## N

Weierstrass Institute for
Applied Analysis and Stochastics


## Computational finance－Lecture 6

Christian Bayer

$$
\begin{gathered}
\mathrm{d} X_{t}=V\left(X_{t}\right) \mathrm{d} t+\sum_{i=1}^{d} V_{i}\left(X_{t}\right) \mathrm{d} W_{t}^{i}, \quad X_{0}=x_{0} \in \mathbb{R}^{n} \\
\bar{X}_{0}:=x_{0}, \quad \bar{X}_{t_{j+1}}:=\bar{X}_{t_{j}}+V\left(\bar{X}_{t_{j}}\right) \Delta t_{j}+\sum_{i=1}^{d} V_{i}\left(\bar{X}_{t_{i}}\right) \Delta W_{j}^{i}, \quad j=0, \ldots, N-1
\end{gathered}
$$

- Strong convergence with rate $1 / 2$ : Suppose that $V, V_{1}, \ldots, V_{d}$ are Lipschitz, then

$$
E\left[\sup _{0 \leq t \leq T}\left|X_{t}-\bar{X}_{t}\right|\right] \leq C \sqrt{|\mathcal{D}|} .
$$

$$
\begin{gathered}
\mathrm{d} X_{t}=V\left(X_{t}\right) \mathrm{d} t+\sum_{i=1}^{d} V_{i}\left(X_{t}\right) \mathrm{d} W_{t}^{i}, \quad X_{0}=x_{0} \in \mathbb{R}^{n} \\
\bar{X}_{0}:=x_{0}, \quad \bar{X}_{t_{j+1}}:=\bar{X}_{t_{j}}+V\left(\bar{X}_{t_{j}}\right) \Delta t_{j}+\sum_{i=1}^{d} V_{i}\left(\bar{X}_{t_{i}}\right) \Delta W_{j}^{i}, \quad j=0, \ldots, N-1
\end{gathered}
$$

- Strong convergence with rate $1 / 2$ : Suppose that $V, V_{1}, \ldots, V_{d}$ are Lipschitz, then

$$
E\left[\sup _{0 \leq t \leq T}\left|X_{t}-\bar{X}_{t}\right|\right] \leq C \sqrt{|\mathcal{D}|} .
$$

## Theorem (Cameron and Clark, 1980)

Let $\mathcal{D}_{N}:=\{0, T / N, \ldots, T\}$ and $\mathcal{G}_{\mathcal{D}}:=\sigma\left(\left\{W_{t} \mid t \in \mathcal{D}\right\}\right)$. Consider the system

$$
\mathrm{d} X_{t}^{1}=\mathrm{d} W_{t}^{1}, \quad \mathrm{~d} X_{t}^{2}=X_{t}^{1} \mathrm{~d} W_{t}^{2}, \quad X_{0}=0 .
$$

Then $E\left[\left|X_{T}^{2}-E\left[X_{T}^{2} \mid \mathcal{G}_{\mathcal{D}_{N}}\right]\right|^{2}\right]^{1 / 2}=\frac{T}{2} N^{-1 / 2}$.

1 Weak convergence

2 Euler - Monte Carlo method

$$
u(t, x):=E\left[f\left(X_{T}\right) \mid X_{t}=x\right], \quad t \in[0, T], \quad x \in \mathbb{R}^{n}
$$

$$
u(t, x):=E\left[f\left(X_{T}\right) \mid X_{t}=x\right], \quad t \in[0, T], \quad x \in \mathbb{R}^{n}
$$

- Denote $\partial_{t}:=\frac{\partial}{\partial t}, \partial_{k}:=\frac{\partial}{\partial x^{k}}, \partial_{k l}:=\frac{\partial^{2}}{\partial x^{k} \partial x^{k}}, k, l=1, \ldots, n$, and consider the operator

$$
L h(x):=\sum_{k=1}^{n} V^{k}(x) \partial_{k} h(x)+\frac{1}{2} \sum_{l, k=1}^{n} a^{k l}(x) \partial_{k l} h(x), \quad a^{k l}(x):=\sum_{i=1}^{d} V_{i}^{k}(x) V_{i}^{l}(x)
$$

$$
u(t, x):=E\left[f\left(X_{T}\right) \mid X_{t}=x\right], \quad t \in[0, T], \quad x \in \mathbb{R}^{n}
$$

