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Lower bounds for the strong error %

d
dX, = V(X)dr + )" Vi(X)dW], Xo=xo€R"
i=1
Xo=x0. Xp,, =X, +V(X,) AIJ+Z JAW:L =0, N-1

i=1
» Strong convergence with rate 1/2: Suppose that V, V,..., V; are Lipschitz, then

E[ sup |X,—)_(,|] < C\/@.

0<t<T
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Lower bounds for the strong error zﬁ@
d
dX, = V(X)dr + )" Vi(X)dW], Xo=xo€R"
i=1

Xo=x0. Xp,, =X, +V(X,) At]+z JAW:L =0, N-1
i=1
» Strong convergence with rate 1/2: Suppose that V, V,..., V; are Lipschitz, then

E[ sup |X,—)_(,|] < C\/@.

0<t<T
Theorem (Cameron and Clark, 1980)

Let Dy ={0,T/N,...,T}and Gp = a ({ W, |t € D}). Consider the system
dx! =dw!, dx?=x!dw?, X, =0.

ZN—uz

2 1/2
ThenE[jx2 E[X2 | Gy ]| ] =3
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Outline

Weak convergence
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Kolmogorov backward equation

u(t,x) =E[fXr)| X, =x], te€[0,T], xeR"
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Kolmogorov backward equation @

u(t,x) =E[f(Xr) | X;=x], t€[0,T], xeR"

» Denote 9, = 6,, O = Ok = k,1=1,...,n, and consider the operator

0 x" ’ 6»‘ 6x1 ’

n

n d
Lh(x) = > VH@)dih(x) + % > d " 0auhto, =) VRV
k=1

Lk=1 i=1

Computational finance — Lecture 6 - May 21, 2021 - Page 4 (12) %



Kolmogorov backward equation

u(t,x) = E[fXr)| X, =x], t€[0,T], xeR"

k,l=1,...,n, and consider the operator

— = _62
> Denote 0, := m, Ok = Ot = Axkoxl?

Bxk ’

n

n d
Lh(x) = Y VH)aeh(x) + % D A Wauhx),  dx) =) ViV
k=1

Lk=1 i=1

Kolmogorov backward equation

ou(t, x) + Lu(t,x) =0, u(T,x)= f(x)
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Weak convergence of the Euler-Maruyama scheme

» W.l.o.g.: uniform grid with |D| =: h.
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Weak convergence of the Euler-Maruyama scheme

» W.l.o.g.: uniform grid with |D| =: h.

Theorem (Weak convergence — version 1)

Assume thatV,V, ...,V  are C*-bounded, and G = C;f)l. Then the Euler scheme
converges weakly with rate 1, i.e.,

VfeG: et f) =|E[f(Xr)| - ELfX)]| < Ch.
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Weak convergence of the Euler—-Maruyama scheme X“(;’}

» W.l.o.g.: uniform grid with |D| =: h.

Theorem (Weak convergence — version 1)

Assume that V, Vy, ...,V ; are C*-bounded, and G = C}‘;‘(’)l. Then the Euler scheme
converges weakly with rate 1, i.e.,

VieG: e f)=E[f(Xr)] - ELCen]| < ch

Moreover, there is an error representation
T
e(h, f) = h f Elyi(s, X;)lds + W ex(T, f) + OR),
0

where y (1, x) = § X7 VIGOVI)d jult x) + 3 By Vi) (x)q jaou(t, x) + - -
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Richardson extrapolation

> Magically improve rate of any method with exact error representation.
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Richardson extrapolation %

> Magically improve rate of any method with exact error representation.
» Given: quantity A approximated by A(h) based on numerical parameter 4 such that

A—A(h) = CH"+OMH™), n>0, m>n.

Computational finance — Lecture 6 - May 21, 2021 - Page 6 (12)



Richardson extrapolation zﬁ@

> Magically improve rate of any method with exact error representation.
» Given: quantity A approximated by A(h) based on numerical parameter 4 such that

A—A(h) = CH"+OMH™), n>0, m>n.

A(h/2) — A(h) _ 2"A(h/2) — A(h)

W i A2 - =2 2n —1

converges to A of order m > n.
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Richardson extrapolation

> Magically improve rate of any method with exact error representation.
» Given: quantity A approximated by A(h) based on numerical parameter 4 such that

A—A(h) = CH"+OMH™), n>0, m>n.

A(h/2) - A(h) _ 2"A(h/2) — A(h)
-1 2n—1

R(h) = A(h)2) +

converges to A of order m > n. )
Poof.
Rh) = 2"MA = C(h/2)" + O(;l’”z]l— [A - Ch" + O(h™)] — A+ O(™),
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Proof — 1 zﬁgy

u is smooth and all derivatives are polynomially bounded. I

> Follows from PDE theory. Note: Only space regularity needs to be proved.
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Proof — 1 @

u is smooth and all derivatives are polynomially bounded. l

> Follows from PDE theory. Note: Only space regularity needs to be proved.
» Probabilistic proofs use variations of X.

