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Abstract: The lattice Boltzmann method is a numerical scheme based on a fixed grid.
Dealing with moving boundary problems, proper routines are needed to initialize the
variables at the new nodes, created by the variations of the computational fluid domain.
We use the asymptotic analysis to investigate the problem and possible solutions. A
simple algorithm is proposed, able to achieve the same accuracy as the standard LBM.
The theoretical predictions are tested on simple benchmarks.
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1 INTRODUCTION

The lattice Boltzmann method (LBM) (Benzi et al., 1992;
McNamara and Zanetti, 1988; Succi, 2001; Yu et al., 2003)
is an approximate solver for the incompressible Navier-
Stokes equations which discretizes the hydrodynamic prob-
lem using a kinetic model, based on a fixed lattice. Dealing
with moving boundaries, the standard scheme has to be
completed with an additional algorithm to initialize the
variables on the nodes created by the variations of the
computational domain.

Compared to other numerical methods, the LBM
achieves needs a higher number of discrete variables. The
additional need of resource is compensated by the simple
formulation and by the favorable implementation. There-
fore, the aim of the additional algorithm is to preserve the
global efficiency and initialize the variables without spoil-
ing the accuracy of the standard scheme.

Recently, LB algorithms to deal with moving bound-
ary have been proposed and numerically tested (Lallemand
and Luo, 2003; Ginzburg and d’Humiéres, 2003). In this
work we use the asymptotic analysis to understand the
problem in depth. Starting from a basic example, we show
how a reliable algorithm can be constructed in a simple
way.

In section 2 we introduce the lattice Boltzmann method,
a moving boundary model problem and the main results of
the asymptotic analysis for the standard scheme. In sec-
tion 3 we focus on the refill step. A first approach (Lalle-
mand and Luo, 2003) is described and tested. Performing
the asymptotic expansion we prepare the basis for an im-

proved refill algorithm (based on a similar idea proposed
by Guo et al. (2002) to implement the boundary condi-
tion), which is discussed and numerically investigated in
section 4.

2 LBM AND MOVING BOUNDARY PROBLEMS

As a model problem, we consider the motion of a solid
disk in a two-dimensional domain. Formally, we divide a
set Ω ⊂ R

2 as

Ω = ΩF (t) ∪ Γ(t) ∪ ΩS(t), (1)

in a fluid part ΩF (t), a solid part ΩS(t) =
{x ∈ Ω | ‖x − xC(t)‖ < R} and the interface Γ between
them (fig. 1). We consider a solid domain to be a rigid
body moving with prescribed motion, i.e. ΩS(t) is a given
function of time (moving boundary problem without inter-
action).

The fluid domain. In the fluid sub-domain, we con-
sider the incompressible Navier-Stokes equations
{

∇ · u = 0 t > 0, x ∈ ΩF (t)
∂tu + ∇p + u · ∇u = ν∆u + G t > 0, x ∈ ΩF (t)

u(t,x) = uB(t,x) t > 0, x ∈ Γ(t) ∪ (∂Ω ∩ ∂ΩF (t))

u(0,x) = u0(x) x ∈ ΩF (0),
(2)

where u0 is the initial velocity field of the fluid and uB(t,x)
is the prescribed velocity at the fluid-solid interface.

Copyright c© 200x Inderscience Enterprises Ltd.
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Figure 1: Moving boundary model problem: sketch of the
domains introduced in equation (1) for the moving bound-
ary model problem, discretized by a grid of type (4).

Alternatively, a Stokes problem can be taken into ac-
count, neglecting the non-linear term u·∇u in the previous
system (2).

The hydrodynamics in ΩF (t) is solved using the lattice
Boltzmann method, which discretizes equation (2) starting
from a finite velocity Boltzmann equation

∂tfi(t,x) + ci · ∇fi(t,x) = Ji(f(t,x)), i = 1, . . . , b . (3)

In equation (3), V = {ci | i = 1, . . . , b} is the finite velocity
set and fi(t,x) represents the mass density distribution of
the particles moving in direction ci, at time t and position
x. In this work we consider the D2Q9 discrete velocity
model, depicted in fig. 2a. On the right hand side of equa-
tion (3), the collision operator Ji(f) models the effect of
the collisions between particles, which produce the varia-
tions in the distributions.