- Denote $\partial_{t}:=\frac{\partial}{\partial t}, \partial_{k}:=\frac{\partial}{\partial x^{k}}, \partial_{k l}:=\frac{\partial^{2}}{\partial x^{k} \partial x^{l}}, k, l=1, \ldots, n$, and consider the operator

$$
L h(x):=\sum_{k=1}^{n} V^{k}(x) \partial_{k} h(x)+\frac{1}{2} \sum_{l, k=1}^{n} a^{k l}(x) \partial_{k l} h(x), \quad a^{k l}(x):=\sum_{i=1}^{d} V_{i}^{k}(x) V_{i}^{l}(x)
$$

## Kolmogorov backward equation

$$
\partial_{t} u(t, x)+L u(t, x)=0, \quad u(T, x)=f(x)
$$

- W.I.o.g.: uniform grid with $|\mathcal{D}|=: h$.
- W.I.o.g.: uniform grid with $|\mathcal{D}|=: h$.


## Theorem (Weak convergence - version 1)

Assume that $V, V_{1}, \ldots, V_{d}$ are $C^{\infty}$-bounded, and $G=C_{\mathrm{pol}}^{\infty}$. Then the Euler scheme converges weakly with rate 1, i.e.,

$$
\forall f \in \mathcal{G}: \quad e(h, f):=\left|E\left[f\left(\bar{X}_{T}\right)\right]-E\left[f\left(X_{T}\right)\right]\right| \leq C h .
$$

- W.I.o.g.: uniform grid with $|\mathcal{D}|=: h$.


## Theorem (Weak convergence - version 1)

Assume that $V, V_{1}, \ldots, V_{d}$ are $C^{\infty}$-bounded, and $\mathcal{G}=C_{\mathrm{pol}}^{\infty}$. Then the Euler scheme converges weakly with rate 1, i.e.,

$$
\forall f \in \mathcal{G}: \quad e(h, f):=\left|E\left[f\left(\bar{X}_{T}\right)\right]-E\left[f\left(X_{T}\right)\right]\right| \leq C h .
$$

Moreover, there is an error representation

$$
e(h, f)=h \int_{0}^{T} E\left[\psi_{1}\left(s, X_{s}\right)\right] d s+h^{2} e_{2}(T, f)+O\left(h^{3}\right)
$$

where $\psi_{1}(t, x)=\frac{1}{2} \sum_{i, j=1}^{n} V^{i}(x) V^{j}(x) \partial_{(i, j)} u(t, x)+\frac{1}{2} \sum_{i, j, k=1}^{n} V^{i}(x) a_{k}^{j}(x) \partial_{(i, j, k)} u(t, x)+\cdots$

- Magically improve rate of any method with exact error representation.
- Magically improve rate of any method with exact error representation.
- Given: quantity $A$ approximated by $\bar{A}(h)$ based on numerical parameter $h$ such that

$$
A-\bar{A}(h)=C h^{n}+O\left(h^{m}\right), \quad n>0, m>n .
$$

- Magically improve rate of any method with exact error representation.
- Given: quantity $A$ approximated by $\bar{A}(h)$ based on numerical parameter $h$ such that

$$
A-\bar{A}(h)=C h^{n}+O\left(h^{m}\right), \quad n>0, m>n .
$$

## Theorem

$$
\bar{R}(h):=\bar{A}(h / 2)+\frac{\bar{A}(h / 2)-\bar{A}(h)}{2^{n}-1}=\frac{2^{n} \bar{A}(h / 2)-\bar{A}(h)}{2^{n}-1}
$$

converges to $A$ of order $m>n$.

- Magically improve rate of any method with exact error representation.
- Given: quantity $A$ approximated by $\bar{A}(h)$ based on numerical parameter $h$ such that

$$
A-\bar{A}(h)=C h^{n}+O\left(h^{m}\right), \quad n>0, m>n .
$$

## Theorem

$$
\bar{R}(h):=\bar{A}(h / 2)+\frac{\bar{A}(h / 2)-\bar{A}(h)}{2^{n}-1}=\frac{2^{n} \bar{A}(h / 2)-\bar{A}(h)}{2^{n}-1}
$$

converges to $A$ of order $m>n$.

## Proof.

$$
\bar{R}(h)=\frac{2^{n}\left[A-C(h / 2)^{n}+O\left(h^{m}\right)\right]-\left[A-C h^{n}+O\left(h^{m}\right)\right]}{2^{n}-1}=A+O\left(h^{m}\right) .
$$

## Proof - 1

## Lemma

$u$ is smooth and all derivatives are polynomially bounded.

- Follows from PDE theory. Note: Only space regularity needs to be proved.


## Lemma

$u$ is smooth and all derivatives are polynomially bounded.

