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VASCULOGENESIS – ANGIOGENESIS

The outstanding milestone in the early history of biological quantitation was the work of a physician

to the King of England

William Harvey

Exercitatio Anatomica De Motu Cordis at Sanguinis in Animalibus, first published in 1628.

Harvey had studied Medicine in Padua (1600-1602, while Galileo was active there)....he was not

able to see those small vessels.

His theoretical prediction, based on his meticolous anatomical observations and his mathematical

calculations, was spectacularly confirmed more than half a century later when Marcello Malpighi in

1661, saw the capillaries under a microscope
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A Vascular Network

A network of arteries, capillaries and veins in a developing chicken embryo.

Drawing by M. Malphighi (1661).
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Harvey’s discovery illustrates the enormous power of simple... mathematics

combined with careful observation and clear reasoning.

”Mathematics is Biology Next Microscope, Only Better;

Biology is Mathematics Nest Physics, Only Better.”

[J.E. Cohen, PLoS Biol. 2, 2004]
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.

The growth of blood vessels (a process known as angiogenesis) is essential for
organ growth and repair.

An imbalance in this process contributes to numerous malignant, inflammatory,
ischaemic, infectious and immune disorders.

............

Angiogenesis research will probably change the face of
medicine in the next decades, with more than 500 million
people worldwide predicted to benefit from pro- or anti-
angiogenesis treatments.

[Peter Carmeliet, Angiogenesis in life, disease and medicine, NATURE,438 (2005].
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TUMOUR-INDUCED ANGIOGENESIS

Angiogenesis on a rat cornea

[Credit: Dejana et al., 2005]
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RETINAL ANGIOGENESIS

Developing postnatal retinal vasculature

[Credit:Fruttiger, 2007]
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Figure 1: Response of a vascular network to an antiangiogenic
treatment.

[Credit: R.K. Jain- P.F. Carmeliet, 2001]
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Figure 2: Angiogenesis on a rat cornea.

[Credit: Dejana et al 2005]
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THE BIOMEDICAL PROBLEM

•• MORPHOLOGY =⇒ DIAGNOSIS

•• CONTROL THE BIRTH-AND-GROWTH PROCESS =⇒ THERAPY
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THE MATHEMATICAL PROBLEM

In a detailed description, this process can be modelled as a birth-and-growth
process in a stochastic geometric setting:

BIRTH = VESSEL BRANCHING

GROWTH = VESSEL EXTENSION
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Various authors have given important contributions to the field; quoting all of them
would need more than the time slot allocated for this presentation.
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OUTLINE

• WORKING EXAMPLES: 1. TUMOUR-INDUCED ANGIOGENESIS

• WORKING EXAMPLES: 2. RETINAL ANGIOGENESIS

• MATHEMATICAL MODELS

• MULTIPLE SCALES =⇒ HYBRID MODELS

• ASYMPTOTICS =⇒ MEAN FIELD MODELS
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Interaction with underlying fields

Figure 3: Angiogenesis coupled with a capillary growth factor
(CGF).
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A ”CONCEPT” MODEL

The main features of the process of formation of a tumour-driven vessel network
are

i) vessel branching;

ii) vessel extension:

• chemotaxis in response to a generic tumour angiogenic factor (TAF), released
by tumour cells;

• haptotaxis in response to fibronectin gradient, generated in the ECM
(extracellular matrix), as the ECs (endothelial cells) migrate (a combination
of degradation and production);

iii) anastomosis, when a capillary tip meets an existing vessel, thus forming loops;

iv) blood circulation;

v) therapy.
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Figure 4: Key features of a mathematical model of angiogenesis.
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THE MATHEMATICAL MODEL
[ C. – Morale,2007]

• THE CAPILLARY NETWORK

Let

N(t) ∈ N the random number of tips at time t,

Xi(t) ∈ R
d the random location of the i-th tip at time t,

Ti ∈ R+ the random birth time of the i-th tip;

We model sprout extension by tracking the random trajectory of individual capillary tips.

X(t) =

N(t)⋃

i=1

{Xi
(s), Ti ≤ s ≤ t}

is the random network of endothelial cells, i.e. the union of the random trajectories described by

all existing tips =⇒ A STOCHASTIC FIBRE SYSTEM.
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THE UNDERLYING FIELDS

TAF, fibronectin and matrix degrading enzymes activate the migration of endothelial cells.

The Chemotactic field TAF diffuses, and it decreases where endothelial cell are present.

