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Abstract. This paper proposes to parameterize open loop controls in stochastic optimal con-
trol problems via suitable classes of functionals depending on the driver’s path signature, a

concept adopted from rough path integration theory. We rigorously prove that these controls

are dense in the class of progressively measurable controls and use rough path methods to es-
tablish suitable conditions for stability of the controlled dynamics and target functional. These

results pave the way for Monte Carlo methods to stochastic optimal control for generic target
functionals and dynamics. We discuss the rather versatile numerical algorithms for computing

approximately optimal controls and verify their accurateness in benchmark problems from

Mathematical Finance.

1. Introduction

Many stochastic optimal control approaches are based on dynamic programming. One starts
by considering the dynamics of a controlled system driven by some source of randomness, orig-
inating for instance from a Brownian motion. Controls are then specified in open loop form
as a function(al) adapted to this driving randomness or constructed in closed form as feedback
functions depending on the system itself. The evolution of the controlled system and the control
jointly result in some cost or reward whose expectation is ultimately sought to be optimized.
A key mathematical tool is the dynamic programming principle which in its infinitesimal form
as a Hamilton-Jacobi-Bellman (HJB) equation for the value function often takes the form of
a nonlinear (integro-)partial differential equation on state space; see [FS06] for a standard ref-
erence of this approach. Typically, these equations can be solved only numerically, and even
then it remains a daunting task, particularly due to the well known “curse of dimensionality”:
If one tries to approximate the value function by computing its value in certain points, one
quickly needs an impossibly large number of these. Alternative methods where approximations
of the value function are parameterized through, e.g., a deep neural network (DNN) have been
successfully applied in recent years also in higher dimensions (cf. the survey [GPW23] and
[EHJ17, SS18, HPW20] to name just a few). But even these approaches reach their limits in sit-
uations where non-Markovian noise as generated, for instance, by a fractional Brownian motion
requires one to store the whole history of the controlled system (or of at least parts of it). Even the
derivation of the HJB equation can become challenging as one works on an infinite-dimensional
state space; see [FGS17] for a recent monograph on optimal control in such functional analytic
settings. In a finite-dimensional Markovian setting, parametrizations of closed loop (feedback)
controls have been proposed in [GM05] and successfully extended using DNNs in [HE16] (see also
[RW20, HH21] and the hybrid method [HPBL21]). Again the transition to the non-Markovian
setting driven, e.g., by a fractional Brownian motion is far from evident as the entire history of
the system (and maybe even more) has to be incorporated in the control. Alternatively, bespoke
finite-dimensional approximations to the controlled system can be used. But these need to be
carefully tailored to the problem under investigation; see, e.g., [BD20] and [BB23a, BHT19].

By contrast the approach proposed in the present paper uses what is called path signatures
of the driving noise to consider suitable parameterizations of open loop policies. (A closed loop
approach has also recently been proposed in [HFH+23] on which we further comment below.)

1



STOCHASTIC CONTROL WITH SIGNATURES 2

We will prove that for many problems this signature based class of policies is sufficiently rich to
include some which are arbitrarily close to optimal. Studied first by Chen [Che54], signatures
were identified by Lyons [Lyo98] as the building block for his by now well developed theory
of rough path integration. At any time the signature consists of all the iterated integrals of
the components in the path under consideration against each other until the present moment.
This infinite-dimensional tensor can be shown to (essentially) encode the full evolution of the
path ([HL10], [BGLY16]). Therefore, truncated versions of the signature can be expected to
be an efficient finite-dimensional encoding of path information that can be used by numerical
approaches. Even so, the space of progressively measurable policies still corresponds to the
typically vast space of measurable, non-anticipative mappings on the path space of the driving
noise. It is thus remarkable that even linear functionals of the signature can be shown to be
dense in the space of continuous functionals over compact path spaces. This was also used by
[KLPA20] who gave a Stone-Weierstrass argument which is also at the heart of our proof of
pathwise denseness of linear or DNN-parameterized families of signature based policies in the
class of all admissible ones (cf. Prop. 4.5). For the workhorse model of stochastic optimal control
where ones seeks to minimize costs like

E[L(Y U , U)] = E

[∫ T

0

f(t, Y Ut , Ut)dt+ g(Y UT )

]
subject to system dynamics such as

Y U0 = y0, dY Ut = b(Y Ut , Ut)dt+ σ(Y Ut )dXt,(1.1)

a stability result (Theorem 4.1) shows that this kind of denseness is sufficient for our purposes
(given some integrability assumptions).

Remarkably, this remains true when, instead of the usual choice of X as a Brownian mo-
tion, one passes to a stochastic rough driver X such as a fractional Brownian motion WH .
As a consequence, even for such non-Markovian, inherently infinite-dimensional drivers the same
signature-based policies can be used for computing approximately optimal ones. Indeed, machine
learning tools such as stochastic gradient descent become applicable as soon as one can efficiently
produce Monte Carlo samples of L(Y U , U) for a given signature policy U . This optimization
procedure is therefore highly versatile and largely model-independent: only its dynamics Y U

need to be generated for an open loop control determined from samples of the extended driver’s
(t,Xt)t≥0 (truncated) signature. The latter can for instance be generated even offline for any
driver of interest and then re-used for different dynamics driven by the same X.

We illustrate the effectiveness of this optimization procedure by working out two case studies
on linear-quadratic stochastic optimal control problems. In either case a fractional Brownian
motion makes these problems challenging to address by dynamic programming methods. In the
first one, an analytic formula for the problem’s value is nonetheless available and our numerically
computed signature policies turn out to approximate it very well. In the second case study the
benchmark is provided by a highly original signature-based numerical method due to [KLPA20]
which even manages to transform the optimization problem into a deterministic one that just
draws on the expected signature. Here again our more versatile approach performs well. In
either case, the signature turns out be needed only up to level 3 or 4, which corresponds to
an 5 respectively 8-dimensional encoding (at least when using log-signatures) of the extended
fractional Brownian motion’s full path (s,WH

s )s≤t.

Related literature. Initiated by [DFG17], there is ongoing development in the pathwise con-
trol of rough differential equations ([AC20, CHT24]) and the associated rough HJB equations.
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Although these works are only tangentially related to our topic, they require similar stability re-
sults for the rough dynamic system with respect to the control. To impose minimal assumptions
on the control and the regularity of the rough signal, we present a novel stability result.

The theoretical analysis of continuous-time non-Markovian control problems already consti-
tutes a vast body of literature, a large part of which deals with dynamic stochastic control prob-
lems where the driver is Markov but the coefficients are path dependent (e.g. delayed systems
[KS97]). We therefore restrain the discussion to works that have an ambition in implementable
numerical methods for problems including a non-Markovian driving signal.

The work [LOSar] proposes a discretization method that applies to the optimal drift control
of a (path-dependent) differential equation driven by fractional Brownian motion with constant
volatility. Exploiting the underlying Brownian filtration they parameterize open loop controls as
a functional of a martingale discretization of Brownian motion, which are then trained based on a
dynamic programming principle for the (augmented) discretized structure. Notably the authors
are able to prove convergence rates towards the optimal value. In general, as we comment in
more detail below, such discretiziation methods suffer from a proportional increase in the state
space dimension.

The recent paper [HFH+23] presents a novel method based on neural rough differential equa-
tions, originally introduced in [KMFL20, MSKF21], which serve as a continuous-time analogue
to recurrent neural networks. In this sense, the method can be seen as the continuous-time
extension of [HH21]. Similar to our work, [HFH+23] employs a Monte Carlo-based method by
directly parametrizing the control, though in their case, the parameterization is done for feedback
(closed loop) controls. Signatures appear in [HFH+23] as a special case when using linear acti-
vation functions, a perspective the authors use to argue for the density of their approximations.
In this case, the signature arises from the system’s state rather than its driver. In contrast, our
work focusses on open-loop approximations and on proving in a mathematically rigorous man-
ner that the optimal control value can be approximated. Therefore, our research provides new
theoretical insights that can also support similar approximation results for the method proposed
in [HFH+23].

The paper [KLPA20] (and later also [CPASB20]) considers strategies given as linear functionals
of the dynamically updated signature of the system’s driver. It focusses on optimization problems
where the target functional can be expressed as a linear functional given in terms of a strategy
dependent shuffle polynomial acting on the expected signature. The shuffle product used there
ensures that the space of linear signature functionals forms an algebra, making the class of such
target functionals larger than one might be led to believe from the outset, even though this
problems class is far from the generic formulation of a stochastic optimal control problem as
considered in the present paper.

In [CM24] signature models are used for stochastic portfolio theory, hence, portfolio optimiza-
tion, see also [FHW23] for a very similar approach. The recent works [CGMSF23, CGSF23]
analyze asset price models (without optimization) given as SDEs with coefficients defined as
linear functionals of signatures of underlying stochastic processes. They calibrate such models
(jointly) to VIX and SPX options.

As an alternative to signature methods, numerical approximation of stochastic optimal control
problems in non-Markovian settings can be used. We will specifically comment on two such
approaches recently explored for specific examples.

The first such approach is to discretize the problem in time and to then enhance the state
variable by the whole history, see, for instance, [BCJ19] for a specific example. Hence, if the
original state processes evolved in Rd and we are using a time-grid of length N , then the enhanced
state process evolves in RdN . Obviously, this potentially magnifies the curse of dimensionality,
unless we can rely on powerful techniques for dealing with high-dimensional problems (such as
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deep learning as used in [BCJ19] or tensor-trains as used in [BEST23]). In principle, the same
issue arises for signature methods (i.e., the dimension of the truncated tensor algebra is much
higher than the dimension of the original state space), but signatures are empirically seen to
be highly efficient encoding of path properties, implying that the dimension of the state space
required to effectively approximate the solution is often much lower. Crucially, the dimension of
the truncated signature does not depend on the time-discretization. This is especially relevant
when the underlying process is rough (e.g., fractional Brownian motion with low Hurst index),
and therefore requires fine discretization of the stochastic optimal control problem.