The domain is discretized in space with a regular h-grid

G(h) =
{

j ∈ Z
2 | xj = hj ∈ Ω

}

(4)

and in time choosing the time stepa ∆t = h2.
The LBM is described using a dimensionless lattice units

reference system, denoting the numerical result at time
tn = nh2 and at position xj = jh through the function

f̂ih(n, j) : N × G(h) → R. Using the BGK approximation
for the collision operator Ji on the right hand side of (3),
the general iteration of the algorithm reads (omitting the

subscript h in f̂)

f̂i(n + 1, j + ci) = f̂i(n, j) +
1

τ
(feq

i (f̂) − f̂i)(n, j) + gi(n, j).

(5)

The equilibrium distribution f eq is a function of f̂ , through
the local density ρ̂ =

∑

i f̂i and the local velocity û =
∑

i cif̂i related to the distribution f̂ at a lattice node:

f
eq
i (f) = H

eq
i (ρ(f),u(f)) , (6)

where (for the D2Q9 model)

H
eq
i (ρ,u) = f∗

i

(

ρ + c−2
s ci · u +

c−4
s

2

(

|ci · u|
2 − c2

su
2
)

)

.

(7)

aThe relation ∆t = ∆x
2, called diffusive scaling, is a prerequisite

to recover the incompressible Navier-Stokes equations in the limit
Junk et al. (2005).

The lattice sound speed cs and the weights f∗

i are model
dependent (see for example Succi (2001) for detailed
overview and descrptions of the method).

Using the LBM to solve a Stokes problem, only the linear
part of the equilibrium function has to be considered.

Equation (5) expresses a relaxation towards the equilib-
rium distribution with a single relaxation time τ , related
to a dimensionless viscosity through ν = c2

s(τ − 1
2 ). The

additional term gi is used to include the volume force:

gi(n, j) = c−2
s h3f∗

i ci · G(tn,xj). (8)

The implementation of algorithm (5) is usually split in
two sub-steps, introducing the post-collision distributions

f̂C
i (n, j) = f̂i(n, j) +

1

τ
(feq

i (f̂) − f̂i)(n, j) + gi(n, j), (9)

and the propagation step

f̂i(n + 1, j + ci) = f̂C
i (n, j). (10)
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Figure 2: The D2Q9 discrete velocity model. Bigger circles
correspond to larger weights f∗

i .
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Figure 3: The BFL boundary conditions (11). The incom-
ing population fi∗(n + 1,k) has to be defined.

Boundary Conditions. If a fluid node k ∈ G(h) has a
neighbor k+ci in the solid domain the rule (10) cannot be
used. In this case, we call k a boundary node, and ci an out-
going direction in k. We use the BFL algorithm (Bouzidi
et al., 2001) to update the population at the boundary
nodes (on the incoming link ci∗ = −ci), according to the
Dirichlet boundary condition of problem (2). It is based
on a first order interpolation for the unknown distributions
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(see figure 3):

f̂i∗(n+1,k) =



















2qf̂C
i (n,k) + (1 − 2q)f̂C

i (n,k − ci)

+2c−2
s f∗

i ci · uB

q ≤ 1
2

1
2q

f̂C
i (n,k) + (1 − 1

2q
)f̂C

i∗ (n,k)

+ 1
q
c−2
s f∗

i ci · uB

q > 1
2

(11)
where q ∈ [0, 1) is the node-boundary distance along the
link ci and uB is evaluated at the point where the outgoing
direction intersects the boundary.

Solid motion and Force Evaluation. We assume
the motion of the solid domain to be given. Since the
LBM is implemented only on the fluid nodes, according
to ΩS(t), at each time iteration we have to identify which
nodes of the grid belong to the fluid domain. Additionally,
in the numerical simulation the forces due to the fluid flow
are evaluated using the Momentum Exchange algorithm
(proposed in Ladd (1994)), which approximates the total
boundary interaction with first order accuracy (Caiazzo
and Junk, 2007). However, the topic is not treated in detail
here.