As a first simplified model we assume

MODEL 1: consumption is due to the additional endothelial cells producing vessels’ extensions. It

is proportional to the velocity vi, i = 1, . . . , of the tips

∂

∂t
C(t, x) = κIA(x)+d1△C(t, x)−ηC(t, x)

1

N

N(t)∑

i=1

(vi(t)δXi(t)∗KN)(x)

where δXi(t)(x) denotes the random Dirac distribution localized at the tip Xi(t), for i =

1, . . . , N(t)

Parameters κ, d1, η ∈ R
+ represent the rate of production of a source located in a region A ⊂ R

d, modelling e.g. a

tumour mass, the diffusivity, and the rate of consumption, respectively.
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The consumption terms

In this model we have been considering a dependence upon the (mollified) empirical
distribution of the variation in length of the existing vessels, per unit time.

1
N

∑N(t)
i=1 (vi(t)δXi(t) ∗KN)(x)

Rescaling by N :

the parameter N represents a scale parameter, corresponding to the order of magnitude of the

number of vessels in the network, so that the action of each existing vessel is reduced accordingly;

Convolution with the kernel KN(x)

it provides a mollified version of the relevant random distributions; from a modelling point of view

this may correspond to a nonlocal reaction with the relevant underlying fields [Wheeler, 2005].

For the rescaling, the mollifier kernel KN is chosen such that lim
N→∞

KN(x) = δ0(x).

Convergence

Later specific choices about the dependence of the kernel KN upon N will allow the convergence

to corresponding densities, for N tending to infinity, by means of suitable laws of large numbers.
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Haptotactic field

Fibronectin is attached to the extracellular matrix and does not diffuse [Birdwell,80].

Degradation of fibronectin, characterized by a coefficient γ, depends on the concentration of matrix

degrading enzyme(MDE), produced by the cells [Chaplain, 2006].

∂

∂t
f(t, x) = β

1

N

N(t)∑

i=1

(δXi(t)∗KN)(x)−γm(x, t)f(t, x)

The MDE, once produced, diffuses locally with a diffusion coefficient ǫ1, and is spontaneously

degraded at a rate ν.

∂

∂t
m(t, x) = ǫ1△m(t, x)+ν1

1

N

N(t)∑

i=1

(δXi(t)∗KN)(x)−ν2m(t, x)

All these random partial differential equations are subject to suitable boundary and initial conditions.
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Branching

Two kinds of branching have been identified; either from a tip or from a mature vessel; here for

the sake of simplicity, we shall consider only tip branching.

The birth process of new tips can be described in terms of a marked point process, by means of

the random measure

Φ =
∑

n

ǫ(Tn,Xn).

where T n and Xn are the birth time and location of the n-th tip, ǫt,x denotes the usual Dirac

measure on B
R+ × B

Rd
, B

Rd
is a Borel σ-algebra on R

d.

Hence, for any measurable set A ⊆ B
R+ × B

Rd
,

Φ(A) :=
∑

n

ǫ(Tn,Xn)(A) = card{n : (T n
, X

n) ∈ A}

is the random variable which counts those tips which are born in A, (out of existing tips at the

relevant times).
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TIP BRANCHING

The jump process N(t), which counts all tips born up to time t, is then defined by

N(t) = Φ([0, t] × R
d
).

A (simple) marked point process is characterized by its stochastic intensity, i.e. by the infinitesimal

probability of branching, conditional upon the history Ft− of the whole process up to time t − .

Given that at time t−, the existing parental tips are Xi(t), i = 1, ..., N(t−), and TAF’s

concentration is C(t, x), the stochastic intensity is given by

µ(dt × dx) = P (Φ(dt × dx) = 1|Ft−)

= α1(t, x)dx dt

= α(C(t, x))

N(t)∑

i=1

δXi(t−)(x)dx dt

When a tip located in x branches, the initial value of the state of the new tip is(
XN(t)+1, vN(t)+1

)
= (x, v0), where v0 is a non random velocity.
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VESSEL EXTENSION

We consider a Langevin model

dX
i(t) = v

i(t)(1 − paIX(t))(X
k(t))dt,

dv
i
(t) = a(X

i
(t), v

i
(t), t)dt + σdW

i
(t), t > T

i
,

where vi(t) is the speed of the i-th tip at time t.

The drift a(x, v, t):

a(Xi(t), vi(t), t) = −kv
i(t) + F

(
C(t, Xi(t)), f(t, Xi(t))

)
,

i.e. we consider an inertial component and a bias due to the underlying fields.