> Let X\, t < s < T, denote the solution of the SDE started at X" = x. By the Markov
property, u(r, x) = E[f(X7) | X, = x] = E[f(X}")]
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Proof — 1 XA@

u is smooth and all derivatives are polynomially bounded. l

> Follows from PDE theory. Note: Only space regularity needs to be proved.

> Probabilistic proofs use variations of X.

> Let X", t < s < T, denote the solution of the SDE started at X" = x. By the Markov
property, u(t, x) = E[f(Xr) | X; = x] = E[f(X;)].

> Jis(x) = £ X0 by formally differentiating the SDE:

d
dJis(x) = DV(XE)os()ds + ) DVIXE) o s(0dW, T (x) = 1d,
i=1

» Note that pair (X*, J,_..(x)) solves SDE.
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Proof — 1 XA@

u is smooth and all derivatives are polynomially bounded. l

> Follows from PDE theory. Note: Only space regularity needs to be proved.

> Probabilistic proofs use variations of X.

> Let X", t < s < T, denote the solution of the SDE started at X" = x. By the Markov
property, u(t, x) = E[f(X7) | X; = x] = E[f(X;)].

> Jios(x) = %Xﬁ,’x by formally differentiating the SDE:

d
dJis(x) = DV(XE)os()ds + ) DVIXE) o s(0dW, T (x) = 1d,
i=1
» Note that pair (X**, J;_,.(x)) solves SDE.
> Now differentiate inside the expectation.
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Proof — 2

E |utiv. X,.,) | Xy, = x| = u(ti, x) + W2y (2, %) + O(h®)

Computational finance — Lecture 6 - May 21, 2021 - Page 8 (12)



Proof — 3
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Remarks on weak convergence “ %

> Proof only used first five (mixed) moments of (AW;'.), 1<j<N,1<i<d. Hence, weak
schemes can be used, e.g. AWj. i.i.d. copies of VhY,

V3,  with probability 1/6,
Y =10, with probability 2/3,
— /3, with probability 1/6.
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Remarks on weak convergence “ %

> Proof only used first five (mixed) moments of (AW;'.), 1 <j<N,1<i<d. Hence, weak
schemes can be used, e.g. AW;'. i.i.d. copies of VhY,

V3,  with probability 1/6,
Y =10, with probability 2/3,
— /3, with probability 1/6.

> Proof for weak convergence with rate 1 requires u to be twice differentiable in time, four
times in space. Weaker conditions for this assumption are:
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Remarks on weak convergence z@’}
> Proof only used first five (mixed) moments of (AW;'.), 1 <j<N,1<i<d. Hence, weak
schemes can be used, e.g. AW;'. i.i.d. copies of VhY,

V3,  with probability 1/6,
Y =10, with probability 2/3,
— /3, with probability 1/6.

> Proof for weak convergence with rate 1 requires u to be twice differentiable in time, four
times in space. Weaker conditions for this assumption are:

Weak order 1 holds when
V.Vi,...VaeCy, G =C;

pol”
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Remarks on weak convergence zﬁg’}
> Proof only used first five (mixed) moments of (AW;'.), 1 <j<N,1<i<d. Hence, weak
schemes can be used, e.g. AW;'. i.i.d. copies of VhY,

V3,  with probability 1/6,
Y =10, with probability 2/3,
— /3, with probability 1/6.

> Proof for weak convergence with rate 1 requires u to be twice differentiable in time, four
times in space. Weaker conditions for this assumption are:

Weak order 1 holds when Weak order 1 holds when V, V,, ...V, C*-bounded

V.Vi,...Vq € Cgol, G= Cgol- + uniform Hérmander condition, G = L™ (R").
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Outline

H Euler - Monte Carlo method
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Euler — Monte Carlo method %

X = Xy is the solution of an SDE, f : R" — R a payoff. Compute E | f(X7)| = I[f; X7].
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Euler — Monte Carlo method @

X = Xy is the solution of an SDE, f : R" — R a payoff. Compute E [f(X7)] = ILf; Xr]-

Euler — Monte Carlo method

E[f(X7)] = In [f; YT] , X7 based on grid of size N.
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Euler — Monte Carlo method X“g’}

X = Xy is the solution of an SDE, f : R" — R a payoff. Compute E [f(X7)] = ILf; Xr]-

Euler — Monte Carlo method

E[f(X7)] = In [f; YT] , X7 based on grid of size N.

» Computing E[f(X7)] is a N x d-dimensional integration problem (difficult for QMC?).
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Euler — Monte Carlo method zﬁ@

X = Xy is the solution of an SDE, f : R" — R a payoff. Compute E [f(X7)] = ILf; Xr]-

Euler — Monte Carlo method

E[f(X7)] = In [f; YT] , X7 based on grid of size N.

» Computing E[f(X7)] is a N x d-dimensional integration problem (difficult for QMC?).
» Error decomposition:

ELf X)) - In [ £: X7 | < [EF o1 = E [£ (%) + [ [ £ (%r)] = i [ £: %]

=l€disc =l€stat

> Generically, egisc S Cdisc/N, estat S Cstat/ VM. Hence, given error tolerance TOL > 0,
choose N =~ TOL™!, M =~ TOL?, leading to computational cost ~ TOL >,
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