A second workable approximation strategy can also be based on a Markovian approximation
of the non-Markovian state process, see, for instance, [BD20] for an application to portfolio
optimization in rough volatility models, as well as [BB23a, BHT19] for American options. In
essence, the idea is to consider the same control problem, but for a surrogate state process, which
is a Markov process. For instance, when the state process is given in terms of a stochastic Volterra
equation, there is a general approach [BD20, BB23a] for constructing multi-factor Markovian
approximations essentially of Ornstein-Uhlenbeck type. This approximation will also highly
enlarge the dimension of the state space, but, under suitable conditions, the approximation
method can be extremely efficient, see [BB23b] for a concrete example. In any case, these
constructions are highly problem specific, unlike the general, model-free architecture proposed in
this paper. Even if a good approximation to the value function – now expressed in terms of the
multi-factor surrogate process – is available, actually applying the corresponding strategy in the
context of the original problem might be difficult, as it would require “inverting” the Markovian
approximation in a path-wise manner, which is generally not a well-posed problem.

Outline of the paper. In Section 2 we formalize the standard control problem studied in the
paper, spelling out and discussing in particular the technical assumptions on the coefficients in
the dynamics of Y U and in the cost functional L = L(Y U , U).

In Section 3 we provide an introduction to signatures and provide tools needed from rough
path theory. We also describe the natural (deterministic!) rough path setting for the analysis
of stochastic optimal control problems, namely stopped rough paths; see also [KLPA20]. We also
recall necessary prerequisites from the theory of rough differential equations (RDEs), and provide
a new existence and uniqueness result for RDEs with a function-valued parameter—think of the
control as a function in time.

Section 4 introduces two signature-based classes of controls to approximate general progres-
sively measurable controls U . Specifically, we consider linear signature policies in Alin which are
just linear functionals of the present signature. Alternatively, deep signature controls from ADNN

are obtained by using the path’s signature (or, more precisely, its log-signature) as input in a
neural network. Proposition 4.5 shows that both linear signature controls and deep signature
controls are dense in the set A of admissible controls. By stability results of the solution map of
controlled stochastic rough differential equations, convergence of the controls implies convergence
of the controlled process YU (Lemma 4.6), and this further implies that the associated costs also
converge. Theorem 4.7 then concludes that the infimum of expected costs is the same over the
three policy classes A, Alin, and ADNN.

Finally, Section 5 gives details of the numerical method suggested, together with a discussion
of numerical properties and possible extensions. We then provide two case studies. In the first,
the driving process X is a fractional Brownian motion, which we try to force to stay close to 0
by controlling its drift. In order to obtain a well-posed problem, we penalize by the L2 norm of
the control. This problem’s value is available analytically in closed form from [BSV17] and can
thus be used as a benchmark. We observe excellent accuracy for both linear and deep signature
methods.
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In the second case study, we revisit an optimal execution problem already studied in [KLPA20].
Here, the driving process, again chosen to be fractional Brownian motion, corresponds to the
fundamental price of a financial asset. We want to liquidate a position in that asset while
maximizing the proceeds from selling which are adversely affected by price impact. The bespoke
optimization procedure of [KLPA20] provides another valuable benchmark that we are able to
match with our methodology.

2. An optimal control problem of a rough differential system

Let us start by describing more precisely the class of optimization problems we consider in this
paper. We fix an underlying complete filtered probability space (Ω,F , (Ft)t≥0,P). Admissible
controls will be (Ft)-progressively measurable processes U : [0, T ]×Ω→ U taking values in U , a
closed, convex and nonempty subset of Rk. The set of such admissible controls will be denoted
by A. Any realization u = U(ω) : [0, T ] → U can then be viewed as an element of L0(dt;U),
the space of measurable functions u : [0, T ] → U equipped with the topology of convergence in
(Lebesgue) measure Leb(dt) = dt.

We study the optimal control of the differential dynamics

dY Ut = b(Y Ut , Ut)dt+ σ(Y Ut )dXt, t ∈ [0, T ], Y U0 = y0 ∈ Rm,(2.1)

where b : Rm × U → Rm, σ : [0, T ] × Rm → Rm×d satisfy the Lipschitz assumptions (4.2) and
(4.3) specified below. The stochastic driver X is a stochastic rough path with finite p-variation for
some p ∈ [1,∞). The reader can think of X as a Brownian motion, but also a fractional Brownian
motion can be considered. We refer to Section 3 for the precise details and an introduction to
rough paths including the definition of the metric rough path space Ωp,0T (Rm) we will consider for
our driver X. By Theorem 4.1 there exists then a unique solution Y U to (2.1) which canonically
extends to a stochastic rough path YU : Ω → ΩpT (Rm) and depends continuously on y0, X and
U . The optimization objective is to minimize the expected costs

J(U) := E[L(YU , U)]

among all admissible controls U ∈ A, where the cost functional

L : Rm × ΩpT × L
0(dt;U)→ R is continuous and bounded.(2.2)

It is then clear that there is a finite optimal cost

inf
U∈A

J(U).

In Section 4.3 below we will characterize subclasses of admissible controls, sufficient for approx-
imating the optimal cost. In fact, assuming additionally that

Ft is the completion of σ(Xs | 0 ≤ s ≤ t) by all P-null sets of F , 0 ≤ t ≤ T,(2.3)

it will turn out that it suffices to restrict to controls that are continuous functions on the path-
space ΩpT . This fact allows us to deduce that it also suffices to restrict to controls that are (linear)

functionals of the signature of the time-augmented path X̂ defined below.
In the rest of this section we will discuss the above assumptions in more detail and comment

on some possible generalizations.

Form of the dynamics. Drift-controlled stochastic differential equations of the form (1.1) find
many applications in various fields. Studying the rough path extension (2.1) allows us to treat
non-semimartingale drivers X in a unified framework, including non-Markovian processes such
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as fractional Brownian motion. The price to pay for this generality is that we cannot allow for
a controlled diffusion part as in

dY Ut = b(Y Ut , Ut)dt+ σ(Y Ut , Ut)dXt.(2.4)

This is because the stochastic part of these dynamics will only be defined rigorously for a general
rough path X if the control U is controlled by X, that is, roughly speaking, it cannot fluctuate
more than X itself; see [FH20] for an introduction to rough differential equations using Gubinelli
derivatives. A stability result for systems of the form (2.4) similar to Theorem 4.1 has recently
been established in [AC20] for the case p ∈ [2, 3) under the assumption that the controls U
have finite p/2-variation. In contrast to the present work, the authors in [DFG17, AC20] have
considered a pathwise “anticipating” control of the system (2.1). In [DFG17] the restriction to
drift-controlled system was imposed for non-degeneracy reasons, while [AC20] included control
in the volatility by introducing a penalty term that ensures the required regularity of controls
similar to a Tychonov regularization.

We stress that the results from Section 4 are not tied to the stability results for rough differ-
ential equations. Instead, we can study the optimal control of stochastic differential equations
for which we obtain stability under weaker conditions. In fact, referring to [Pro05] one even has
sufficient stability for path-dependent stochastic differential equations of the form

dYt = b(Ut, Y |[0,t])dt+ σ(Ut, Y |[0,t])dXt,(2.5)

when X is a continuous semimartingale, assuming that b and σ are bounded and functional
Lipschitz uniformly in U . Thus, to adapt our approximation results from Section 4 to cover the
optimal control of (2.5) we only need to modify the assumption on the cost functional. More
precisely, we need to require the continuous dependence of L on Y , not in the rough path sense,
but in the uniform topology on C([0, T ];Rm) (see also the comments on the form of the cost
functional below). This even extends to the case of càdlàg semimartingales, where the canonical
lift is given by the iterated Marcus-integral (see [FS17] and [CF19]) and corresponding universal
approximation theorems have recently been provided in [CPSFar].

Form of the cost functional. A general form of cost functionals satisfying the continuity
assumption in (2.2) is given by

L(y, u) :=

∫ T

0

f(t, yt, ut)dt+ g(yT ), y ∈ ΩpT , u ∈ L0(dt;U),(2.6)

where f : [0, T ] × Rm × U → R, g : Rm → R are continuous and bounded. In view of such
“classical” cost functionals the definition of L as a map on the rough path space may seem
cumbersome. However, this definition does not lead to additional complications and allows us
to consider cost functionals involving rough integrals such as

L(y, u) := g

(∫ T

0

f(yt)dyt

)
, y ∈ ΩpT , u ∈ L0(dt;U),

where f ∈ Lipγ(Rm ×U ;R) for some γ > p (see the next section for the definition of this space)
and g : R → R is continuous and bounded (see [FV10, Section 10.6] for definition of the rough
integral and its continuity properties).

Boundedness of the cost functional. Assumption (2.2) allows us to disentangle the prob-
lem of approximating a given control from the convergence of the associated costs. More pre-
cisely, we prove the approximation of admissible controls in A by controls in a subclass A′ ⊂ A
for almost sure convergence in L0(dt;U). The convergence of the associated costs then fol-
lows from the stability result in Theorem 4.1 and the dominated convergence theorem. If one
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were to consider unbounded cost functionals this disentanglement would in general not be pos-
sible. Firstly, the set of admissible controls is intrinsically related to the cost functional by
A ⊂ {U prog. meas. | E[|L(YU ,X)|] < ∞}. Secondly, the mode of convergence for approxi-
mating controls needs to be chosen accordingly to deduce the convergence of costs. Hence, the
theoretical analysis becomes more problem-specific and possibly requires more elaborate univer-
sal approximation results for signature functionals.

To be more specific about the last statement, consider a quadratic control problem with a
cost functional of the form

L(y, u) :=

∫ T

0

{
a|yt|2 + b|ut|2

}
dt, y ∈ ΩpT , u ∈ L0(dt;U),

where a, b > 0 are constants and U = Rk. We consider examples of such problems in Section 5.2
and 5.3. In this case, assuming square-integrability of ‖X‖p−var, one needs to prove convergence
of the approximating sequence of controls in L2(dt⊗ dP). For the sub-class of signature controls
this cannot be easily deduced from the universal approximation in Proposition 3.3, since outside
the chosen compact sets there is no general way to bound the costs incurred. Note, however,
that recently global universal approximation theorems have become available for normalized
signatures in [CO22] and on weighted functions spaces in [CST23]. In particular, [BPS23] provide
a corresponding universal approximation for processes in L2(dt⊗ dP), thus allowing to directly
adapt our theoretical results to the case of quadratic control problems.