Tip-vessel anastomosis:

The term (1 − paIX(t))(X
k(t)) models the phenomenon of impingement.

IX(t) denotes the indicator function associated with the existing vessel network X(t).
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Figure 5: Time t=150. [Credit: Capasso-Mattavelli, 2008]
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Figure 6: Time t=400. [Credit: Capasso-Mattavelli, 2008]
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Figure 7: [Credit: Mattavelli, 2008]
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Real experiment: Rat Retina

Immediately after birth, the retinal vascular system starts

to develop as a sprout from the optic disc (18)

and

initially forms a primitive vascular plexus which is rapidly

remodelled into large and small vessels (28).
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Real experiment: Rat Retina

[Fruttiger, Angiogenesis (2007) 10,7788]

During the first postnatal week, retinal vessels continue to extend radially over the

superficial layer of the retina to form a two-dimensional vascular structure.

On the other hand, around postnatal day 7, the retinal vessels start to sprout into deeper

layers, which finally leads to the formation of a three-layered vascular system.
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The Dynamics

[Gariano, Gardner, Nature, 438, 2005, 960-966]
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The VEGF

[Gariano, Gardner, Nature, 438, 2005, 960-966]

b. VEGF expression (black) is greatest just in advance of the most distal growing blood

vessels (green).

d, VEGF expression (black) is higher beyond the extent of retinal vascularization (right)

than where vessels (white) are present.
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A ”CONCEPT” MODEL
[Fruttiger, Angiogenesis (2007) 10,7788]

The main features of the process of formation of a retinal vessel network are

– type of cells and conversion:

- specialized endothelial tip cells at the leading edge of the growing vascular network (type 2);

- the stalk cells, located in the neighborhood of tip cells (type 2);
- the mural cells which are the mature cells (type 1).

– vessel branching: due to proliferation and change of state of cells;

– vessel extension;

- aggregation chemotaxis on type 2 cells in response to Vascular Endothelial Growth Factor (VEGF), released by
astrocytes at the front of the vessel network;

- repulsion in response to nutrients produced by type 1 cells;

– remodelling;

– blood circulation.
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[ C., , Facchetti, Morale,2011]

Let N ∈ N be the total number of cells in the system and, N(t) ∈ N be the random number of

cells entered in the dynamics at time t, T b
i , T

d
i ∈ R+ the random birth and death time of the i-th

cell.

Cells: a bivariate stochastic process

(Xi(t), Ci(t)) ∈ R
d × S, S = {1, 2, 3}, i = 1, ..., N(t),

The Vessel Network: a stochastic fiber process

X(t) =

N(t)⋃

i=1

{
Xi(s), T b

i ≤ s ≤ min(t, T d
i )
}
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Lagrangian description

The state of the k-th tip:

ǫ(Xk(t),Ck(t)) ∈ M(Rd × S),

which is the degenerate Dirac measure localized

in (Xk(t), Ck(t)), i.e.

for any B ∈ B
Rd

, s ∈ S,

ǫ
(Xk(t),Ck(t))

(B×{s}) =

{
1, Xk(t) ∈ B,Ck(t) = s

0, otherwise

for any sufficiently smooth g : Rd × S → R

∫

Rd

3∑

s=1

g(y, s)ǫ
(Xk(t),Ck(t))

(dy×{s}) = g
(
X

k(t), Ck(t)
)
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With the above notations, the global random empirical measure of the process is
given by

QN(t) =
1

N

N(t)∑

i=1

ǫ(Xk(t),Ck(t)),

and the empirical spatial distribution of the cells of type s ∈ S is given by

Q
[s]
N (t) = QN(t)(· × {s})

=
1

N

∑

k∈H(s,t)

ǫXk(t) ∈ M(Rd),

where H(s, t) = {k ∈ {1, ..., N(t)} : Ck(t) = s}, s ∈ S = {1, 2, 3}.
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The dynamics of the underlying fields

Aggregation field VEGF diffuses, it is produced around the scout (type 2) cells and it naturally

decays:

∂g(x, t)

∂t
= −dgg(x, t) + Dg∆g(x, t) + αg

1

N

N(t)∑

j=1

(
ǫ(·,Cj(t))(x, 2) ∗ Kǫ

)
(X

j
(t))

= −dgg(x, t) + Dg∆g(x, t) + αg

(
Q

[2]
N ∗ Kǫ

)
(Xj(t))

Repulsion field nutrients diffuses, it is produced around the mural (type 1) cells and it naturally

decays:

