice, the algorithm can be summarized as follows

Algorithm 1

Construct the boundary set B(Γ) (equation (16))

Initialize F̂ = 0
DO over B(Γ)

LB-collision: → f̂ c
i (n,k)

boundary condition: → f̂i∗(n + 1,k)

momentum exchanged: φi(n,k) = ci

(

f̂i∗(n + 1,k) + f̂ c
i (n,k)

)

update: F̂ = F̂ + φi(n,k)
end
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4 Numerical tests and asymptotic analysis

Algorithm 1 is now tested on the problem CiF0. In absence of pressure, we
compare the results for the local stresses, by evaluating the momentum ex-
changed point by point along the boundary, when the flow and the cylinder
are fixed (u0 = 0), or both moving with the same velocity u0 = (5, 0) (fig.
2). Despite the trivial exact solution ft = fn = 0, we observe the presence of
local forces in relevant orders, different in the two cases and highly irregular,
even if the pressure and the velocity over all the domain are exact.
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Figure 2. Results of the MEA for the normal stress fn, simulating CiF0 on a 25 × 25
grid. For each boundary point bi(k) the value computed with (15) at the corresponding
node xk is drawn. The exact solution is fn = 0. (a) Flow at rest, u0 = (0, 0). The
results show strong oscillations. Note that consecutive points (×) are not connected by
lines for clarity. (b) Zoom on a small part of the boundary around the north pole θ = π

2
now with connecting lines to demonstrate the oscillation. (c) Same model as in (a),
but with u0 = (5, 0). Galilean invariance is not satisfied (in the relevant order).

In order to understand this behavior, we investigate the properties of the
algorithm assuming the LB solution to be representable as a sum [5]

f̂i(n, j) = f
(0)
i (nh2, jh) + hf

(1)
i (nh2, jh) + h2f

(2)
i (nh2, jh) + . . . , (18)

with coefficients f
(k)
i sufficiently smooth and h-independent. Explicitly, the

lower orders f
(k)
i are derived by inserting equation (18) into (9) and into the

boundary algorithm (13), Taylor expanding and sorting the orders in h. We
have [5,7]

f
(0)
i = f ∗

i ,

f
(1)
i = f ∗

i c−2
s ci · u,

f
(2)
i = f ∗

i c−2
s p + f ∗

i
c−4
s

2
(|ci · u|2 − c2

su
2) − τf ∗

i c−2
s (ci · ∇)ci · u,

(19)

where u and p solve the Navier-Stokes equations (1). In other words, the
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truncated expansion

F̂i = f
(0)
i + hf

(1)
i + h2f

(2)
i , (20)

predicts the LB solution up to order h3. Since suitable velocity moments of
F̂i yield the Navier-Stokes solution u, p as well as the stress tensor S, we
conclude that the corresponding moments of f̂i give rise to approximations of
these fields. In particular,

û =

∑

i cif̂i

h
, p̂ = c2

s

∑

i f̂i − 1

h2
. (21)

are approximations of second order in h for u and first order for p. The tensor
S can be approximated (first order) by

Ŝ[u] = − ν

τc2
sh

2

∑

i

ci ⊗ ci

(

f̂i − f
eq
i (f̂)

)

. (22)

To understand the behavior of the MEA, and to establish a connection between
the values φi and the integral we want to compute, the results of the asymp-
totic analysis (summarized in (19)) are applied. For each couple (k, i) ∈ B,
the point bi(k) defined in (14) is the intersection between Γ and the link ci

from node k. Inserting (19) into (15), taking into account equation (13) for
the population f̂i∗, which are updated with the boundary algorithm, we obtain
(dropping the time dependence for brevity)

φi(k) = φ
(0)
i (xk) + h2φ

(2)
i (xk) + O(h3), (23)

with

φ
(0)
i (xk) = 2f ∗

i ci

φ
(2)
i (xk) = 2f ∗

i c−2
s

(

p +
c−2
s

2

(

|ci · uB|2 − c2
su

2
B

)

− c−2
s νci · ∇uB · ci

)

ci.
(24)

All the quantities on the right hand sides of equations (23)-(24) are evaluated
at the boundary point bi(k). To better understand equation (24), we look at
a simple example, with an horizontal boundary, on the top of the fluid flow
(figure 3a).

In our notation for the discrete velocities (8), the last row of fluid nodes
interacts with the solid along the directions i = 2, 3, 4. Computing explicitly
the sum Φ(k) = φ2(k) + φ3(k) + φ4(k) with equation (24), for a particular
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Figure 3. (a) Formula (24) for horizontal boundary. The points on the boundary (�)
where the functions are evaluated can be interpreted as nodes of a quadrature rule
for the integral (2) over an interval of length h. The location of such nodes depends
on the distance q. (b) Meaning of the coarser grid hc introduced in lemma 4.1. For
a point b0 ∈ Γ (�), the local boundary I0(hc) (bold line) can be identified as a ball
centered in b0 and diameter hc, intersected with the interface.The momentum exchange
is evaluated at the points interacting with I0(hc) (•).

boundary node xk, we have (omitting the dependence on xk on the RHS)

Φ(k) = −1
3







0

1





+ h2







−1
2
[Sxy(b2) + Sxy(b4)]

1
6
[p(b2) + 4p(b3) + p(b4)] − Syy(b3)





+

+h2







1
2
[uB(b2)vB(b2) + uB(b4)vB(b4)]

1
6
[vB(b2) + 4vB(b3)

2 + vB(b4)
2]





+ O(h3)

(25)

The zero order term is responsible for the surplus of pressure, and is not related
to integral (2). The second order is a combination of quadrature formulas over
a small interval on the boundary for the functions p, S, plus a quadratic
function of velocity, which breaks the Galilean invariance (as happened in the
test problem CiF0, fig.2).

