[Next]:  Research Group Laser Dynamics  
 [Up]:  Projects  
 [Previous]:  Approximation and optimization of curved mechanical  
 [Contents]   [Index] 


Lyapunov functions for positive linear evolution problems in $ \cal {C}$*

Collaborator: H. Stephan

Cooperation with: L. Schimansky-Geier (Humboldt-Universität zu Berlin), E.Y. Khruslov (B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine)

Supported by: DFG: ``Physikalische Modellierung und numerische Simulation von Strom- und Wärmetransport bei hoher Trägerinjektion und hohen Temperaturen'' (Physical modeling and numerical simulation of current and heat transport at high carrier injection and high temperatures)

Description: Lyapunov functions for evolution equations are important tools for their variational formulation and the asymptotic investigation of the underlying problem. As usual, for a given equation we have a special Lyapunov function. So, it is well known (see, e.g., [2]) that the classical Fokker-Planck equation

$\displaystyle {\frac{{\partial}}{{\partial t}}}$W(z, t) = ($\displaystyle \bf A^{*}_{}$W)(z) = - $\displaystyle \sum\limits_{{i=1}}^{n}$$\displaystyle {\frac{{\partial}}{{\partial z_i}}}$$\displaystyle \Big($ai(z)W$\displaystyle \Big)$ + $\displaystyle \sum\limits_{{i,j=1}}^{n}$$\displaystyle {\frac{{\partial^2}}{{\partial z_i\partial z_j}}}$$\displaystyle \Big($bij(z)W$\displaystyle \Big)$ (1)

has the Lyapunov function

H(t) = H[W1, W2] = $\displaystyle \int_{\Gamma}^{}$W1(z, t)log$\displaystyle {\frac{{W_1(z,t)}}{{W_2(z,t)}}}$  dz , (2)
where W1 and W2 are two solutions (for different initial data) to equation (1). The Lyapunov function H(t) has the properties H(t) $ \geq$ 0, H[W, W] = 0, and $ {\frac{{d}}{{dt}}}$H(t) $ \leq$ 0. If we take the stationary solution W2 = W$\scriptstyle \infty$, H(t) has the physical meaning of a negative entropy, and $ {\frac{{d}}{{dt}}}$H(t) $ \leq$ 0 can be understood as the second law of thermodynamics, showing (under further assumptions) that the considered physical system tends to the equilibrium state W$\scriptstyle \infty$.

Equation (1) describes the evolution of the probability density W(z, t) of a Markov process z(t) in phase space z(t) $ \subset$ $ \Gamma$ $ \subset$ $ \IR^{n}_{}$. As usual, equation (1) is considered in L1-type spaces, for instance L1($ \Gamma$, dz), where it has (under certain assumptions) a unique normalized positive solution W(z, t) $ \geq$ 0, | W( . , t)|L1 = 1, if the initial density W0(z) is positive and normalized.

In general, e.g., if the coefficients of (1) degenerate bij(z) $ \geq$ 0, the densities can vanish somewhere or they may not exist at all. In this case it is difficult to understand what is H(t), defined by (2), and to show $ {\frac{{d}}{{dt}}}$H(t) $ \leq$ 0 in a rigorous way. Furthermore, it is natural to ask if there are other Lyapunov functions of (1) and what other equations of this type have Lyapunov functions. These problems can be solved completely by an inequality for Radon measures ([3]) in the following way:

Let $ \Gamma$ be a compact topological Hausdorff space, $ \cal {C}$($ \Gamma$) the space of continuous real-valued functions on $ \Gamma$, and $ \cal {C}$*($ \Gamma$) (the dual of $ \cal {C}$($ \Gamma$)) the space of regular Radon measures, $ \cal {C}$**($ \Gamma$) the bidual of $ \cal {C}$($ \Gamma$), and $ \langle$ . , . $ \rangle$ their dual pairing.

Let $ \cal {S}$* = {p $ \in$ $ \cal {C}$*($ \Gamma$)  : p $ \geq$ 0,| p| = 1} be the convex set of positive and normalized (i.e. probability) measures in $ \cal {C}$*($ \Gamma$) and $ \cal {S}$e* = $ \big\{$$ \delta_{z}^{}$ $ \big\vert$ z $ \in$ $ \Gamma$$ \big\}$ the subset of extreme points of $ \cal {S}$*.

Let $ \bf S$ be a linear Markov operator in $ \cal {C}$($ \Gamma$), i.e. an operator with $ \bf S$ $ \geq$ 0 and $ \bf S$ 1 = 1, and $ \bf S^{*}_{}$ its adjoint. $ \cal {S}$* is invariant with respect to adjoint Markov operators.

Theorem 1: Let p, q $ \in$ $ \cal {S}$*$ \bf S^{*}_{}$ the adjoint of a Markov operator and F(x) : $ \IR_{+}^{}$ $ \longrightarrow$ $ \IR$ a convex function with F(1) = 0. Let q/p be the Radon-Nikodym derivative of q by p and H[p, q] : = $ \left<\vphantom{F \left( q/p \right), p }\right.$F$ \left(\vphantom{ q/p }\right.$q/p$ \left.\vphantom{ q/p }\right)$, p$ \left.\vphantom{F \left( q/p \right), p }\right>$, then the following inequality holds: 0 $ \leq$ H[$ \bf S^{*}_{}$p,$ \bf S^{*}_{}$q] $ \leq$ H[p, q]. Equality holds if $ \bf S^{*}_{}$ maps extreme points to extreme points $ \bf S^{*}_{}$$ \cal {S}$e* $ \subset$ $ \cal {S}$e*.