Initial value and history. The assumption that X takes values in Ωp,0T implies a deterministic
starting value X0. A straight forward generalization is an inclusion of a finite history of the path,
i.e., by assuming that X is defined on the interval [t0, T ] for some t0 < 0 and then setting Ft to
the completion of σ(Xs | t0 ≤ s ≤ t) for all t ∈ [0, T ]. In this case, the approximation results
from Section 4 are extended by considering controls that are functionals of the signature started
at time t0.

3. Preliminaries on rough analysis and signatures

We are going to introduce the basic definitions and notation needed for the understanding
rough differential equations and signatures. These definitions are standard in the rough path
literature, we refer to [LCL07, FH20, FV10] for a more detailed exposition.

3.1. The tensor algebra. The sequence of iterated integrals of a smooth path satisfies algebraic
relations that are consequence of the linearity of the integral and the integration by parts rule.
These algebraic properties are most conveniently revealed when organizing these intergals as
tensor series. In this section we introduce the basic algebraic concepts that will allow us to
define signatures and rough paths.

Let V be a finite-dimensional R-vector space with basis {e1, . . . , ed}. We define the extended
tensor algebra by setting

T ((V )) :=

∞∏
n=0

V ⊗n

where V ⊗n denotes the n-th tensor power of V with the convention V ⊗0 := R, V ⊗1 := V . The
algebraic structure on T ((V )) is given by componentwise summation and tensor multiplication,
i.e., for two tensor series a = (an)∞n=0 and b = (bn)∞n=0 in T ((V )) the tensor product is defined
by

a⊗ b =

(
n∑
k=0

ak ⊗ bn−k

)
n=0,1,...

.
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We denote by 0 := (0, 0, . . . ) and 1 := (1, 0, . . . ) the neutral elements of summation and multi-
plication. The tensor algebra T (V ) ⊂ T ((V )) consists of those tensor series with only finitely
many non-zero elements, which defines a subalgebra. There is a natural pairing between T ((V ))
and T (V ) given by

〈·, ·〉 : T (V )× T ((V ))→ R, 〈a,b〉 := a0b0 +

∞∑
k=1

〈ak, bk〉,

where the summation is finite by the definition of T (V ) and 〈ak, bk〉 denotes the dot product1

on V ⊗k. We will frequently use this pairing by associating an element ` ∈ T (V ) to the linear
functional on the extended tensor algebra 〈`, ·〉 : T ((V ))→ R.

The truncated tensor algebra is defined by

TN (V ) :=

N⊕
n=0

V ⊗n.

We define maps πn : T ((V ))→ V ⊗n and π≤N : T ((V )) → TN (V ) by πn(a) = an and π≤N (a) =
(a0, . . . , aN ). Note that TN (V ) forms an algebra under the truncated tensor multiplication
a⊗N b := π≤N (a ⊗ b), for a,b ∈ TN (V ). However, we will not distinguish between the multi-
plication symbols on TN (V ), T (V ) and T ((V )) and use ⊗ in all cases and write 0 and 1 for the
neutral elements π≤N (0) and π≤N (1) in the truncated tensor algebra. Furthermore, TN (V ) is a
finite dimensional vector space which we equip with the norm

|a| =
N∑
n=0

|an|, a ∈ TN (V ),

where | · | =
√
〈·, ·〉 denotes the Euclidean norm on V ⊗n ∼= Rdn for any n ∈ N.

The Lie-algebra generated from {e1, . . . , ed}, where ei := (0, ei, 0, . . . ) ∈ T (V ), and the com-
mutator bracket

[a,b] = a⊗ b− b⊗ a, a,b ∈ T (V ),

is called the free Lie-algebra g(V ) over V . It is a sub-algebra of T ((V ))0 = {a ∈ T ((V )) | π0(a) =
0}. Its tensor exponential, i.e., its image under the map

exp⊗ : T ((V ))0 → T ((V )), a 7→ 1 +

∞∑
n=1

1

n!
a⊗n,(3.1)

is called the free Lie group G(V ) := exp⊗(g(V )), which is a subgroup of T ((V ))1 = {a ∈
T ((V )) | π0(a) = 1}. Indeed, (G(V ),⊗) is a group with identity 1, where for g = exp⊗(a) ∈ G(V )
the inverse element is given by g−1 = exp⊗(−a). The inverse of the operation (3.1) is given by
the tensor logarithm

log⊗ : T ((V ))1 → T ((V ))0, (1 + a) 7→ 1 +

∞∑
n=1

(−1)n+1

n
a⊗n.(3.2)

We also set gN (V ) := π≤N (gN (V )) and GN (V ) := π≤N (G(V )), which are the free nilpotent
Lie algebra and group of order N . We equip these spaces with the subspace topology in TN (V ).
The truncated tensor exponential and logarithm

expN⊗ : TN (V )0 → TN (V )1, logN⊗ : TN (V )1 → TN (V )0,

1This inner product on V ⊗k is defined as the bilinear extension of 〈ei1 ⊗ · · · ⊗ eik , ej1 ⊗ · · · ⊗ ejk 〉 :=

〈ei1 , ej1 〉 · · · 〈eik , ejk 〉 := δi1,j1 · · · δik,jk , where δ denotes the Kronecker-Delta.
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are defined using the corresponding (finite!) power series in the truncated tensor algebra. Hence,

these maps are smooth, and, furthermore, it holds logN⊗ = (expN⊗ )−1 and GN (V ) = expN⊗ (gN (V )).

3.2. Rough paths and their signatures. One can start by defining the signature for a piece-
wise smooth path x : [0, T ] → V , i.e., assume that the derivative ẋ is integrable and has
only finitely many points of discontinuity. We define its signature Sig(x)s,t over the interval
[s, t] ⊂ [0, T ] as the tensor series of iterated integrals. More precisely, Sig(x)s,t ∈ T ((V ))1 and
for all n = 1, 2, . . . we set

πn(Sig(x)s,t) :=

∫ t

s

∫ tk

s

· · ·
∫ t2

s

ẋ(t1)⊗ · · · ⊗ ẋ(tn) dt1 · · · dtn.

One can show that as consequence of the integration by parts rule such signatures are elements
of the free Lie group G(V ), i.e., Sig(x) : ∆T → G(V ), where ∆T := {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤
t ≤ T}. Moreover, we have the Chen relation (see [Che57])

Sig(x)s,t = Sig(x)s,u ⊗ Sig(x)u,t, 0 ≤ s ≤ u ≤ t ≤ T.

We set Sig(x)t := Sig(x)0,t and also define the truncated signature by Sig(x)≤N := π≤N (Sig(x)).
The space ΩpT (V ) of geometric p-rough paths for some p ≥ 1 is constructed as the closure of

the set of smooth paths under a p-variation metric that also measures the first bpc-levels of the
signature, where bpc denotes the integer part of p. To make this more precise, we first define the
p-variation-distance of two group valued paths x,y : [0, T ]→ GN (V ) by

dp−var;[s,t](x,y) := max
k=1,...,N

sup
D⊂[s,t]

(∑
ti∈D

∣∣∣πk(x(ti)
−1 ⊗ x(ti+1)− y(ti)

−1 ⊗ y(ti+1)
)∣∣∣ pk) k

p

where the supremum ranges over all partitionsD = {ti} of [s, t]. We use the notation dp−var(x,y) :=
dp−var;[0,T ](x,y). The space of geometric p-rough paths ΩpT (V ) is then defined as the set of con-

tinuous paths x : [0, T ]→ Gbpc(V ) that satisfy

(i) dp−var;[s,t](1,x) <∞,
(ii) there exists a sequence of piecewise smooth paths (xn)n≥1 with xn : [0, T ] → V such

that

lim
n→∞

dp−var

(
x, Sig(xn)≤bpc

)
= 0.

Unless stated otherwise we will abbreviate ΩpT = ΩpT (V ). On the subset

Ωp,0T := {x ∈ ΩpT | x(0) = 1},
dp−var defines a metric. We can similarly equip ΩpT with a metric by additionally comparing

starting values. With the thereby induced topology Ωp,0T and ΩpT are Polish spaces.
A key insight for geometric p-rough paths is that signature at high levels N > bpc are uniquely

determined by the signature up to level bpc. Indeed, the Lyons Extension Theorem states that

every geometric rough path x ∈ Ωp,0T has a unique lift Sig(x) ∈ G(V ), such that π≤bpc(Sig(x)) = x

and also for every N > bpc it holds dp−var

(
π≤N (Sig(x)), 1

)
<∞ and the lifting map

Ωp,0T → GN (V ), x 7→ Sig(x)≤N0,T

is continuous. Note that for a piecewise smooth path x : [0, T ] → V we have Sig(x)≤bpc ∈ Ωp,0T
for any p ≥ 1. Furthermore, the signature in the rough path sense is consistent with signature
in the smooth sense, i.e., Sig(Sig(x)≤bpc) = Sig(x).

We say that a continuous path x : [0, T ]→ V has a lift to a geometric p-rough path, if there
exists x ∈ ΩpT such that π1(x) = x. Note that this lift is not unique, even though there often is
a canonical choice. For instance, this is the case for solutions to rough differential equations (see
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the Section 3.5) and for many stochastic process. The canonical lift of a Brownian motion B,
for example, is obtained by suitable piecewise linear approximations (Bn)n≥1. It can be shown
that for any p ∈ (2, 3) we have

Sig(Bn)≤2 ΩpT−−−−→
n→∞

B :=

(
1, B,

(∫ ·
0

Bis ◦ dBjs

)
i,j=1,...,d

)
almost surely,

where “◦dB” denotes the Stratonovich integration with respect to B. In particular, B defines a
ΩpT valued random-variable, which we call the Stratonovich-lift of the Brownian motion B.

3.3. Stopped rough paths. We can define a stochastic rough path as an ΩpT -valued random
variable. To introduce the notion of adeptedness, we will need to consider functionals of the
restriction of a rough path to subintervals of [0, T ]. This calls for the definition of an appropriate
ambient space ΛT , where we can compare paths defined on different segments of the time line.
For rough paths this was originally proposed in [KLPA20], then elaborated in [BHRS23], and is
motivated by the functional Itô calculus, see [Dup19, CF10].