∂u(x, t)

∂t
= −duu(x, t) + Du∆u(x, t) + αu

1

N

N(t)∑

j=1

(
ǫ(·,Cj(t))(x, 1) ∗ Vǫ

)
(X

j
(t))

= −duu(x, t) + Du∆u(x, t) + αu

(
Q

[1]
N ∗ Vǫ

)
(Xj(t))
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VESSEL EXTENSION : Lagrangian Dynamics

VEGF (g) and the nutrient (u) (e.g. oxygen) activate the migration and the
dynamics of endothelial cells. We suppose that

− only Type 2 cells are subject to the action of the underlying fields (attraction by the VGEF g ,

repulsion by the nutrient u).

− Type 1 cells are only subject to a possible randomness.

Randomness is modelled by additive independent Wiener processes {W i
t}t∈R+. Hence, for

i = 1, ..., N(t) and t > T b
i .

− Type 3 cells do not move anymore.

For i = 1, ..., N(t) and t > T b
i ,

dX
i(t) = δCi(t),2α2[∇g(Xi(t), t) − ∇u(Xi(t), t)]dt + σ(Ci(t))dW i

tdt.

where

σ(C
i
(t)) =

{
σj, Ci(t) = j, for j = 1, 2;

0, Ci(t) = 3.

δi,j is the Kroenecker delta, and β, σ1, σ2 ∈ R+.
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CELL PROLIFERATION

Proliferation is described by a branching process, modelled as a marked counting process. Random

measure Φ on BR+×E×S

Φ =
∑

i

ǫ
(Tb

i
,Xi,Ci)

.

Stochastic intensity, for (t, x, s) ∈ R+ × E × S

µ(dt × dx × {s}) = prob(Φ(dt × dx × {s}) = 1|Ft−) = Λt(dx × {s}) dt;

where Ft− denotes the ”history” of (σ− algebra generated by ) the process up to time t−;

Λt(dx × {s}) = h(x, s)

N(t−)∑

i=1

ǫ(Xi(t),Ci(t))(dx × {s}),

with

h
(
(X

i
(t), C

i
(t))

)
= λ1δCi(t),1 + λ2

1

1 + N(Q
[2]
N ∗ K)(Xi(t))

δCi(t),2.

The type 1 cell proliferation rate is constant, while the type 2 cell proliferation rate decreases with

their local density number.
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The counting process N(t)

N(t) is a stochastic counting process with intensity

ν(dt) = Λt(R
d × S) =

N(t)∑

i=1

h(Xi(t), Ci(t))dt = N
∑

s∈S

∫

Rd
h(x, s)QN(t)(dx, {s}) dt.

Since h(x, s) is uniformly bounded, the process

Z(t) =
N(t)

N
= 〈QN(t), 1〉

is stochastically dominated by the process
1

N
YN〈TN (0),1〉, where Yk is a Yule process with birth

rate given by h̃ = sup h(x, s), Yk(0) = k. This implies that

lim
n→∞

sup
N∈N

P

(
sup
t≤T

〈QN(t), 1〉 ≥ n

)
= 0.
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CELL STATE EVOLUTION

The change of state of each cell is described via a continuous time Markov chain. The associated

time-dependent transition intensity matrix for the i-th cell is given by the following

M(Xi(t), Ci(t), t) =




−(m12 + m13) m12 m13

m21 −(m21 + m23) m23,

0 0 0


 ,

where

mhk := mhk(X
i
(t), C

i
(t)) = lim

∆t→0

P{Ci(t + ∆t) = k|Ci(t) = h}

∆t
are given by ( for i, j = 1, 2, 3, λij > 0).

m12(x, 1) =
λ12

u(x, t)
, m21(x, 2) = λ21(Q

[2]
N ∗ K)(x),

m13(x, 1) =
λ13

(Q
[1]
N ∗ K)(x)

, m23(x, 2) = λ23,
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The stochastic system

random dXi(t) = α2[∇g(X
i
(t), t) − ∇u(X

i
(t), t)]dt + σ2dW

i
t

random
∂g(x, t)

∂t
= −dgg(x, t) + Dg∆g(x, t) +

αg

N(t)

∑

j

δ
(Xj(t),Cj(t))

(x, 2);

random
∂u(x, t)

∂t
= −duu(x, t) + Du∆u(x, t) +

αu

N(t)

∑

j

δ
(Xj(t),Cj(t))

(x, 1).