This result can be extended, if q/p does not exist, but H[p, q] exists.

From this inequality one can derive Lyapunov functions for linear evolution equations for probability measures. Let $ \bf A$ be the generator of a continuous semigroup in $ \cal {C}$($ \Gamma$), satisfying $ \bf A$ 1 = 0 and the maximum principle, i.e. ($ \bf A$g)(z+) $ \leq$ 0 for g $ \in$ D($ \bf A$), where z+ is the max-point of g (i.e. g(z) $ \leq$ g(z+), z $ \in$ $ \Gamma$). Then, it is well known ([1]) that the evolution equation

$\displaystyle \dot{{p}}$(t) = $\displaystyle \bf A^{*}_{}$p(t), p(0) = p0 $\displaystyle \in$ $\displaystyle \cal {S}$* (3)
has a unique weak* solution in $ \cal {S}$* $ \subset$ $ \cal {C}$*($ \Gamma$) for any t.

Theorem 2: Let p0, q0 $ \in$ $ \cal {S}$* and H[p0, q0] : = $ \left<\vphantom{F \left( q_0/p_0 \right), p_0 }\right.$F$ \left(\vphantom{ q_0/p_0 }\right.$q0/p0$ \left.\vphantom{ q_0/p_0 }\right)$, p0$ \left.\vphantom{F \left( q_0/p_0 \right), p_0 }\right>$ exist. Let p(t) and q(t) be two solutions to equation (3) with p(0) = p0 and q(0) = q0. Then H[p(t), q(t)] exists for all times and satisfies 0 $ \leq$ H[p(t2), q(t2)] $ \leq$ H[p(t1), q(t1)], t2 $ \geq$ t1. If equation (3) is the Liouville equation of a dynamical system $ \dot{{z}}$ = $ \Phi$(z) with solution in $ \cal {C}$($ \Gamma$), then equality holds, i.e. the function H(t) = H[p(t), q(t)] is constant in time.

If q = q$\scriptstyle \infty$ is any stationary solution, we get 0 $ \leq$ H[p(t2), q$\scriptstyle \infty$] $ \leq$ H[p(t1), q$\scriptstyle \infty$] for t2 $ \geq$ t1.

Similar results can be obtained for non-autonomous problems and Markov chains.

If $ \Gamma$ $ \subset$ $ \IR^{n}_{}$, then the general form of operators $ \bf A$, satisfying the maximum principle, is

$\displaystyle \big($$\displaystyle \bf A$g$\displaystyle \big)$(z) = $\displaystyle \sum\limits_{{i=1}}^{n}$ai(z)$\displaystyle {\frac{{\partial}}{{\partial z_i}}}$g + $\displaystyle \sum\limits_{{i,j=1}}^{n}$bij(z)$\displaystyle {\frac{{\partial^2}}{{\partial z_i\partial z_j}}}$g + - $\displaystyle \int_{\Gamma}^{}$Q(z, z')$\displaystyle \Big($g(z') - g(z)$\displaystyle \Big)$dz'  

with suitable coefficients bij $ \geq$ 0, Q(z, z') $ \geq$ 0. The mean-valued integral is a pseudo-differential operator of order less than 2. The corresponding kinetic equation is formally
$\displaystyle {\frac{{\partial}}{{\partial t}}}$W(z, t) = - $\displaystyle \sum\limits_{{i=1}}^{n}$$\displaystyle {\frac{{\partial}}{{\partial z_i}}}$$\displaystyle \Big($ai(z)W$\displaystyle \Big)$ + $\displaystyle \sum\limits_{{i,j=1}}^{n}$$\displaystyle {\frac{{\partial^2}}{{\partial z_i\partial z_j}}}$$\displaystyle \Big($bij(z)W$\displaystyle \Big)$ +  
  + - $\displaystyle \int_{\Gamma}^{}$$\displaystyle \Big($Q(z', z)W(z') - Q(z, z')W(z)$\displaystyle \Big)$dz'  

(if there is no density W, this equation is to be understood in a weak* sense in $ \cal {S}$*).

While this result holds for arbitrary convex functions F(x), the second law for linear kinetic equations is not a consequence of the special definition of the entropy by the log function. Any negative entropy, defined by H(t) = $ \left<\vphantom{F \left( p_\infty/p(t) \right), p(t) }\right.$F$ \left(\vphantom{ p_\infty/p(t) }\right.$p$\scriptstyle \infty$/p(t)$ \left.\vphantom{ p_\infty/p(t) }\right)$, p(t)$ \left.\vphantom{F \left( p_\infty/p(t) \right), p(t) }\right>$ is constant in a deterministic system and decreases in a random system.

References:

  1. W. ARENDT, ET AL., One-parameter Semigroups of Positive Operators, Lect. Notes Math., vol. 1184, Springer, Berlin, 1986, x+466 pages.
  2. C.W. GARDINER, Handbook of Stochastic Methods, second edition, Springer Series in Synergetics, vol. 13, Springer, Berlin, 1985, xx+442 pages.
  3. H. STEPHAN, An inequality for Radon measures and time asymptotics of evolution problems, conference paper, Nonlinear Partial Differential Equations, September 15 -21, 2003, Alushta, Ukraine.



 [Next]:  Research Group Laser Dynamics  
 [Up]:  Projects  
 [Previous]:  Approximation and optimization of curved mechanical  
 [Contents]   [Index] 

LaTeX typesetting by I. Bremer
2004-08-13