We call ΛT :=
⋃
t∈[0,T ] Ωp,0t the space of stopped rough paths. Note that

ΛT = {x|[0,t] | x ∈ Ωp,0T , t ∈ [0, T ]}.

Following [CF10] and [CM24] we also call a map f : ΛpT → R a non-anticipative functional. To

indicate from which set Ωp,0t and element x ∈ ΛT is chosen, we will write it as x = xt.

To define a suitable topology on ΛT , note that we can extend a path segment xt ∈ Ωp,0t by its

constant extrapolation xt(· ∧ t) ∈ Ωp,0T . We then equip ΛT with the metric

d(xt,ys) := dp−var

(
xt(· ∧ t),ys(· ∧ s)

)
+ |t− s|, xt,ys ∈ ΛT .

Clearly, the topology on ΛT is the initial topology of the two maps ΛT → Ωp,0T , xt 7→ xt(· ∧ t)
and ΛT → [0, T ], xt 7→ t. We further recall the following result from [BHRS23, Appendix A].

Proposition 3.1. ΛT is a Polish space. Furthermore, the topology on ΛT is the final topology
induced by the map ϕ : [0, T ]× Ωp,0T → ΛT , (t,x) 7→ x|[0,t].

3.4. Time augmention and universal approximation. In order to use the signature as a
feature on the path space, we extend paths by a running time component. This will guarantee
that the signature uniquely characterizes the path on the entire interval. In this section we will
explain how this extension works for geometric rough paths. We also explain the universality of
linear signature maps; see Proposition 3.3.

Let x ∈ Ωp,0T and let (xn)n≥1 be a sequence of piecewise smooth paths such that Sig(xn)≤bpc

converges to x in Ωp,0T We extend xn to a piecewise smooth path x̂n := t 7→ (t, xn(t)). It then

follows from [FV10, Theorem 9.32] that (Sig(x̂n)≤bpc)n≥1 forms a Cauchy sequence in Ωp,0T (R×V )
and we denote by x̂ its limit. Furthermore, we see from the same theorem that there exists a
constant C > 0 depending on p and T such that

dp−var(x,y) ≤ dp−var(x̂, ŷ) ≤ Cdp−var(x,y), x,y ∈ Ωp,0T .

We define by Ω̂p,0T := {x̂ | x ∈ Ωp,0T } ⊂ Ωp,0T (R× V ) the set of time augmented geometric p-rough

paths. The above estimate implies that the embedding x 7→ x̂ is continuous and that Ω̂p,0T is also
a Polish space. We extend the notions from the previous section to these time augmented paths
by passing from the stopped rough path xt ∈ ΛT to its augmented version x̂t ∈ Ω̂p,0T .

We will often use that signatures of time-augmentations depend continuously on the original
rough path:

Lemma 3.2. For any N ∈ N, ΛT → GN (V ) : xt 7→ Sig(x̂t)≤N0,t is continuous.
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Proof. For xt ∈ ΛT define the extrapolated path xt,T := xt(t∧·) ∈ Ωp,0T and its time-augmentation

by x̂t,T ∈ Ω̂p,0T . We then have by Chen’s identity

Sig(x̂t)0,t = Sig(x̂t,T )0,t

= Sig(x̂t,T )0,T ⊗ (Sig(x̂t,T )t,T )−1

= Sig(x̂t,T )0,T ⊗ exp⊗(−e1(T − t))

The statement then follows from continuity of the maps xt 7→ (t,xt,T ), x 7→ x̂ and x 7→ Sig(x)≤N0,T

for any N ∈ N are continuous. �

We are now ready to state the approximation property of linear signature functionals within
the class of continuous non-anticipative functionals.

Proposition 3.3. For any continuous function f : ΛpT → R and compact set K ⊂ Ωp,0T there
exists a sequence (`n)n≥1 ⊂ T (V ) such that

lim
n→∞

sup
t∈[0,T ]

sup
x∈K

(∣∣f(x|[0,t])− 〈`n,Sig(x̂|[0,t])〉
∣∣) = 0.

This form of universal approximation property goes back to [KLPA20]. Let us sketch its
proof since it highlights key structural properties of signatures which underline their usefulness
for encoding path information. From the algebraic properties of the signature, it follows that
the linear functionals {xt 7→ 〈`,Sig(x̂t)0,t〉 | ` ∈ T (V )} form an algebra (cf. [LCL07, Theorem
2.15]). By Lemma 3.2 it is a sub-algebra of C(ΛT ;R). Since the signature characterizes the path
(see [HL10], [BGLY16]), the algebra is point separating (see [KLPA20, Lemma B.3] for detailed
proof). Finally, by Proposition 3.1, we have that ϕ([0, T ]×K) ⊂ ΛT is compact. The statement
then follows from the Stone-Weierstrass Theorem.

3.5. Rough differential equations. Starting as in Section 3.2, we can give meaning to a rough
differential equation

dy(t) = σ(y(t))dx(t), t ∈ [0, T ], y(0) = y0 ∈ Rm.(3.3)

where x ∈ Ωp,0T (Rd) and σ : Rm → Rm×d, by first considering it for piecewise smooth paths.
Indeed, let x : [0, T ] → Rd be piecewise smooth and consider the system of ordinary integral
equations

yk(t) = yk0 +

d∑
i=1

∫ t

0

σki (y(s))ẋi(s)ds, k = 1, . . . ,m, t ∈ [0, T ], y0 ∈ Rm.(3.4)

Given that σ is bounded and Lipschitz continuous, the above equation has a unique solution,
which we denote by Γσ(y0;x). We then say that a continuous path y : [0, T ]→ Rm is a solution to
the rough differential equation (3.3) if there exists a sequence of piecewise smooth paths (xn)n≥1

such that

(i) limn→∞ dp−var

(
x, Sig(xn)≤N

)
= 0,

(ii) Γσ(y0;xn) −−−−→
n→∞

y uniformly on [0, T ].

In order to state the main existence and uniqueness result for rough differential equation we
introduce a convenient Lipschitz space. Let V and W be two Banach spaces. For γ ∈ (0, 1] and
a map f : V →W we define

‖f‖Lipγ(V ;W ) = max

{
sup
u∈V
‖f(u)‖, sup

u,v∈V

‖f(v)− f(u)‖
‖u− v‖γ

}
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and, for γ > 1 and a bγc-times Fréchet-differentiable map f : V →W , we define recursively

‖f‖Lipγ(V ;W ) = max

{
sup
u∈V
‖f(u)‖, ‖f ′‖Lipγ−1(V,L(V ;W ))

}
,

where L(V ;W ) denotes the Banach space of bounded linear functions from V to W (see [FV10,
Appendix B] for more detail). In the following we will simply write ‖f‖Lipγ = ‖f‖Lipγ(V ;W ) as the
spaces V and W can be inferred from the context. Furthermore, if we require that ‖f‖Lipγ <∞
then we implicitly require that f is bγc-times differentiable and we set

Lipγ(V ;W ) := {f : V →W | ‖f‖Lipγ <∞}

Given that ‖σ‖Lipγ < ∞ for some γ > p it holds that equation (3.3) has a unique solution
y ∈ C([0, T ];Rm). Moreover, y has a unique lift to a geometric rough path y ∈ ΩpT (Rm) such
that for any sequence of piecewise smooth paths (xn) satisfying (i) and yn := Γσ(y0, xn) it holds

lim
n→∞

dp−var(y,Sig(yn)≤bpc) = 0.

Furthermore, the so called Itô-Lyons solution map

Rm × Ωp,0T (Rd)× Lipγ(Rm;Rm×d)→ ΩpT (Rm)

(y0,x, σ) 7→ y

is locally Lipschitz continuous.

4. Approximation with Signature Controls

We are now ready to provide the main results of this paper, namely that the general, rough and
non-Markovian stochastic control problem introduced in Section 2, can be solved by controls,
which are functions of the signature of the driving path. In order to do so, we first need a
new, general uniform stability result for rough differential equations whose drift depends on
a measurable control, see Section 4.1. We continue by showing that progressively measurable
admissible controls can be approximated by continuous controls, i.e., continuous function on
the space of stopped rough paths, see Section 4.2. In Section 4.3 we derive an appropriate
universal approximation theorem (a.k.a. Stone-Weierstrass theorem), which allows us to conclude
that signature controls (i.e., controls defined as linear functionals of the signatures or as neural
networks applied to the log-signature) are dense in the set of all admissible controls. Finally, we
prove that we can solve the original stochastic optimal control problem by restricting admissible
controls to signature controls, in the sense that the infimum of the expected cost is equal, see
Section 4.4.

4.1. Drift-controlled rough differential equations. In the following, we will consider rough
differential equations with a controlled drift term

dy(t) = b(y(t), u(t))dt+ σ(y(t))dx(t), t ∈ [0, T ], y(0) = y0 ∈ Rm,(4.1)

where u : [0, T ] → U ⊂ Rk is measurable and b : Rm × Rk → Rm. The following theorem
establishes the existence, uniqueness and stability of solutions, which will be crucial for proving
our main approximation result in Section 4.4. Substituting x = X(ω) and u = U(ω), the solution
of (4.1) corresponds to the solution of the controlled stochastic RDE (2.1) for a given realization
of the noise as well as the control.

Theorem 4.1. Let x ∈ Ωp,0T (Rd) for some p ∈ [1,∞) and assume that

sup
a∈U
‖b(·, a)‖Lip1 <∞ and ‖σ‖Lipγ+1 <∞ for some γ > p.(4.2)



STOCHASTIC CONTROL WITH SIGNATURES 13

Then equation (4.1) has a unique solution y with corresponding lift y ∈ ΩpT (Rm) such that

Rm × Ωp,0T (Rd) : (y0,x) 7→ y,

is locally Lipschitz continuous uniformly in u. Assuming further that

sup
a,a′∈U

‖b(·, a)− b(·, a′)‖Lip1

‖a− a′‖
<∞(4.3)

and denoting by L0(dt;U) = {u : [0, T ] → U measurable} equipped with the topology of conver-
gence in Lebesgue-measure, then also the map

Γb,σ : Rm × Ωp,0T (Rd)× L0(dt,U)→ ΩpT (Rm), (y0,x, u) 7→ y,

is continuous.