Endothelial Cells VEGF Nutrient

- network

- feedback of the stochasticity on the underlying fields
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Summarizing ...

At the microscale, the Lagrangian description is based on the stochastic behavior of individual cells,

given by

• the system of stochastic differential equations modelling extension;

• the branching process ΦN(t) modelling cell proliferation;

• the Markov chain modelling the change of state.

The evolution of the stochastic processes of branching and extension is driven by parameters which

depend upon the underlying fields; since the evolution of these ones is viceversa coupled with the

above stochastic processes, they are themselves stochastic.

We are dealing at the microscale with a doubly stochastic system.

Such a strong coupling with the underlying fields is a source of complexity which may tremendously

increase as the number of cells becomes extremely large, as it may happen in many cases of real

interest.
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The source terms in the PDEs of g(x, t), and u(t, x) depend upon the stochastic geometric

process X(t)

⇓

RANDOM PDE’s

⇓

stochasticity of the kinetic parameters of branching and growth of vessels.

⇓

Multiple Scales - An Hybrid Model

For many practical tasks, the stochastic models presented above, which are able to describe the

process on microscopic scales, are too sophisticated. On the other hand in many applications

parameters are such that multiple scales can be identified . It suffices to use averaged quantities

at the larger scale, still using stochastic quantities at the lower scales. The advantage of using

averaged quantities at the larger scale is convenient, both from a theoretical point of view, and for

computational affordability.
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Multiple Scales
Under particular conditions a mesoscale may be introduced, which is sufficiently small with respect

to the macroscale of the underlying fields and sufficiently large with respect to typical cell size.

A typical size xmeso on this mesoscale satisfies

xmicro << xmeso << xmacro,

where xmicro and xmacro are typical sizes for single cells and for the fields’ diffusion.
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Depending upon a sufficiently high spatial density of vessels, at the level of the mesoscale we

might approximate (law of large numbers) the contribution due to the vascularization process in

the equations for g(x, t), and u(x, t), by suitable local mean densities, thus obtaining purely

deterministic PDE’s.

[Burger-C -Pizzocchero, 2005]

Consequently, we would be given

deterministic fields for the kinetic parameters for the stochastic processes evolving at the microscale.

With these parameters,

the branching-and-growth process would become stochastically simple.

This approach is called “hybrid”, since we are substituting all stochastic underlying fields by their

“mean field” approximations; most of the existing literature in this area might be reinterpreted

along these lines.
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Indeed, one should check that the hybrid system is fully compatible with a rigorous derivation

of the evolution for the vessel densities. Nonlinearities in the full model are a big difficulty in

this direction; here we are going to present an heuristic derivation, since a rigorous mathematical

analysis requires further investigation.

We wish to stress that anyhow substituting mean geometric densities, to the corresponding

stochastic quantities leads to an acceptable coefficient of variation (percentage error) only when

a law of large numbers can be applied, i.e. whenever the relevant numbers per unit volume are

sufficiently large; otherwise randomness cannot be avoided, and, in addition to mean values, the

mathematical analysis and/or simulations should provide confidence bands for all quantities of

interest.

[Burger-C -Pizzocchero, 2005]

.
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THE DISCRETE EULERIAN EVOLUTION

A global description of the cell system may be given in terms of stochastic measures.

This means that instead of the evolution of the stochastic processes describing
the state of each individual cell, one may consider the temporal evolution of the
stochastic empirical process

t ∈ [0, T ] 7→ QN(t) =
1

N

N(t)∑

i=1

ǫ(Xk(t),Ck(t)) ∈ C([0, T ],M(E × S)).
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The Eulerian description
The global random empirical measure of the

process :

QN(t) =
1

N

N(t)∑

i=1

ǫ(Xk(t),Ck(t))

The empirical spatial distribution of the cells

of type s ∈ S = {1, 2, 3} is given by

Q
[s]
N (t) = QN(t)(· × {s})

=
1

N

∑

k∈H(s,t)

ǫ
Xk(t) ∈ M(Rd),

where H(s, t) = {k ∈ {1, ..., N(t)} :

Ck(t) = s}.
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EULERIAN DYNAMICS

By Ito-Levy formula, if f ∈ Cb(E × S) is a sufficiently smooth function, we obtain, for any

k = 1, ..., N(t)

d f(X
k
(t), C

k
(t)) =

=

(
β [∇g(Xk(t), t) − ∇u(Xk(t), t)]δ

Ck(t),2 ∇xf(X
k(t), Ck(t))