- Follows from PDE theory. Note: Only space regularity needs to be proved.
- Probabilistic proofs use variations of $X$.
- Let $X_{s}^{t, x}, t \leq s \leq T$, denote the solution of the SDE started at $X_{t}^{t, x}=x$. By the Markov property, $u(t, x)=E\left[f\left(X_{T}\right) \mid X_{t}=x\right]=E\left[f\left(X_{T}^{t, x}\right)\right]$.


## Lemma

$u$ is smooth and all derivatives are polynomially bounded.

- Follows from PDE theory. Note: Only space regularity needs to be proved.
- Probabilistic proofs use variations of $X$.
- Let $X_{s}^{t, x}, t \leq s \leq T$, denote the solution of the SDE started at $X_{t}^{t, x}=x$. By the Markov property, $u(t, x)=E\left[f\left(X_{T}\right) \mid X_{t}=x\right]=E\left[f\left(X_{T}^{t, x}\right)\right]$.
- $J_{t \rightarrow s}(x):=\frac{\partial}{\partial x} X_{s}^{t, x}$ by formally differentiating the SDE:

$$
\mathrm{d} J_{t \rightarrow s}(x)=D V\left(X_{s}^{t, x}\right) J_{t \rightarrow s}(x) \mathrm{d} s+\sum_{i=1}^{d} D V_{i}\left(X_{s}^{t, x}\right) J_{t \rightarrow s}(x) \mathrm{d} W_{s}^{i}, \quad J_{t \rightarrow t}(x)=\operatorname{Id}_{n}
$$

- Note that pair $\left(X^{t, x}, J_{t \rightarrow .}(x)\right)$ solves SDE.


## Lemma

$u$ is smooth and all derivatives are polynomially bounded.

- Follows from PDE theory. Note: Only space regularity needs to be proved.
- Probabilistic proofs use variations of $X$.
- Let $X_{s}^{t, x}, t \leq s \leq T$, denote the solution of the SDE started at $X_{t}^{t, x}=x$. By the Markov property, $u(t, x)=E\left[f\left(X_{T}\right) \mid X_{t}=x\right]=E\left[f\left(X_{T}^{t, x}\right)\right]$.
- $J_{t \rightarrow s}(x):=\frac{\partial}{\partial x} X_{s}^{t, x}$ by formally differentiating the SDE:

$$
\mathrm{d} J_{t \rightarrow s}(x)=D V\left(X_{s}^{t, x}\right) J_{t \rightarrow s}(x) \mathrm{d} s+\sum_{i=1}^{d} D V_{i}\left(X_{s}^{t, x}\right) J_{t \rightarrow s}(x) \mathrm{d} W_{s}^{i}, \quad J_{t \rightarrow t}(x)=\operatorname{Id}_{n}
$$

- Note that pair ( $\left.X^{t, x}, J_{t \rightarrow .}(x)\right)$ solves SDE.
- Now differentiate inside the expectation.


## Lemma

$$
E\left[u\left(t_{i+1}, \bar{X}_{t_{i+1}}\right) \mid \bar{X}_{t_{i}}=x\right]=u\left(t_{i}, x\right)+h^{2} \psi_{1}(t, x)+O\left(h^{3}\right)
$$

- Proof only used first five (mixed) moments of $\left(\Delta W_{j}^{i}\right), 1 \leq j \leq N, 1 \leq i \leq d$. Hence, weak schemes can be used, e.g. $\Delta W_{j}^{i}$ i.i.d. copies of $\sqrt{h} Y$,

$$
Y= \begin{cases}\sqrt{3}, & \text { with probability } 1 / 6 \\ 0, & \text { with probability } 2 / 3 \\ -\sqrt{3}, & \text { with probability } 1 / 6\end{cases}
$$

- Proof only used first five (mixed) moments of $\left(\Delta W_{j}^{i}\right), 1 \leq j \leq N, 1 \leq i \leq d$. Hence, weak schemes can be used, e.g. $\Delta W_{j}^{i}$ i.i.d. copies of $\sqrt{h} Y$,

$$
Y= \begin{cases}\sqrt{3}, & \text { with probability } 1 / 6 \\ 0, & \text { with probability } 2 / 3 \\ -\sqrt{3}, & \text { with probability } 1 / 6\end{cases}
$$