Proof. The proof uses the flow decomposition method. Let φ : [0, T ] × Rm → Rm denote the
solution to

φ(t, y0) = y0 +

∫ t

0

σ(φ(s, y0)) dx(s).

From [FV10, Proposition 11.11], we know that φ is a flow of C2-diffeomorphisms and that the
first and second derivate of φ and its inverse are bounded by a constant depending only on
p, γ, ‖σ‖Lipγ+1 and the rough path norm of x. From these properties and assumption (4.2), we
can conclude that the ordinary differential equation

Zy0t = y0 +

∫ t

0

(Dzφ(s, z)|z=Zy0s )−1b(φ(s, Zy0s ), u(s)) ds(4.4)

has a unique solution Zy0 for every initial condition y0. The solution to (4.1) is then given by

y(t) = φ(t, Zy0t ).

We will now construct the rough path lift of y. By definition, there exists a sequence of smooth
paths (xn)n≥1 s.t.

lim
n→∞

dp−var

(
x, Sig(xn)≤bpc

)
= 0.

Let yn denote the solution to (4.1) where we replace the driving rough path by Sig(xn)≤bpc. Since

the paths yn are smooth, Sig(yn)≤bpc is well defined. It is not hard to prove that (exp
bpc
⊗ (y0)⊗

Sig(yn)≤bpc)n≥1 constitutes a Cauchy sequence in the space ΩpT (Rm) and that the limit y is
a rough path lift of y that satisfies the stated properties. In fact, the components of y can be
identified as rough integrals (cf. [FH20, Chapter 4]). To see this, we note first that y is controlled
by the rough path x in the sense of Gubinelli (cf. [FH20, Definition 4.6 and Section 4.5]). The
second iterated integral is then given by∫ t

s

(y(v)− y(s))⊗ dy(v) :=

∫ t

s

(y(v)− y(s))⊗ b(y(v), u(v)) dv

+

∫ t

s

(y(v)− y(s))⊗ σ(y(v)) dx(v).

Since the integrand in the second integral is controlled by x, the integral indeed exists as a rough
integral. Furthermore, the rough integral is again controlled by x, thus we can make sense of
the third iterated integral of y similarly. By an induction argument, iterated integrals of y of
arbitrary order can be defined and it is not hard to show that they coincide with the components
of y.

The rest of the proof follows by standard arguments. �
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Remark 4.2. In [DFG17, Theorem 29], a similar statement is formulated in the case of p ∈ [2, 3)
under the (slightly) weaker assumption ‖σ‖Lipγ < ∞. The reason why we need one additional
degree of smoothness here is that we use the flow decomposition method for which also the second
derivative of the flow φ plays a role in the estimates to ensure global existence and uniqueness of
(4.4). The proof of [DFG17, Theorem 29] avoids the flow decomposition, but relies on a yet to
be developed solution theory for rough differential equations on Banach spaces containing a drift
parameter that is only Lipschitz continuous. With this it should be possible to get a version of
Theorem 4.1 that only assumes ‖σ‖Lipγ <∞.

4.2. Approximation of admissible controls by non-anticipative continuous path func-
tions. We will start by lifting progressively measurable processes with measurable non-anticipative
path functionals. The proof is mainly postponed to the Appendix A. Throughout this section we
will assume that Assumption (2.3) holds, i.e., X takes values in Ωp,0T and generates the underlying
filtration (Ft).

Proposition 4.3. For any (Ft)-progressively measurable process U : [0, T ]×Ω→ Rk there exists
a Borel measurable map θ : ΛT → Rk such that for

θ(X(ω)|[0,t]) = Ut(ω),(4.5)

for Leb⊗ P-a.e. (t, ω) ∈ [0, T ]× Ω. Conversely, for any Borel measurable θ : ΛpT → Rk,

Uθt := θ(X|[0,t]), t ∈ [0, T ],(4.6)

defines an (Ft)-progressively measurbale process.

Proof. Let U be a (Ft)-progressively measurable process. Then U : [0, T ] × Ω → Rk is measur-
able with respect to B([0, T ]) ⊗ FT . From Lemma A.1 we have that FT is the completion of

X−1(B(Ωp,0T )). Hence, there exists a measurable map η : [0, T ]×Ωp,0T → Rk such that U = η(·,X)
upto indistinguishability.

Now fix an arbitrary t ∈ [0, T ]. Since Ut is Ft-measurable it follows again by Lemma A.1

that there exists a map ηt : Ωp,0t → Rk such that almost surely η(t,X) = Ut = ηt(X|[0,t]).
This readily implies that almost surely η(t,X) = η(t,X·∧t). Finally we define θ : ΛpT → Rk by
setting θ(X|[0,t]) := η(t,X·∧t) which satisfies (4.5). From the continuity of the extension map

ΛT → [0, T ]× Ωp,0T , (t,xt) := (t,xt(· ∧ t)) (see Section 3.3) we also have that θ is measurable.
Conversely, if U is a process satisfying (4.6) for some Borel-measurable map θ : ΛT → Rk,

then for any t ∈ [0, T ] and B ∈ B(Rk) we have

{(s, ω) ∈ [0, t]× Ω | Us(ω) ∈ B} = {(s, ω) ∈ [0, t]× Ω | X(ω)|[0,s] ∈ θ−1(B)}
= {(s, ω) ∈ [0, t]× Ω | ϕ(s,X(ω)|[0,t]) ∈ θ−1(B)},

where ϕ : [0, t]×Ωp,0t → Λt : (s,x) 7→ x|[0,s]. By Proposition 3.1 the map ϕ is continuous. Since
ω 7→ X(ω)|[0,t] is Ft measurable it then follows that the above set is in B([0, t])⊗Ft. �

Based on the above result, we are next going to show that admissible controls can be ap-
proximated with continuous non-anticipative path functionals, i.e., with controls in the following
subclass

Ac := {Uθ | θ : ΛpT → R continuous.}

Corollary 4.4. For any admissible control U ∈ A there exists a sequence (Un) in Ac such that

U = lim
n→∞

Un Leb⊗ P-almost everywhere.(4.7)

We denote by PU : E → U the projection map onto the closed convex set U . Note that by the
Hilbert projection theorem (c.f. [Rud87, Theorem 4.10]) this map is unique and continuous.
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Proof. The continuity of ϕ : [0, T ] × Ωp,0T → ΛpT :, (t,x) 7→ x|[0,t] implies that the push forward
µ = ϕ(·,X(·))∗[Leb ⊗ P] is a well-defined probability measure on (ΛpT ,B(ΛpT )). From [Wís94,
p. 148] it follows that every Borel measurable map θ : ΛpT → Rk can be approximated µ-almost
surely by continuous maps.

Now let U ∈ A. By Proposition 4.3 there exits a Borel measurable θ : ΛpT → Rk such that
(4.5) holds for Leb ⊗ P-a.e. (t, ω). From the previous paragraph it follows that there exists a
sequence of continuous maps θn : ΛpT → Rk for n ≥ 1 that converges (Leb⊗P)-almost everywhere
towards θ. This implies that

Ut(ω) = θ(X|[0,t](ω)) = lim
n→∞

θn(X|[0,t](ω)),

for Leb⊗P-a.e. (t, ω) ∈ [0, T ]×Ω. Finally, composing with the projection map Un := PU ◦ θ̃n ◦X
and recalling that PU is continuous, the claim follows. �

4.3. Linear and deep signature controls. The universal approximation theorem for signa-
tures allows us to approximate any continuous functional on the path space by linear functionals
of the signature. This motivates us to consider the following class of linear signature functionals

Tlin :=
{
θ : ΛT → E

∣∣∣ ∃`1, . . . , `k ∈ T ((Rd+1)∗) s.t. θi(x̂t) = 〈`i,Sig(x̂t)0,t〉 ∀ xt ∈ ΛpT

}
.

In general such functionals θ ∈ Tlin will not lead to admissible strategies Uθ. Recall that PU is
the projection from E onto the convex set U . We then define the set of linear signature controls

Alin :=
{
Uθ
∣∣∣ ∃θ′ ∈ Tlin s.t. θ = PU ◦ θ′

}
.

We will argue below that Tlin ⊂ C(ΛpT ;E), thus verifying that indeed Alin ⊂ Ac ⊂ A. Before
doing so we will, however, introduce a second class of signature strategies, based on non-linear
functionals. Motivated by the numerical efficiency for optimal stopping problems in [BHRS23],
we define the following class of deep neural functionals of the log signature

TDNN :=
{
θ : ΛT → E

∣∣∣ ∃N ∈ N, F ∈ Dηd+1,N ,k s.t. θ(x̂t) = F◦log⊗(Sig(x̂t)≤N0,t ) ∀ xt ∈ ΛpT

}
,

where log⊗ : GN (Rd+1) → gN (Rd+1) ∼= Rηd+1,N is the truncated tensor logarithm (see Sec-

tion 3.1), ηd+1,N is the dimension of the truncated log signature2 and Dl,k is the class of deep
neural networks mapping from Rl to Rk with fixed depth I ≥ 1, number of neurons q ≥ 1 and
activation function3 ϕ : Rq → Rq. More precisely, Dl,k consists of functions of the form

F = A0 ◦ ϕ ◦A1 ◦ ϕ ◦ · · · ◦AI ,

where AI : Rl → Rq, A0 : Rq → Rk and Ai : Rq → Rq (0 < i < I) are linear maps. Similar to
the linear case, we define the set of deep signature controls by

ADNN :=
{
Uθ
∣∣∣ ∃θ′ ∈ TDNN s.t. θ = PU ◦ θ′

}
.

The following verifies that the signature controls are dense in the set of admissible strategies.

2We refer to [BHRS23] Section 7 for more detail on the log-signature and the dimension of the step-N nilpotent

free Lie-algebra gN (Rd+1). Note also that for simplicity we identify gN (Rd+1) with RηN ,k in the definition of
TDNN without formally introducing an isomorphism.

3An activation function is a continuous function that is not a polynomial. For example the ReLu function
ϕ(x) = max{0, x} (componentwise).
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Proposition 4.5. It holds that Tlin, TDNN ⊂ C(ΛT ;Rk). Furthermore, given assumption (2.3),
it holds that Alin,ADNN ⊂ Ac and for any admissible control U ∈ A there exists a sequence
(Un)n≥1 ⊂ Alin (respectively in ADNN) such that

U = lim
n→∞

Un, Leb⊗ P-almost everywhere.