+
σ(Ck(t))2

2
∆xf(X

k(t), Ck(t))

+
∑

j 6=Ck(t)

[f(X
k
(t), j) − f(X

k
(t), C

k
(t))] m

Ck(t)j(X
k
(t), C

k
(t))

)
dt

+ M
k
(t),

M
k
(t) = σ(C

k
(t))∇xf(X

k
, C

k
(t))dW

k
(s)

+

[
f(X

k
, C

k
) −

∑

j 6=Ck

[f(X
k
, j) − f(X

k
, C

k
)] m

Ckj
(X

j
(t), C

j
(t))

]
dt

is a zero mean martingale.
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EULERIAN DYNAMICS:

Time evolution of the empirical measure QN(t) =
1

N

N(t)∑

i=1

ǫ(Xk(t),vk(t)

For any B × S ⊆ B
R2 ⊗ P(S)

3∑

c=1

∫

B

f(x, c)QN(t)(dx, c) =
3∑

c=1

∫

B

f(x, c)QN(0)(dx, c)

+

∫ t

0

{∫

B

2∑

c=1

σ2
c

2
∆xf(x, c)Q

[c]
N (s)(dx)

+

∫

B

β[∇xg(x) − ∇xu(x)] · ∇xf(x, 2)Q
[2]
N (s)(dx)

+
2∑

c=1
j 6=c

∫

B

(f(x, j) − f(x, c))mcj(x, c)Q
[c]
N (s)(dx)

+
2∑

c=1

∫

B

h(x, c) f(x, c)Q
[c]
N (s)(dx)

}
ds + MN [QN,W ](t).
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EULERIAN DYNAMICS: the martingale term

MN [QN ,W ](t) =

∫ t

0

2∑

c=1

1

N

NB(s)∑

k=1

σc∇xf(X
k
(s), c)dW

k
(s)δ

c,Ck(s)

+

∫ t

0

1

N

NB(s)∑

k=1

f(X
k
(s), C

k
(s))

[
NB(ds) −

2∑

c=1

h(X
k
(s), c)δ

c,Ck(s)]ds

]

+

∫ t

0

1

N

NB(s)∑

k=1

{
f(Xk(s), Ck(s))

−
∑

j 6=Ck

[f(Xk(s), j) − f(Xk(s), Ck(s)) m
Ckj

(Xk(t), Ck(t))

}
ds.

It is a zero mean martingale with respect to the natural filtration {Ft}t∈R+ generated by the

process {(Xk(t), Ck(t)), N(t)}t∈R+.
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The Martingale Term: ASYMPTOTICS

For any t ∈ [0, T ], by Doob’s inequality and by the control estimate on N(t), the quadratic

variation of the zero mean martingale MN [QN,W ] is such that

E

[
sup
t≤T

|MN [QN ,W ](t)|
∣∣F0

]2
≤ 4CE

[
|MN [QN ,W ](T )|2

∣∣∣∣F0

]

≤
4T

N

(
σ

2
1 ‖∇xf‖

2
∞ + ‖f‖2

∞ (λ + γ)
)
E

[
supt≤T 〈QN(t), 1〉

N

∣∣∣∣F0

]

≤ C
T

N
E

[
supt≤T 〈QN(t), 1〉

N

∣∣F0

]

< C
T

N
. (1)

where C, λ, γ ∈ R+ are suitable constants.
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The Martingale Term: ASYMPTOTICS

From the above estimate we have

E [MN [QN,W ](t)] = 0,

and

E

[
sup
t≤T

|MN [QN,W ](t)|

]2
N→∞
−→ 0.

Hence, the martingale vanishes in probability, i.e.

MN [QN,W ](t)
P

−→ 0.

Since in the above evolution equation for QN , MN [QN,W ](t) is the only source of randomness,

this is the substantial reason of the deterministic limiting behavior of the process QN , as N

increases to infinity.
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Asymptotics (heuristic)

Suppose it has been proven that, for N → ∞, the sequence of random measures

{QN(t), N ∈ N} converges in probability to a deterministic measure Q∞(t), which admits a

spatial density,

QN(t)(B × A) −→ Q∞(t)(B × A) =
∑

s∈A

∫

B

ps(x, t)dx

for B ∈ Bd
R
and A ⊂ S.