A benchmark: Disk in incompressible Stokes

flow. We construct an analytical solution to problem (2)
(Stokes variant), considering the velocity field (G.Galdi,
1998)

u(t, x, y) = U

(

log
(

ξ(x, t)2 + η(y)2
)

+
2η(y)2

ξ(t, x)2 + η(y)2
+

ξ(t, x)2 − η(y)2

(ξ(t, x)2 + η(y)2)
2

)

v(t, x, y) = −U
2ξ(t, x)η(y)

ξ(t, x)2 + η(y)2

(

1−
1

ξ(x, t)2 + η(y)2

)

(12)
and the pressure

p(t, x, y) = −
4Uν

R

ξ(t, x)

ξ(t, x)2 + η(y)2
, (13)

where

ξ(t, x) =
x − (x0

C + Ut)

R
, η(y) =

y − y0
C

R
(14)

are reference coordinates with respect to the center of the
disk, moving horizontally with constant speed U (fig. 4).

Including the volume force

G(t, x, y) = ∂tu(t, x, y) (15)

and assigning the fields (12) as Dirichlet boundary condi-
tions on the edge of a square Ω = [0, L] × [0, L], u, v and
p as defined in (12)-(13) solve the Stokes problem in Ω,
where the solid disk ΩS(t) moves along x with velocity U .
For this flow field, the boundary force is

F = 8πνU. (16)

We refer to this test problem as Disk-in-Flow (DiF). More-
over, by adding the constant horizontal speed −U to (12),
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Figure 4: DiF benchmark. Streamlines of the velocity field
(12). In the numerical simulation, we use a circle of radius
R = 0.6 in a square box of edge length L = 3. Viscosity is
ν = 0.03.

we define a fixed boundary variant of the problem, called
DiF0, whose exact horizontal velocity is now zero along the
disk boundary, while v and p are the same as in (12)-(13).
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Figure 5: DiF benchmark. Double logarithmic plot of max-
imum error in pressure (circles ◦) and velocity (crosses ×)
versus grid size for the benchmark DiF0 (fixed boundary).
The experimental orders of accuracy is given by the slope
of the linear least squares approximation of the error data
(dashed lines). It is close to the theoretical expectations,
i.e. second order velocity and first order pressure.

Asymptotic Analysis To investigate the LB algorithm
(Junk et al., 2005) we introduce an expansion of the nu-
merical solution in power series of the small parameter h

f̂ih(n, j) = f
(0)
i (tn,xj)+hf

(1)
i (tn,xj)+h2f

(2)
i (tn,xj)+ . . . ,

(17)
where the coefficients are assumed to be smooth and de-
pending on the physical time and space. To derive the

functions f
(k)
i , we insert the expansion (17) into the algo-

rithm (5) (and into (11) for the boundary nodes). Taylor
expanding around (tn,xj) and sorting the different orders
in h, we obtain a set of partial differential equations for
the coefficients, which are solved in the leading orders by
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(Junk et al., 2005; Junk and Yang, 2005)

f
(0)
i = f∗

i ,

f
(1)
i = f∗

i c−2
s ci · u,

f
(2)
i = f∗

i c−2
s p +

f∗

i c−4
s

2

(

|ci · u|
2 − c2

su
2
)

−

τf∗

i c−2
s ci · ∇u · ci,

(18)

u and p being a solution of Navier-Stokes (or Stokes, if
only a linearized equilibrium is used) equation (2). Then,
we analyze the numerical method using the prediction

Fih = f
(0)
i + hf

(1)
i + h2f

(2)
i , (19)

composed by equilibrium and non-equilibrium part (see
equation (7)) :

Fih = H
eq
i (1 + h2c−2

s p, hu) − h2τf∗

i c−2
s ci · ∇u · ci =

= Fi
EQ
h (p,u) + Fi

NEQ
h (∇u).

(20)
Since we can extract the Navier-Stokes solution taking
suitable moments of Fh, we conclude that the correspond-
ing moments of the numerical solution f̂h yield

h−1û =

∑

i cif̂ih

h
= u + O(h2),

p̂ = c2
s

∑

i f̂ih − 1

h2
= p + O(h),

(21)

i.e. a second order accurate velocity and a first order ac-
curate pressure. Additionally, we can approximate the vis-
cous stress tensor from the non-equilibrium part:

Ŝ[u] = −
ν

c2
sτh2

∑

i

ci ⊗ ci

(

f̂i − f
eq
i (f̂)

)

=

= ν
(

∇u + ∇uT
)

+ O(h).

(22)

The numerical results for the fixed boundary case DiF0

(fig. 5) validate the theoretical prediction for the accuracy
of the standard LBM.