Based on Corollary 4.4 the proof is similar to the Proposition 7.4 in [BHRS23].

Proof. Recall from Lemma 3.2 that the map xt 7→ Sig(x̂t)≤N0,T is continuous for any N ∈ N.

Since also the linear map 〈`, ·〉 : T ((Rd+1)) → R is continuous for any ` ∈ T (Rd+1) we readily
conclude that Tlin ⊂ C(ΛT ;Rk). Similarly, since any F ∈ DηN ,k is a continuous function and
recalling from Section 3.1 that also the truncated logarithm log⊗ : GN (Rd+1) → gN (Rd+1) is

continuous it follows similarly that TDNN ⊂ C(ΛT ;Rk). The fact that Alin,ADNN ⊂ Ac then
follows immediately by the continuity of the projection PU .

To prove the approximating result it suffices by Corollary 4.4 to show that for any θ ∈
C(ΛT ;Rk) there exits a sequence (θn)n≥1 ⊂ Tlin (respectively TDNN), such that for a.e. ω ∈ Ω it
holds

θ(X|[0,t](ω)) = lim
n→∞

θn(X|[0,t](ω)), for Leb-a.e. t ∈ [0, T ].(4.8)

To this end, since Ωp,0T is a Polish space, we can choose an increasing sequence of compact sets

Kn ⊂ Ωp,0T such that limn→∞ P(X ∈ Kn) = 1. By Proposition 3.3 for each n ∈ N there exits a
sequence (`n,j)j≥1 ⊂ T (Rd+1)⊗k such that for jn ∈ N large enough it holds

sup
t∈[0,T ]

sup
x∈Kn

max
i=1,...,k

(∣∣θi(x|[0,t])− 〈`ij ,Sig(x̂|[0,t])〉
∣∣) ≤ 1

n
, j ≥ jn.

Defining the sequence (θn)n≥1 by θin(xt) := 〈`ijn ,Sig(x̂t)0,t〉 for all i = 1, . . . , k, we readily see
that it satisfies (4.8). To prove the approximation result for ADNN it now suffices to show that
TDNN is suitably dense in Tlin. More precisely, it suffices to show that for any compact set
K ⊂ Ωp,0T , N ∈ N and ` ∈ TN (Rd+1) there exists a sequence of functions (Fn)n≥1 ∈ Dηd+1,N ,1

such that

lim
n→∞

sup
x∈K
|〈`,Sig(x̂)0,T 〉 − Fn(log⊗ Sig(x̂)0,T )| = 0.

Recall from Section 3.1 that the map log⊗ : GN (Rd+1)→ gN (Rd+1) is continuous and invertable

with inverse exp⊗. Hence, in particular the set {log⊗ Sig(x̂)0,T | x ∈ K} ⊂ gN (Rd+1) is com-

pact. Since also the map gN (Rd+1) → R : z 7→ 〈`, exp⊗(z)〉 is continuous, the statement now
readily follows from the universal approximation theorem for nerual networks (see e.g. [LLPS93,
Theorem 1]). �

4.4. Approximation of the optimal costs. In this section we present our main theoretical
result, which states that the optimal expected costs of the problem introduced in Section 2 can
be approximated using the classes of signature controls Alin and ADNN. We begin by proving the
continuous dependence of the costs with respect to the underlying control. Given the continuity
of the cost functional L, this is a direct consequence of the stability result in Theorem 4.1.

Lemma 4.6. Assume that (4.2)–(2.2) hold and let (Un)n≥1 ⊂ A and U ∈ A s.t.

U = lim
n→∞

Un, Leb⊗ P-almost everywhere.

Denote by Yn = YUn respectively Y = YU the solution to the rough differential equation (2.1)
with the control Un respectively U . Then it holds

L(Y, U) = lim
n→∞

L(Yn, Un), almost surely.
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Proof. We have in particular that Un(ω) converges towards U(ω) in L0(dt,U) for a.e. ω ∈ Ω.
From Theorem 4.1 it follows that

lim
n→∞

dp−var(Yn(ω),Y(ω)) = 0, for a.e. ω ∈ Ω.

We readily conclude using the continuity assumptions on L. �

Combining Corollary 4.4 and Proposition 4.5 with the above lemma, the following result is
now a direct consequence of the dominated convergence theorem.

Theorem 4.7. Given assumptions (4.2)–(2.3), we have

inf
U∈A

J(U) = inf
U∈Ac

J(U) = inf
U∈Alin

J(U) = inf
U∈ADNN

J(U).

5. Numerical Method and Examples

In this section, we will introduce a numerical method that arises from the parametrization
of admissible controls in Section 4.2. We will then evaluate its performance through two case
studies of non-Markovian control problems.

The full code is available at https://github.com/hagerpa/sigControl.

5.1. Numerical Method. Fixing a signature truncation level N ≥ 1, the corresponding sub-
classes ANlin ⊂ Alin and ANDNN ⊂ ADNN constitute finite-dimensional parameterizations of admis-
sible controls. Indeed, for ANlin the set of parameters is given by the coefficients in the truncated
tensor series `1, . . . , `k ∈ TN ((Rd+1)∗), i.e., the dimension of the parameter space is given by
k ·(1+(d+1)+ · · · (d+1)N ). For ANDNN, the parameter space is determined by the architecture of
the deep neural networks Dηd+1,N ,k, thus characterized by the number of hidden layers I and the
number of neurons per layer q. Let us reveal the parametrization in both cases more explicitly
by noting that for any U ∈ ANlin (resp. ANDNN) there exists a vector of parameters η that defines

a function θ(· ; η) : GN (Rd+1)→ U such that Ut = θ(Sig(X̂)≤N0,t ; η). For ease of notation we then

also write U(η) ∈ ANlin (resp. ANDNN).
The next best objective towards solving the control problem is then to minimize J(U(η)) over

η. This is achieved numerically through a Monte Carlo approximation of the expectation and a
time discretization for approximating the signature and solving the rough differential equation.
We will first present the general structure of the algorithm and then comment on the details
below. For the sake of concreteness, we will assume that the cost functional L is of the integral
form4 (2.6).

(1) Fix a time grid Π = {t0, t1, . . . , tn} with 0 = t0 < t1 < · · · < tn = T .

(2) GenerateM independent realizations {(δS(i)
j )j=1,...,n | i = 1, . . . ,M} of (Sig(X̂)≤Ntj−1,tj )tj∈Π;

then set S
(i)
0 = 1 and iteratively S

(i)
j = S

(i)
j−1 ⊗ δS

(i)
j .

(3) Evaluate the signature controls U
(i);η
j = θ(S

(i)
j ; η) and store the gradients ∇ηθ(S(i)

j ; η),
j = 1, . . . , n.

(4) Calculate or use a suitable numerical scheme to find (approximate) solutions

{(Y (i);η
j )j=0,...,n | i = 1, . . . ,M} on the grid Π of the rough differential equation (2.4)

corresponding to the samples (δS
(i)
j ).

4In general, the discretization of the cost functional depends on its specific form, while under the given
assumption, a straightforward discretization is given by the Riemann sum.

https://github.com/hagerpa/sigControl
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(5) Calculate the approximate expected costs

1

M

M∑
i=1

∑
tj∈Π

f(tj , Y
(i);η
j , U

(i);η
j )(tj − tj−1) + g(Y (i);η

n )

(5.1)

and its gradients with respect to η using the previously stored gradients of the control.
Then updated η using a step of stochastic gradient descent or a similar method.

(6) Starting from 2., repeat the above procedure with the new parameters several times or
until no further improvement.

(7) For a larger number of samples M ′ � M follow the steps 2. - 5. above once again and
use (5.1) as an approximation to the optimal control value.

Calculation of the signature. In most cases of interest, we are confined to approximate re-
alizations of the signature Sig(X̂)≤Ntj−1,tj in step (2) since direct sampling is not possible. Assume

that X is the limit of the lifted piecewise linear approximation of the process X = π1(X), from
which we can generate samples5. As discussed in Section 3.2, this holds true, for example, in the
case of the Stratonovich-lift of a Brownian motion. We can then approximate realizations of the
signature by sampling X on a refined grid of the interval [tj−1, tj ] and calculating the signature
of the linearly interpolated path. Here a refinement can be beneficial for the optimization proce-
dure, since further information from the evolution of X between tj−1 and tj can be incorporated
without the need to re-evaluate the control. The signature of a piecewise linear path can be cal-
culated exactly, and implementations of the underlying algebraic structure are readily accessible,
e.g., in the iisignature package [RG20]. This package also provides the necessary functionality
to join the signatures over consecutive time intervals. We also note that the log-signature of a
piecewise linear path can be calculated directly using the Baker–Campbell–Hausdorff formula,
and the iisignature package also provides this functionality.

Numerical schemes. Similarly to the signature, calculating the RDE solutions explicitly is
mostly not an option. Instead, one can use various numerical schemes to calculate approximate

solutions. Having already calculated approximations of the signature increments (δS
(i)
j ) in the

previous step, it is natural to use a higher-order Euler (or Taylor-type) scheme given by

Y
(i);η
j = Y

(i);η
j−1 + b(Y

(i);η
j−1 , U

(i);η
j−1 )(tj − tj−1) + E(σ)(Y

(i);η
j−1 , δS

(i)
j ),(5.2)

for all j = 1, . . . , n, starting with Y
(i);η
0 = y0, where

E(σ)(y, δS
(i)
j ) =

N∑
k=1

d∑
i1,...,ik=1

σ[i1](y) · · ·σ[ik](y)Id(y)〈ei1...ik , δSj〉

= σ(Y
(i);η
j−1 )π1(δSj) +

d∑
i1,i2=1

m∑
l=1

[
σli1

∂

∂yl
σi2

]
(Y

(i);η
j−1 )〈ei1i2 , δSj〉+ . . .

with σ[i] :=
∑m
l=1 σ

l
i
∂
∂yl

and the identity map Id : y 7→ y. Note that one recovers the usual Euler

scheme for N = 1 and that the choice N = 2 corresponds to the Milstein scheme. In general,
to guarantee convergence, one needs to choose N ≥ bpc. This class of schemes were analyzed
in [FV10] first. If no refinement of the intervals [tj−1, tj ] is used when calculating the signature

increments, we have δS
(i)
j = expN⊗ (X

(i)
tj −X

(i)
tj−1

). Such simplified higher-order Euler schemes and

their convergence rates were analyzed e.g. in [DNT12, FR14, BFRS16]. In general, higher-order
Euler schemes are easy to implement, but they require the calculation of higher order derivatives,

5If direct sampling from the rough path X is possible, we use piecewise geodesic interpolation instead. However,

it’s worth noting that even for a Brownian motion, direct sampling from the rough path is not possible.
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too, which can be costly in high dimensions. Moreover, they have a bad performance in case the
underlying RDE is stiff, in which case implicit schemes typically perform better. In [RR22], a
class of simplified Runge-Kutta schemes for RDEs was introduced and analyzed that contains
derivative-free and implementable schemes including implicit ones.