⇓

Q
[s]
∞(t)[dx] = ps(x, t)dx,

where we have denoted by ps(x, t) the spatial density of the s−type cells, for s = 1, 2, 3; from

the above we may derive the following evolution equations, which offer a continuum deterministic

description of angiogenic network at the macroscale.
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The limit deterministic system

∂p1(x, t)

∂t
= (h(x, 1) − m12 − m13)p1(x, t) + m21p2(x, t),

∂p2(x, t)

∂t
=

σ2
2

2
∆p2(x, t) − α2∇

[
(∇g̃(x, t) − ∇ũ(x, t)) p2(x, t)

]

(h(x, 2) − m21 − m23)p2(x, t) + m12p1(x, t),

∂p3(x, t)

∂t
= m13p1(x, t) + m23p2(x, t),

coupled with

∂g̃(x, t)

∂t
= −dgg̃(x, t) + Dg∆g̃(x, t) + αg p2(x, t)

∂ũ(x, t)

∂t
= −duũ(x, t) + Du∆u(x, t) + αu p1(x, t)
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The Hybrid Model

These mean fields now drive, at the microscale, a simply stochastic evolution for the single cells.

More specifically, a typical cell k will satisfy the following system of stochastic differential equations,

for any k = 1, . . . , N(t),

dX
k
(t) = β [∇g̃(X

k
(t), t) − ∇ũ(X

k
(t), t)]δ

Ck(t),2 dt + σ(C
k
(t))dW

k
t dt,

subject to a change of state governed by the matrix M(Y k(t), Ck(t)), proliferation rate

h
(
(Y

k
(t), C

k
(t))

)
= λ1δCk(t),1 + λ2

1

1 + N (p2(·, t) ∗ K)(Y k(t))
δ
Ck(t),2,

and coupled with the mean fields p2(x, t), g̃(x, t), and ũ(x, t) given above.

This constitutes what we mean by hybrid model.
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WARNING

If we homogenize ab initio the underlying fields

- we surely obtain reduction of the computing time vs the total stochastic model

- but the network is lost.
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In order to obtain the desired network structure, at the start of the process, when
a law of large numbers does not apply, we need to follow the purely stochastic
system.

Endothelial Cells VEGF Nutrient
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Anyhow, if we are not interested in the geometric structure, the purely deterministic system for

densities may offer an interesting qualitative behaviour.

The deterministic system

Endothelial Cells VEGF Nutrient

- radial symmetry

- scouts density is higher at the growing front.

- VEGF density is higher at the growing front.

- nutrients are higher where vessels are present.
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Various authors, including Wheeler et al (2005) and more recently Travasso et al
(2011) have preferred to consider the interaction of the whole vessel network with
the underlying fields of the Capillary Growth factors (CGF) and alike.

Again this kind of models can be handled computationally only at low vessel
densities. The question which arises in this framework is the following:

• HOW CAN WE OBTAIN AN HYBRID MODEL INCLUDING

MEAN FIELD APPROXIMATIONS, FOR LARGE VALUES OF

THE VESSEL SPATIAL DENSITIES ?

• HOW IS IT DEFINED A DETERMINISTIC SPATIAL DENSITY

OF A STOCHASTIC NETWORK OF VESSELS?
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Figure 8: Experimental capillary network [Credit: Auerbach et al 2003]
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Figure 9: Characteristic features of a stochastic fibre system.
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BASIC CONCEPTS OF STOCHASTIC GEOMETRY

A correct mathematical description of these structures requires concepts from
stochastic geometry.

Given a probability space (Ω,F , P ), we introduce the family F of closed sets in
Rd, and a suitable σ−algebra σF on it.

A RAndom Closed Set (RACS) Θ is a random object

Θ : (Ω,F) −→ (F, σF).

Its probabilistic structure is characterized by its hitting functional , defined as

TΘ : K ∈ K 7−→ P (Θ ∩K 6= ∅).

Where K is the family of compact sets in R
d.
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CLOSED SETS AS DISTRIBUTIONS

The deterministic case

In the sequel we will refer to a class of sufficiently regular closed sets in the
Euclidean space Rd, of integer dimension n. We denote by Br(x) the ball with
center x and radius r.

If θn is an n-regular closed set in Rd with n < d, then the measure

µθn(·) := Hn(θn ∩ ·)

is a singular measure with respect to νd, and so its Radon-Nikodym derivative does
not exist as a classical function, but......
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In analogy with the usual Dirac delta function δx0(x) associated with a point
x0 ∈ R

d (a 0−regular closed set), we may introduce the following definition.

Definition 1. Given an n-regular closed set θn in R
d, we call generalized density

(or, briefly, density) associated with θn, the quantity

δθn(x) := lim
r→0

Hn(θn ∩Br(x))

bdrd
,

finite or not.