- Proof for weak convergence with rate 1 requires $u$ to be twice differentiable in time, four times in space. Weaker conditions for this assumption are:
- Proof only used first five (mixed) moments of $\left(\Delta W_{j}^{i}\right), 1 \leq j \leq N, 1 \leq i \leq d$. Hence, weak schemes can be used, e.g. $\Delta W_{j}^{i}$ i.i.d. copies of $\sqrt{h} Y$,

$$
Y= \begin{cases}\sqrt{3}, & \text { with probability } 1 / 6 \\ 0, & \text { with probability } 2 / 3 \\ -\sqrt{3}, & \text { with probability } 1 / 6\end{cases}
$$

- Proof for weak convergence with rate 1 requires $u$ to be twice differentiable in time, four times in space. Weaker conditions for this assumption are:


## Theorem

Weak order 1 holds when

$$
V, V_{1}, \ldots V_{d} \in C_{\mathrm{pol}}^{4}, \mathcal{G}=C_{\mathrm{pol}}^{4}
$$

- Proof only used first five (mixed) moments of $\left(\Delta W_{j}^{i}\right), 1 \leq j \leq N, 1 \leq i \leq d$. Hence, weak schemes can be used, e.g. $\Delta W_{j}^{i}$ i.i.d. copies of $\sqrt{h} Y$,

$$
Y= \begin{cases}\sqrt{3}, & \text { with probability } 1 / 6 \\ 0, & \text { with probability } 2 / 3 \\ -\sqrt{3}, & \text { with probability } 1 / 6\end{cases}
$$

- Proof for weak convergence with rate 1 requires $u$ to be twice differentiable in time, four times in space. Weaker conditions for this assumption are:


## Theorem

Weak order 1 holds when

$$
V, V_{1}, \ldots V_{d} \in C_{\mathrm{pol}}^{4}, \mathcal{G}=C_{\mathrm{pol}}^{4} .
$$

## Theorem

Weak order 1 holds when $V, V_{1}, \ldots V_{d} C^{\infty}$-bounded

+ uniform Hörmander condition, $\mathcal{G}=L^{\infty}\left(\mathbb{R}^{n}\right)$.

1 Weak convergence

2 Euler - Monte Carlo method
$X=X_{T}$ is the solution of an SDE, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a payoff. Compute $E\left[f\left(X_{T}\right)\right]=I\left[f ; X_{T}\right]$.
$X=X_{T}$ is the solution of an SDE, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a payoff. Compute $E\left[f\left(X_{T}\right)\right]=I\left[f ; X_{T}\right]$.

## Euler - Monte Carlo method

$$
E\left[f\left(X_{T}\right)\right] \approx I_{M}\left[f ; \bar{X}_{T}\right], \quad \bar{X}_{T} \text { based on grid of size } N .
$$

$X=X_{T}$ is the solution of an SDE, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a payoff. Compute $E\left[f\left(X_{T}\right)\right]=I\left[f ; X_{T}\right]$.

## Euler - Monte Carlo method

$$
E\left[f\left(X_{T}\right)\right] \approx I_{M}\left[f ; \bar{X}_{T}\right], \quad \bar{X}_{T} \text { based on grid of size } N .
$$

- Computing $E\left[f\left(\bar{X}_{T}\right)\right]$ is a $N \times d$-dimensional integration problem (difficult for QMC?).
$X=X_{T}$ is the solution of an SDE, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a payoff. Compute $E\left[f\left(X_{T}\right)\right]=I\left[f ; X_{T}\right]$.


## Euler - Monte Carlo method

$$
E\left[f\left(X_{T}\right)\right] \approx I_{M}\left[f ; \bar{X}_{T}\right], \quad \bar{X}_{T} \text { based on grid of size } N .
$$

- Computing $E\left[f\left(\bar{X}_{T}\right)\right]$ is a $N \times d$-dimensional integration problem (difficult for QMC?).
- Error decomposition:

$$
\left|E\left[f\left(X_{T}\right)\right]-I_{M}\left[f ; \bar{X}_{T}\right]\right| \leq \underbrace{\left|E\left[f\left(X_{T}\right)\right]-E\left[f\left(\bar{X}_{T}\right)\right]\right|}_{=: e_{\text {disc }}}+\underbrace{\left|E\left[f\left(\bar{X}_{T}\right)\right]-I_{M}\left[f ; \bar{X}_{T}\right]\right|}_{=: e_{\text {stat }}}
$$

- Generically, $e_{\text {disc }} \lesssim C_{\text {disc }} / N, e_{\text {stat }} \lesssim C_{\text {stat }} / \sqrt{M}$. Hence, given error tolerance TOL $>0$, choose $N \simeq \mathrm{TOL}^{-1}, M \simeq \mathrm{TOL}^{-2}$, leading to computational cost $\simeq \mathrm{TOL}^{-3}$.