Numerical optimization procedure. The calculation of gradients in step (3) and (5) is au-
tomatized when using standard machine learning software libraries such as PyTorch [PGM+19].
Such packages also provide state of the art variants of stochastic gradient descent. In the numer-
ical examples below the performance was rather insensitive to the specific choice of optimization
method and the choice of hyper-parameters. In this case the “Adam” method [KB14] lead to
sufficient accuracy.

Linearization of the control problem. In special cases the algebraic properties of the sig-
nature can further be employed to transform the optimization problem into a form that allows
to efficiently use non-stochastic solvers. This approach was first suggested in [KLPA20] in the
context of an optimal execution problem (see also Section 5.3 below). Without going into de-
tails, this approach is generally possible if the the system (2.1) can be solved by integration, i.e.,
when b(y, u) and σ(y) are independent of y, and when b and L are of a polynomial form. Given

sufficient integrability of Sig(X̂)0,T , the shuffle property of the signature then allows to rewrite

the expected costs associated to a signature control U ` = 〈`,Sig(X̂)0,·〉 for some ` ∈ TN (Rd+1)
as

J(U `) = 〈P (`),E[Sig(X̂)≤N
′

0,T ]〉,

where P : TN (Rd+1)→ TN
′
(Rd+1) withN ′ ≥ N is polynomial in the coefficients of ` ∈ TN (Rd+1).

Estimating the truncated expected signature using a Monte-Carlo average an optimal ` can then
be obtain from a deterministic solver for polynomial optimization. As observed in [KLPA20],
this reformulation of the control problem preserves quadratic convex structures, and thus allows
to solve problems admitting such a structure as quadratic programs.

5.2. Case study 1: Optimal tracking of fractional Brownian motion. As a first bench-
mark example we consider the problem of optimally tracking a fractional Brownian motion with
a process whose speed can be controlled at quadratic costs. Letting the Hurst parameter H
vary in (0, 1] allows us to test our numerical method in a range of cases outside the Markov and
semimartingale regimes typically considered in the literature.

To set the stage, let ξ be a one-dimensional fractional Brownian motion on some probability
space (Ω,F ,P) and put X := ξ so that ξ is trivially adapted to the augmented filtration generated
by (σ(Xs; s ∈ [0, t]))t≥0. Notice that this way the controller will not have access to the full past
before time 0 of the fractional Brownian motion; granting this extended access leads to a different,
yet equally relevant control problem, which, however, is computationally more demanding and
thus left for future experiments at this point.

Now define the controlled process

Y Ut = y0 +

∫ t

0

Usds− ξt,(5.3)

where U is a progressively measurable process that represents the speed and direction of the
tracking. Since a one-dimensional fractional Brownian motion allows for a rough path lift

Xt = exp
bpc
⊗ (Xt), for some p ∈ (1/H, 1 + 1/H),
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this setting fits into our theoretical framework (2.1) by choosing U = R, b(y, u) = u, σ = −1.
We measure the tracking performance by the cost functional

L(YU , U) =
1

2

∫ T

0

(
(Y Ut )2 + κ(Ut)

2
)

dt(5.4)

where κ > 0 is the penalization parameter; we also confine ourselves to the natural class of
progressively measurable control processes U ∈ L2(P⊗ dt).

Remark 5.1. This kind of tracking problem finds several applications in mathematical finance.
For instance, following [BSV17], we can consider ξ to be the hedging strategy of a contingent
claim in an idealized frictionless reference market model driven by X; y0 +

∫ .
0
Usds could be the

evolution of a trader’s actual hedging position when she is confronted with market impact costs

as captured by κ
∫ T

0
U2
t dt. Due to these costs, the trader has to allow for a nonzero hedging

error Y U and the resulting risk can be measured by E
[∫ T

0

(
1
2 (Y Ut )2

)
dt
]
. Combining this with

expected impact costs leads to (5.4).

Our choice of this particular benchmark problem is motivated by its analytic tractability:
[BSV17] describes control policies and the problem value even for general targets ξ in. For our
particular tracking problem with fractional Brownian motion, this gives:

Theorem 5.2. The minimal tracking costs for a fractional Brownian motion ξ with Hurst pa-
rameter H ∈ (0, 1) are

inf
U

E[L(Y U , U)] =
1

2

√
κ tanh(τκ(0)) (y0)

2

+
1

2

∫ T

0

∫ t

0

(∫ T

s

(zH(t, s)− zH(u, s))
cosh(τκ(u))√
κ sinh(τκ(t))

du

)2

dsdt(5.5)

+
1

2

∫ T

0

√
κ tanh(τκ(t))

(∫ T
t
zH(u, t) cosh(τκ(u))du

)2

κ sinh2(τκ(t))
dt <∞.

where, for 0 ≤ s ≤ t ≤ T , we let τκ(t) := (T − t)/
√
κ, 0 ≤ t ≤ T, and

zH(t, s) := cH

(
t

s

)H− 1
2

(t− s)H−1/2 − (H − 1

2
)s

1
2−H

∫ t

s

uH−
3
2 (u− s)H− 1

2 du,

with

cH :=

(
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

) 1
2

.

Proof. The general form of the optimal tracking strategy is given in Theorem 1 of [BSV17]. In
conjunction with this, Theorem 3.4 of [BV18] identifies the minimal tracking error as

inf
U

E[L(Y U , U)] =
1

2

√
κ tanh(τκ(0))(x− ξ̂0)2 +

1

2
E

[∫ T

0

(ξt − ξ̂t)2dt

]

+
1

2
E

[∫ T

0

√
κ tanh(τκ(t))d〈ξ̂〉t

]
The tracking process ξ̂ introduced there takes here the form

ξ̂t :=

∫ T

t

E [ξu|Ft]
cosh(τκ(u))√
κ sinh(τκ(t))

du, 0 ≤ t ≤ T.
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For Ft generated by σ(ξs, s ∈ [0, t]), the conditional expectation E [ξu|Ft] is computed in Theo-
rem 4.2 in [NP00]. With zH as above we obtain

E [ξu|Ft] =

∫ t

0

zH(u, s)dBs

where

Bt :=
2H

cH

∫ t

0

sH−
1
2 dMH

s , t ≥ 0

is the standard Brownian motion constructed from the Gaussian martingale obtained from the

fBM ξ via MH
t :=

∫ t
0
wH(t, s)dξs, t ≥ 0, with

wH(t, s) :=
s

1
2−H(t− s) 1

2−H

2H
∫ 1

0
u

3
2−H(1− u)

1
2−Hdu

, s < t.

Straightforward computations starting from this show that

E

[∫ T

0

(ξt − ξ̂t)2dt

]
=

∫ T

0

∫ t

0

(∫ T

s

(zH(t, s)− zH(u, s))K(t, u)du

)2

dsdt

and

〈ξ̂〉t =

∫ t

0

(∫ T
s
zH(u, s) cosh(τκ(u))du

)2

κ sinh2(τκ(s))
ds, t ∈ [0, T ].

Our formula for the minimal tracking error follows now by plugging the identities from the last
two displays into the general cost formula stated above. �

H 1/16 1/8 1/4 1/2 3/4 1
th. optimum 0.293 0.264 0.206 0.124 0.071 0.034

Alin

N = 1 0.329 0.286 0.223 0.146 0.101 0.073
N = 2 0.315 0.275 0.211 0.127 0.076 0.041
N = 3 0.310 0.273 0.210 0.124 0.073 0.038
N = 4 0.304 0.270 0.209 0.124 0.073 0.038
N = 5 0.305 0.270 0.209 0.124 0.073 0.038

ADNN

N = 1 0.315 0.276 0.214 0.135 0.083 0.034
N = 2 0.307 0.272 0.210 0.124 0.073 0.034
N = 3 0.301 0.269 0.209 0.124 0.072 0.034
N = 4 0.300 0.267 0.208 0.124 0.072 0.034
N = 5 0.300 0.267 0.209 0.124 0.072 0.035

Table 1. Numerical results for the optimal tracking of a fractional Brownian
motion with different Hurst parameters H using strategies in Alin and ADNN

(I = 2, q = 30+η2,N ), with various signature truncation levels N . Presented are
the estimated expected costs. The fixed model parameters are y0 = 0, T = 1,
and κ = 0.1. An overall time discretization of ∆t = 10−3 was used for the
calculation of signatures, Y U , and the cost functional. The number of training
and testing paths was 219 and 220, respectively. The Monte Carlo resampling
error was below 0.0002. The first row presents the continuous-time optimal
values calculated using (5.5).
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We have tested our approximation method against the optimal values obtained from Theo-
rem 5.2 for several choices of Hurst parameters H using strategies from Alin and ADNN with
different signature truncation levels N . The remaining parameters were fixed to y0 = 0, T = 1
and κ = 0.1. The outcomes of these numerical test are collected in Table 1. We notice that using
our method we can reach reasonably accurate approximations of the continuous time optimum.
Overall the performance is improved when increasing the truncation level and when going from
linear strategies in Alin to deep strategies in ADNN. It turns out that already beyond truncation
levels N = 3 or N = 4 there is no further improvement and for cases H ≥ 1/2 even level N = 2
seems to be sufficient.