After discovering the unwanted terms in expression (24), we can easily define
a corrected momentum exchange algorithm, based on the values

φi(k) = φi(k) − 2f ∗

i ci − h2f ∗

i c−4
s

(

|ci · uB(bi(k))|2 − c2
suB(bi(k))2

)

ci. (26)

Using this modification, the simple test problem CiF0 with zero boundary
stresses is now solved correctly.

We continue our analysis with problem CiF1 where a prescribed pressure dis-
tribution appears on the boundary. Results obtained with the modified MEA
are shown in figure 4. Obviously, the approximation of the local stresses is still
unsatisfactory. The numerical tests (fig.4) show a highly irregular behavior.
Observe that the leading order of the expansion of the corrected momentum
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Figure 4. Problem CiF1 (pressure different from 0). (a) The symbols (×) denote the
values (26) for each boundary couple (k, i) versus the related point bi(k) ∈ Γ, identified
by θ ∈ [0, 2π), for a 50 × 50 grid. The solid line is the exact solution (6). The high
frequence oscillation is explained by the i-dependence of the momentum exchange. In
fact, along the interface two successive intersection points are in general related to
different links ci. (b) Results using a 100 × 100 grid. The approximation on the fine
scale is more noisy, but does not improve (compare with (a)) the approximation of the
local stresses. The values, sampled by the crosses × are strongly oscillating, on a very
dense grid, which seems to result in different solid lines (similar to what appeared in
figure 2c). Averaged values, computed grouping the points according to a grid hc = h0.5

(�), are indicated by diamonds.

exchange (26) consists now only of the corrected second order coefficient

φ
(2)
i (xk) = 2f ∗

i c−2
s

(

p(bi(k)) − c−2
s νci · ∇uB(bi(k)) · ci

)

ci. (27)

It contains the pressure and the gradient of velocity evaluated at the boundary
point bi(k) ∈ Γ. However, the weights multiplying the functions in equation
(27) depend on the direction ci. In the special case of horizontal boundary
the sum of momentum exchange in a boundary node (25) had a clear relation
with an approximate integration rule. Since for general curved boundary the
distribution of these points and the outgoing directions along the interface is
in general irregular, the momentum exchange in a single boundary node might
not be directly related to an approximation of the stresses on the interface.

4.1 Averaging the momentum exchange

Moreover, using directly the momentum exchange φi(k) as approximation of
the stress in the point bi(k) allows only to define the boundary interaction
in special points (the intersections between grid and lattice). In other words,
the MEA does not allow to define the force acting on an arbitrary b ∈ Γ. To
overcome this problem, we have analyzed an averaged value of the momentum
exchanged along small intervals on the boundary.
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In practice, we choose a point b0 ∈ Γ and a coarse grid size hc > h. The
approximation of the local force in b0 is computed summing all the momentum
exchange contributions (with a proper weight relating h and hc) of the couples
(k, i) ∈ B(Γ) such that the corresponding bi(k) belongs to an hc neighborhood
of b0. This leads to better results (fig. 4b).

Formalizing the procedure, we have the following result (valid also for the
three dimensional D3Q15 model):

Lemma 4.1 Let b0 ∈ Γ be a point on a smooth d-dimensional interface (d =
1, 2). Given the LB-grid size h, we consider a coarser grid hc, such that h =

o(hc). The related interval is given by I0(hc,b0) =

{

b ∈ Γ : |b − b0| <
hc

2

}

.

Defining local averages of the exact and approximate normal stress in I0

I(b0, hc) =
1

hd
c

∫

I0

(−pI + S) · n dσ,

Φ̂(b0, hc) =

(

h

hc

)d
∑

(k,i):bi(k)∈I0

φi(k)

h2

the following estimate holds

∣

∣

∣I(b0, hc) − Φ̂(b0, hc)
∣

∣

∣ = O

(

hc +
h

hc

)

. (28)

The proof is based on writing the sum Φ̂(b0, hc) in terms of the functions
p and S using equation (24) combined with a Taylor expansion around the
node b0. The resulting expressions can be viewed as approximate integration
rules on the interface. Unfortunately, the weights of the arising quadrature
formulas do not sum up exactly to one at every node which rules out first
order accuracy. However, using some arithmetical properties of the weights,
it can be shown that the deviation from one goes to zero if the weights are
summed over subsets of the interface which are large compared to the grid
size h of the regular grid. On the other hand, the Taylor approximation is less
accurate if it is used on a coarse mesh of typical distance hc. Hence, a balance
between fine and coarse grid arises in equation (28), and to obtain an optimal
error bound, a good compromise is required.

Optimal coarsening. Choosing hc =
√

h, equation (28) gives

∣

∣

∣I(b0,
√

h) − Φ̂
(

b0,
√

h
)∣

∣

∣ = O
(√

h
)

. (29)

To validate the result of lemma 4.1, we compare the momentum exchange
evaluated along the boundary point in problem CiF1, averaged according to
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several coarser grids of type hc = hα. The order plot in fig. 5 confirms that
the best rate of error decay is obtained choosing hc =

√
h.
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Figure 5. Double logarithmic plot of the error in the local forces ver-
sus the grid size h. Comparisons of different coarser grids hc = hα, with
α = 0.25(�), 0.5(◦, bold line), 0.75(∗), 0.9(×). The dashed lines represent reference
slopes.
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