By assuming 0 · ∞ = 0, for 0 ≤ n < d we have

lim
r→0

Hn(θn ∩Br(x))

bdrd
= lim

r→0

Hn(θn ∩ Br(x))

bnrn
bnr

n

bdrd
=

{
∞ ,Hn-a.e. x ∈ θn,

0 , elsewhere.
(2)

In this way δθn(x) can be considered as the generalized density (or the generalized
Radon-Nikodym derivative) of the measure µθn with respect to the d-dimensional
Lebesgue measure νd.
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CLOSED SETS AS DISTRIBUTIONS

The stochastic case

If Θn is an n-regular random closed set in Rd, the measure

µΘn(·) := Hn(Θn ∩ ·)

is a random measure, and consequently δΘn is a random linear functional

(i.e. (δΘn, f) is a real random variable for any test function f).

By extending the definition of expected value of a random operator à la Pettis (or
Gelfand-Pettis, [ Araujo- Giné 1980, Bosq 2000 ]), we may define the expected
linear functional E[δΘn] associated with δΘn as the unique linear functional for
which:

(E[δΘn], f) = E[(δΘn, f)] (3)

for anyf ∈ Cc(R
d,R).
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Absolute continuity of RACS

Remark 1. Apart from the case n = d, in which δΘd
(x) = 1Θd

(x), νd-a.s., it is
true that

VV (x) := E[δΘd
](x) = P(x ∈ Θd)

is a classical function, known in material science as degree of crystallinity,

in general, for any lower dimensional random closed set Θn in R
d, the expected

measure E[µΘn] it is not absolutely continuous with respect to νd, so that it admits
a classical Radon-Nikodym density.

But if it happens that the RACS is absolutely continuous, its density

λn(x) := E[δΘn](x)

is well defined as a classical function (see [C–Villa,2006], and [Ambrosio–C–
Villa,2006].
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Going back to the case of a stochastic fibre system, consider the set Ξn(t) of all
n-facets at time t, for n < d

For any Borel set B one can define the n-facet mean content of B at time t as
the measure

Md,n(t, B) = E [Hn(B ∩ Ξn(t))] ,

Only when Md,n(t, ·) ≪ νd, where νd is the d-dimensional Lebesgue measure,
there exists a density µd,n(x, t) such that for all Borel sets B in R

d

Md,n(t, B) =

∫

B

µd,n(x, t)dx. (4)

Definition. The function µd,n(x, t) is called local mean n-facet density of the fibre
system at time t . A characterization of a fibre system at time t is given in terms
of the family of densities µd,n(x, t) for n = 0, 1, . . . , d.
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We may now go back to our case.

With reference to tumour driven angiogenesis,

δXi(t)(x) will denote the random distribution (Dirac density) localized at the tip

Xi(t), for i = 1, . . . , N(t)

while

δX(t)(x) will represent the random distribution localized at the whole network
X(t);

Xi(t) is a random closed set of Hausdorff dimension zero,

X(t) is a random closed set of Hausdorff dimension one.

Whenever the above random sets are absolutely continuous with respect to the
usual Lebesgue measure on R

d,

E[δXi(t)] is the probability density distribution of tips,

while
E[δX(t)] is the mean vessel density .
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We may now revisit our first model for tumour driven angiogenesis. Having
introduced the above concepts, a model involving the interaction of the whole
vessel network X(t) with the spatial distribution C(t, x) of the VGEF would be of
the following form

∂

∂t
C(t, x) = κδA(x) + d1△C(t, x)− ηC(t, x)

1

N
(δX(t) ∗KN)(x);

Let us denote by λ(x, t) = E[δX(t)(x)].

If we had adopted such a model, we would have obtained for the underlying field
in the corresponding hybrid model

∂

∂t
C̃(x, t) = d1△C̃(x, t)− ηC̃(x, t)λ(x, t), (5)

in E × R
+, d = 1, 2, 3 (supplemented by suitable boundary and initial conditions)

coupled with the relevant stochastic process of geometric patterning of the vessel
network.

WIAS - BERLIN - 2012, c©CAPASSO



A STOCHASTIC FIBRE SYSTEM 70

The open problem then is to obtain an evolution equation for the mean vessel
density λ(x, t), as the asymptotics of the stochastic vessel network, by suitable
laws of large numbers as in the pointwise particle systems, and this is still an open
problem.

... WORK IN PROGRESS
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