Let us comment on a few more aspects in detail:
Due to the Markovianity in the Brownian monition case H = 1/2, there exists an optimal

control in feedback form U∗t = α(t,Xt, Y
U∗

t ) for a suitable deterministic function α (cf. [BSV17]).
It turns out that to learn this control in open loop form U∗t = θ(X|[0,t]) we only need level N = 2
log-signatures in ADNN and level N = 3 signatures in Alin to achieve sufficient accuracy. The
second special case is H = 1.0, where the trajectories of X are straight lines starting at the origin
with a standard normal distributed slope X1 which becomes known right after the start. In this
case the optimal solution is of the form U∗t = 1{t>0}X1f(t) = 1{t>0}

Xt
t f(t), where f : [0, T ]→ R

is a suitable nonlinear deterministic function (cf. [BSV17]). While with deep neural networks
this control can easily be learned as a function of the first level signature (t,Xt), the linear model
needs a much higher truncation level to approximate the nonlinear function f(t)/t with sufficient
precision. This carries over to an explanation for the general outperforming of ADNN strategies
over those from Alin when comparing identical signature truncation levels.

The method turned out to be efficient for this case study despite the fact that the cost
functional and the drift coefficient are unbounded over the the set of admissible controls, contrary
to assumptions (2.2) and (4.2) needed for the applicability of Theorem 4.7. This carries little
surprise as we expect that our approximation results carries over to the case of L2-type cost
functionals (see paragraph on the boundedness of the cost functional in Section 2).

5.3. Case study 2: Non-Markovian optimal execution. As a second benchmark, we con-
sider an instance of the optimal order execution problem of [KLPA20]. There X describes the
fluctuations in the fundamental price of some financial asset. The controller seeks to unwind
an initial inventory q0 > 0 of shares over a (typically short) period [0, T ] by choosing trad-

ing rates U = (Ut)t∈[0,T ] so as to maximize on average the proceeds WU
T :=

∫ T
0
XtUtdt while

taking into account market impact costs κ
∫ T

0
U2
t dt from her sales. Any inventory remaining

QUT := q0 −
∫ T

0
Utdt at time T is marked to market at QTXT and penalized by κTQ

2
T .

In the framework we study above this corresponds to the choice

Y U0 = (0, q0, x0), dY Ut = (XtUt,−Ut, 0)dt+ (0, 0, 1)dXt, t ∈ [0, T ],

i.e., Y U := (WU , QU , X) with cost functional

L(YU , U) = −WU
T −QUTXT +

∫ T

0

κU2
t dt+ κT (QUT )2.

In our numerical experiments, we followed [KLPA20, Section 5.4], and chose X = x0 + σξ
with x0 = 1.0, σ = 0.02 and ξ a fractional Brownian motion. We tested our methodology for a
range of Hurst-parameters H and signature truncation levels N . The remaining parameters are
given by κ = 10−3, κT = 10−1, q0 = 1, and T = 1. For comparison, we calculated benchmarks
with the method proposed in [KLPA20]. As described in Section 5.1, this method is based on a
transformation to a deterministic optimization problem in terms of the expected signature.
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H 1/16 1/8 1/4 1/2 3/4 7/8

Alin

using [KLPA20]

N = 1 0.03 0.02 0.01 0.00 0.02 0.01
N = 2 1.36 0.85 0.30 0.00 0.16 0.43
N = 3 2.46 1.45 0.44 0.00 0.20 0.41
N = 4 2.61 1.51 0.47 0.00 0.20 0.44

Alin

N = 1 0.03 0.02 0.01 0.00 0.00 0.01
N = 2 1.35 0.85 0.30 0.00 0.16 0.33
N = 3 2.46 1.45 0.44 0.00 0.19 0.41
N = 4 2.55 1.51 0.47 0.00 0.20 0.40
N = 5 2.59 1.54 0.47 0.00 0.20 0.41

ADNN

N = 1 0.03 0.02 0.01 0.00 0.02 0.07
N = 2 1.36 0.87 0.30 0.00 0.20 0.43
N = 3 2.53 1.47 0.44 0.00 0.20 0.44
N = 4 2.61 1.53 0.48 0.00 0.21 0.44
N = 5 2.69 1.54 0.49 0.00 0.21 0.43

Table 2. Numerical study of the optimal execution problem with fractional
price fluctuations for different Hurst parameters H using strategies in Alin and
ADNN (I = 2, q = 30 + η2,N ), with various signature truncation levels N .
Presented are relative improvements in percent w.r.t. the TWAP strategy
J(U◦) ≈ 0.9990. The fixed model parameters are q0 = 1.0, T = 1, κ = 0.001,
κT = 0.1 and σ = 0.02. An overall time discretization of ∆t = 10−2 was
used. The number of training and testing paths was 219 and 222, respectively.
The Monte Carlo resampling error was below 0.001. The first block contains
benchmarks obtained with the linearization method from [KLPA20].

Table 2 collects the results of all tested scenarios. For better comparison we do not present the
total expected costs, but the relative improvement compared to a trading strategy liquidating
at a suitably chosen constant speed U◦ ≡ u ∈ R, also called the time weighted average price
(TWAP) strategy [CJP15, Section 6.3]. The corresponding optimal rate and associated costs
turn out to be

u = q0
κT

κ+ TκT
, J(U◦) = x0q0 − q2

0

κκt
κ+ TκT

.

Similar to the previous case study, we find an overall improvement when increasing the sig-
nature truncation level N and when moving from strategies in Alin to strategies in ADNN. We
also verify that the results of Alin strategies trained with our Monte Carlo method are close to
those obtained with the approach proposed in [KLPA20]. The slightly better performance of
the latter method is expected due to the availability of a more efficient optimization procedure
when utilizing the quadratic convex structure of the problem. Nevertheless, using deep signature
strategies in ADNN, we are able to match and, in certain situations, surpass these benchmarks
when comparing the same signature truncation levels.

Appendix A. Approximation of progressively measurable controls

In this section we relate canonical filtration on ΩpT to the Borel σ-algebras of the restricted
path space Ωpt . To this end we define the coordinate process Z on ΩpT by

Z : [0, T ]× ΩpT → Gbpc(V ) : (t,x) 7→ Zt(x) := x(t).
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Lemma A.1. For all t ∈ [0, T ] it holds σ(Zs | 0 ≤ s ≤ t) = ρ−1
t (B(Ωpt )), where

ρt : ΩpT → Ωpt x 7→ x|[0,t].

Proof. Let t ∈ [0, T ]. Clearly σ(Zs | 0 ≤ s ≤ t) = σ(CTt ), where

CTt :=
{{

x ∈ ΩpT | (x(t1), . . . ,x(tn)) ∈ B
} ∣∣∣ t1, . . . , tn ∈ [0, t], B ∈ B((Gbpc(V ))n)

}
are the cylinder subsets of ΩpT restricted to the time interval [0, t]. One observes that CTt = ρ−1

t (Ct)
with Ct := Ctt ⊆ 2Ωpt . By the continuity of the map Ωpt → Gbpc(V ) : x 7→ x(s) for all s ∈ [0, t] it
follows that Ct ⊂ B(Ωpt ) and thus

σ(Xs | 0 ≤ s ≤ t) = σ(CTt ) = ρ−1
t (σ(Ct)) ⊆ ρ−1

t (B(Ωpt )).

Conversely, define the system of dissections {tnk | k = 0, . . . , n} := {tk/n | k = 0, . . . , n} of the
interval [0, t] and consider the geodesic interpolation map

φn : (Gbpc(V ))n → Ωpt , (η1, . . . , ηn) 7→
n∑
k=1

1[tnk−1,t
n
k )Υ

ηk−1,ηk

(
(·)− tnk−1

tnk − tnk−1

)
,

where Υa,b : [0, 1] → Gbpc(V ) denotes the standard geodesic in Gbpc(V ) connecting the points
a, b ∈ Gbpc(V ) (see [FV10, Theorem 7.32, Proposition 7.42]). One readily observes that φn
is continuous. Indeed, this continuity is obvious when Gbpc(V ) is equipped with the geodesic
distance, i.e. the Carnot-Caratheodory metric. In Section 3 we have equipped Gbpc(V ) with the
(inhomogeneous) subspace topology of T bpc(V ). This is consistent because the induced topology
on Gbpc(V ) and Ωpt coincides with the one induced by the Carnot-Caratheodory metric (see
[FV10, Section 8.1.3]).

For ease of notion we define for any x ∈ Ωpt the geodesic interpolation on {tnk} by x(n) :=
φn(x(tn1 ), . . . ,x(tnn)). From Wiener’s characterization of geometric rough paths (see [FV10, The-
orem 8.23]) it thus follows that

lim
n→∞

dp−var;[0,t](x
(n),x) = 0.

Hence for any x0 ∈ Ωpt and r > 0 we have

Br(x0) :=
{

x ∈ Ωpt

∣∣∣ dp−var;[0,t](x0,x) ≤ r
}

=
{

x ∈ ΩpT

∣∣∣ lim
n→∞

dp−var;[0,t](x0,x
(n)) ≤ r

}
=

∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
x ∈ Ωpt

∣∣∣ dp−var;[0,t](x0,x
(n)) ≤ r +

1

k

}
=

∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
x ∈ Ωpt

∣∣∣ (x(tn1 ), . . . ,x(tnn)) ∈ φ−1
n (Br+ 1

k
(x0))

}
Since by continuity of φn it holds φ−1

n (Br(x0)) ∈ B((Gbpc(V ))n), we see that the above right-
hand side is the limes inferior of cylinder sets and thus in σ(Ct). This proves that B(Ωpt ) ⊆ σ(Ct)
and thus finally B(Ωpt ) = σ(CTt ) = σ(Zs | 0 ≤ s ≤ t). �
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[CPASB20] Álvaro Cartea, Imanol Perez Arribas, and Leandro Sánchez-Betancourt. Optimal execution of foreign

securities: A double-execution problem. Available at SSRN 3562251, 2020.
[CPSFar] C. Cuchiero, F. Primavera, and S. Svaluto-Ferro. Universal approximation theorems for continuous
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[DNT12] Aurélien Deya, Andreas Neuenkirch, and Samy Tindel. A Milstein-type scheme without Lévy area
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