3 THE REFILL PROBLEM

Let us focus now on a moving boundary problem. Namely,
let k be a node such that xk ∈ ΩS(tn) and xk ∈ ΩF (tn+1)∪
Γ(tn+1), i.e. xk enters the fluid domain at time tn+1. We
need to refill the new fluid point, initializing the variables
f̂i(n + 1,k). The missing information has to be recovered
from the neighboring nodes. Since the main properties of
the LBM are the favorable implementation (9)+(10) and
the reliability for parallel computing, the effort needed to
perform refill steps becomes relevant for the global effi-
ciency. Mainly, the additional algorithm should not re-
quire an excessive amount of exchange of information and
be well fitting in the LB structure.

Example: The equilibrium refill We start analyz-
ing a simple approach (Lallemand and Luo, 2003), which

reconstructs the populations using the equilibrium distri-
bution for approximate density and velocity.

Let k ∈ G(h) the node to be refilled at time step n + 1.
We compute first ρ̃n+1,k and ũn+1,k, approximations of
density and velocity at k, defining then the equilibrium
refill:

f̂i(n + 1,k) = H
eq
i (ρ̃n+1,k, ũn+1,k). (23)

The particular choice of the extrapolation rule for ρ̃ and
ũ might depend on the considered flow and motion of the
boundary. For example, we can use a backward extrapo-
lation according to the boundary velocity uB at a point of
interface close to the new node (Lallemand and Luo, 2003).

Numerical tests. The equilibrium refill is now applied
to problem DiF. Figure 6 shows the maximum error in
pressure over ΩF (t) versus time. The peaks appearing in
correspondence to the refill steps do not decrease on the
finer grid. In the order plot in fig. 7 the errors for different
grid sizes are compared. We observe a first order accuracy
for the velocity but an inconsistent pressure (the error does
not decrease using a finer discretization).
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Figure 6: DiFBenchmark . Error in pressure (maximum
over ΩF (t)) using the algorithm (23) to initialize the new
nodes. Grid sizes h = 0.05 (top) and h = 0.025 (bottom)
are shown.

Asymptotic analysis: prediction for the equilib-

rium refill. In the previous section, the coefficients (18)
and the truncated expansion Fh have been derived consid-
ering the LBM (5) and the boundary rule (11). Using an
additional algorithm to initialize the new node, the accu-
racy results (21) are not assured.

Applying the same procedure, we insert the expansion
(17) into the algorithm (23), used at a new node k. We
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Figure 7: DiFbenchmark. Double logarithmic plot of max-
imum errors (in space and time) in pressure (◦) and ve-
locity (×), versus grid size. The dashed curve shows a
reference line of slope one. We get a first order accurate
velocity and an inconsistent pressure.

find that the coefficient f (2) cannot be defined for the whole
domain as in (18). Not surprisingly, using the equilibrium
refill the non-equilibrium part (in the second order)

f
neq,(2)
i = −τf∗

i c−2
s ci · ∇u · ci (24)

will be missing at the new refilled point. As a consequence,
the prediction (19) and the related accuracy results are no
longer justified.

Remarks. Observe that we could reduce to the trun-
cated expansion

Gih = f (0) + hf (1) (25)

which predicts a first order accurate velocity and does not
contains information about pressure and stress tensor. Al-
though the equilibrium refill approximates accurately the
hydrodynamics on the new node, the lack of non equi-
librium also spoils the accuracy in pressure and velocity
during the time iterations.

In previous works (Lallemand and Luo, 2003; Ginzburg
and d’Humiéres, 2003) algorithms able to achieve the LB
accuracy have also been proposed. However, the knowl-
edge acquired with the analysis allows us to solve the prob-
lem constructing a simple scheme.

4 NON-EQUILIBRIUM CORRECTION

According to the analysis, all we need to keep the scheme
as accurate as the interior LBM is a refill step able to
reconstruct equilibrium and non equilibrium with enough
accuracy.

We complete the initialization of the populations (23)
including an approximation of the non equilibrium part by
a first order extrapolation, simply copying the non equilib-
rium part from a neighbor of the new fluid nodeb. It has

bDue to the poor accuracy (first order in pressure) of the LBM, us-
ing a higher order extrapolation does not lead theoretically to better
results.

to be mentioned that a similar idea was used in Guo et al.
(2002), to implement the Dirichlet boundary condition. In
practice, we propose the following algorithm to refill the
node k.

