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Introduction

• Benefits of high speed versus conventional milling

�High spindle speeds � high productivity

�Relatively low forces � complex workpiece geometry

• Relative new technique (1990’s)

• Goal: maximize metal removal rate
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Chatter

• Heavy vibrations of the cutter

• Bad surface quality

• Rapid tool wear

• Noise
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Research goals

Chatter control

• Predict the stability lobes in a fast and reliable 

way

• Make a device that ensures a stable cut at high 

metal removal rate, even if the shape of the lobe 

changes

• Gain insight into the qualitative behaviour at the 

stability limit � what is chatter?
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The model
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The stability limit

Stability Lobes Diagram
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Cutting force
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Machine dynamics
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The model
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Bifurcation
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The model

• Set of non-autonomous non-linear delay differential 

equations

• Find stability limit using semi-discretisation

method*

• Chatter is born through a bifurcation: stable 

periodic solution loses stability

• Bifurcation point: Floquet multipliers cross unit 

circle

* T. Insperger and G. Stépán, Int. J. Num. Meth. Eng., (2004)
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Stability

• Secondary Hopf or Period Doubling bifurcation

• Extra frequency        � quasi periodic behaviour
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Chatter frequencies

• Stability criterion gives one chatter frequency

• Interaction chatter frequency and spindle speed with 

non linear system � large number of chatter 

frequencies

• One dominant chatter frequency close to the natural 

frequency of the system
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Simulation of the model

• Increasing depth of cut
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Frequencies in chatter

• Peaks due to spindle speed components:

• Peaks due to chatter:

0 2000 4000 6000 8000 10000
10

-2

10
0

10
2

10
4

10
6

Frequency [Hz]

P
S

D
 a

cc
el

er
at

io
n

signal
fRPM

fTPE

fchat

Experimental result



19/ department of mechanical engineering

Results
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Detection

Signal contains frequencies

1. Choose frequency band around the -th harmonic
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Detection

2. Apply bandpass filter around -th harmonic

Signal contains frequencies and
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Detection

3. Apply demodulation: Frequencies shifted with and

Signal contains frequencies 0, and
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Demodulation

• Example: two sinusoids:

• Demodulation:
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Experimental set-up

Bed

Workpiece

Dynamometer

Tool

Toolholder

Mounting device

Spindle

Accelerometer

Eddy current sensor

Accelerometer

Microphone
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Experimental set-up

1. Microphone
2. Accelerometer
3. Eddy current
4. Dynamometer
5. Accelerometer
6. Mill
7. Workpiece
8. Mounting device
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Experiments

• Increasing depth of cut

� Begin: stable

� End: chatter

• Apply detection method to different sensors

� Force

� Acceleration

� Displacement

� Sound

• Compare with workpiece surface
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Sensor choice
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Choice of frequency
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Experimental results

Chatter

Onset

Stable

• 33000 rpm
• ap 3.0 – 5.0 mm
• Full immersion
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Comparison with workpiece
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Chatter control

• Change spindle speed and feed
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Conclusions (1)

• Model can be used to predict chatter boundary

• Model gives insight to chatter from a non-linear 

dynamics point of view

� Chatter is born through a bifurcation

� After the bifurcation a broad frequency range 

exists

� One frequency, close to natural frequency, is 

dominant

• Simulations coincide well qualitatively with 

experimental results
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Conclusions (2)

• Chatter can be detected online by various sensors

� Accelerometer preferable

• A priori choice of proper demodulation frequencies

� Using two sensors, detection can run at four different 

harmonics in parallel at 20 kHz

� Avoid higher harmonics of tooth passing frequency

• Early detection of onset of chatter

� Time for control actions to avoid chatter

� Change spindle speed

Accurate

Cost effective