• choose a (flow depending) extrapolation direction cex
i

(not outgoing at k)

• compute approximations ρ̃n+1,k, ũn+1,k

• equilibrium + non equilibrium refill:

f̂j(n + 1,k) = H
eq
j (ρ̃n+1,k, ũn+1,k) +

f
neq
j (n + 1,k + cex

i ), j = 1, . . . , b.
(26)

Simulating the problem DiF, we observe (fig. 8 and
fig. 9) improvements in accuracy, which is now comparable
with the accuracy of the standard LBM.

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

PSfrag replacements

time

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

PSfrag replacements

time

Figure 8: Results for the benchmark DiF employing the
non-equilibrium corrected refill. Maximum error in pres-
sure over ΩF (t), h = 0.05 (top) and h = 0.025 (bottom).
Unlike in the previous test case, now the results improve
on the finer grid.

Force investigations As remarked concluding the anal-
ysis (end of section 3), the lack of non equilibrium part af-
fects the pressure and the stress tensor at the nodes close
to the interface (where the refills take place), which are
contained in the second order part of the numerical so-
lution. In other words, the error might influence directly
the computation of the boundary forces. Figures 10 and 11
show the error in the horizontal force (exact solution (16)).
Using the non-equilibrium correction we obtain better re-
sults.
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Figure 9: Double logarithmic plot of the maximum errors
in pressure (◦) and velocity (×) versus grid size (bench-
mark DiF, including the non-equilibrium correction). The
slopes of the straight approximations (dashed lines) are
also indicated.
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Figure 10: Top: Error in horizontal force (problem DiF),
using the equilibrium refill. Grid size h = 0.025. Bottom:
Non-equilibrium correction is included.

We compare the two approaches on a further benchmark
(depicted in fig. 12), based on a full Navier-Stokes prob-
lem. A disk moves horizontally in a periodic channel, with
velocity approaching a stationary regime. We refer to this
problem as DiF2.

At the steady state, we obtain a physically equivalent
problem keeping the disk fixed and moving the channel
walls in the opposite direction (Galilean invariance). To
investigate the influence of the refill steps on the force
computation we compare the drag forces on the disk in
the two cases (fig. 13), looking at the difference ∆F (t) =
∣

∣F MOV − F FIX
∣

∣, where F MOV and F FIX are the forces
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Figure 11: Double logarithmic plot of error versus grid size
for the force computation. ◦: EQ refill. ×: EQ + non-
EQ. Including the non-equilibrium correction the errors
decreases faster. Dashed line: reference line of slope 1
(first order accuracy).
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Figure 12: Benchmark DiF2. A disk (radius R = 0.2)
moves horizontally in a channel of unitary length (L =
H = 1), with periodic boundary in x-direction, reaching a
stationary velocity u = 1. Viscosity is ν = 0.03.

obtained in the two different reference systems (with mov-
ing and resp. fixed disk).

The two problems give similar stationary results. In
detail, we observe that the refill steps produce a series of
jumps in the force. Using the non-equilibrium corrected
refill the size of the peaks and the discrepancy in the forces
reduce (first order in h, figures 14, 15). As in the previous
test, the accuracy is in general better than the one observed
for the simpler equilibrium refill.

Conclusive remarks. The non-equilibrium corrected
refill improves the results, both in terms of order of accu-
racy and size of the errors, compared to the simpler equilib-
rium one. In both cases the error shows an irregular profile,
charachterized by jumps appearing in correspondence to
the refills (due to the sudden switching on of fluid nodes).
It has to be remarked that the irregularity in the numerical
results might affect the validity of the conclusions obtained
by a regular asymptotic expansion (17). Nevertheless, the
analysis is still an useful tool which can be used to under-
stand the algorithms, to detect where and how the errors
originate and how to construct corrected schemes.
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Figure 13: Values of the drag force on the moving disk
(F MD), simulating the problem DiF2 in the disk reference
system (F FIX ). Grid size h = 1

20 . On the right, the zoom
on a small time interval evidences the oscillations in the
results.
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Figure 14: Difference ∆F (t). ◦: EQrefill, ×: EQ+non EQ
refill. Comparisons of the jumps affecting the results, grids
h = 1

20 (top) and h = 1
40 (bottom).
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Figure 15: Double logarithmic plot of the maximum in
time of ∆F (t) versus the grid size h. ◦: EQrefill, ×:
EQ+non EQ refill. In both the cases the errors are strongly
oscillating.
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