[Next]:  Hysteresis operators  
 [Up]:  Projects  
 [Previous]:  Nonlocal phase separation problems for multicomponent  
 [Contents]   [Index] 


Stationary solutions of a two-dimensional heterogeneous energy model for semiconductor devices near equilibrium

Collaborator: A. Glitzky, R. Hünlich

Cooperation with: L. Recke (Humboldt-Universität zu Berlin)

Description: \minipage{0.45\textwidth}\Projektbild {0.95\textwidth}{fig_gli_1.eps}%
{Schematic picture of a modeled semiconductor device}
\label{fig1_gli_1}
\endminipage Semiconductor devices are heterostructures consisting of various materials (different semiconducting materials, passive layers, and metals as contacts, for example). A typical situation is shown in Figure 1. Equations for the contacts are substituted by Dirichlet boundary conditions on the two parts of the boundary $ \Gamma_{{D0}}^{}$. In the remaining domain $ \Omega$, involving the passive layer ($ \Omega_{1}^{}$) and semiconducting materials ($ \Omega_{0}^{}$), we have to formulate a Poisson equation and an energy balance equation with boundary conditions on $ \Gamma$ = $ \Gamma_{{D0}}^{}$ $ \cup$ $ \Gamma_{{N0}}^{}$ $ \cup$ $ \Gamma_{{N1}}^{}$ $ \cup$ $ \Gamma_{{S}}^{}$, where the subscripts D, N, and S indicate the parts with Dirichlet, inhomogeneous Neumann, and symmetry boundary conditions, respectively. Only in the part $ \Omega_{0}^{}$, continuity equations for electrons and holes have to be taken into account, and here we must formulate boundary conditions on $ \Gamma_{0}^{}$ = $ \Gamma_{{D0}}^{}$ $ \cup$ $ \Gamma_{{N01}}^{}$ $ \cup$ $ \Gamma_{{N0}}^{}$ $ \cup$ $ \Gamma_{{S}}^{}$.

Let T and $ \varphi$ denote the lattice temperature and the electrostatic potential. Then the state equations for electrons and holes are given by the following expressions

n = N( . , T)F$\displaystyle \Big($$\displaystyle {\frac{{\zeta_n+\varphi-E_n(\cdot,T)}}{{T}}}$$\displaystyle \Big)$,  p = P( . , T)F$\displaystyle \Big($$\displaystyle {\frac{{\zeta_p-\varphi+E_p(\cdot,T)}}{{T}}}$$\displaystyle \Big)$in $\displaystyle \Omega_{0}^{}$,

where n and p are the electron and hole densities, N and P are the effective densities of state, $ \zeta_{n}^{}$ and $ \zeta_{p}^{}$ are the electrochemical potentials, En and Ep are the energy band edges, respectively. The function F arises from a distribution function (e.g., F(y) = e y in the case of Boltzmann statistics, or F(y) = $ \cal {F}$1/2(y) in the case of Fermi-Dirac statistics). The electrostatic potential $ \varphi$ fulfils the Poisson equation

- $\displaystyle \nabla$ . ($\displaystyle \varepsilon$$\displaystyle \nabla$$\displaystyle \varphi$) = $\displaystyle \begin{cases}
f-n+p&\quad \text{in }\Omega_0\\
f&\quad \text{in }\Omega_1
\end{cases}$. (1)
Here, $ \varepsilon$ is the dielectric permittivity and f is a given doping profile. Mixed boundary conditions on $ \Gamma$ have to be prescribed. For the densities of the particle fluxes jn, jp and of the total energy flux je, we make the ansatz (see [1])

\begin{displaymath}\begin{split}
j_n&=-(\sigma_n+\sigma_{np})
(\nabla\zeta_n+P_n...
...abla T ,&\quad \text{in } \Omega_1\\
\end{cases},
\end{split}\end{displaymath}

with conductivities $ \sigma_{n}^{}$ = $ \sigma_{n}^{}$(x, n, p, T) > 0, $ \sigma_{p}^{}$ = $ \sigma_{p}^{}$(x, n, p, T) > 0, $ \sigma_{{np}}^{}$ = $ \sigma_{{np}}^{}$(x, n, p, T)$ \ge$ 0, $ \kappa$ = $ \kappa$(x, n, p, T) > 0, $ \tilde{\kappa}$ = $ \tilde{\kappa}$(x, T) > 0, and transported entropies Pn = Pn(x, n, p, T), Pp = Pp(x, n, p, T). These flux densities fulfil the balance equations

$\displaystyle \nabla$ . jn = - R,$\displaystyle \nabla$ . jp = - Rin $\displaystyle \Omega_{0}^{}$,$\displaystyle \nabla$ . je = 0in $\displaystyle \Omega$, (2)
where the net recombination rate R has the form

R = r( . , n, p, T)(e($\scriptstyle \zeta_{n}$+$\scriptstyle \zeta_{p}$)/T -1)in $\displaystyle \Omega_{0}^{}$.

Suitable boundary conditions on $ \Gamma_{0}^{}$ for the first two continuity equations and on $ \Gamma$ for the last energy balance equation have to be added.

We use the variables z = (z1, z2, z3, z4) = ($ \zeta_{n}^{}$/T|$\scriptstyle \Omega_{0}$,$ \zeta_{p}^{}$/T|$\scriptstyle \Omega_{0}$, -1/T,$ \varphi$), where z1z2 are defined on $ \Omega_{0}^{}$, while z3z4 live on $ \Omega$. Then the stationary energy model for semiconductor devices can be written in the more compact form

-  $\displaystyle \nabla$ . $\displaystyle \left(\vphantom{
\begin{array}{llll}
a_{11}&a_{12}&a_{13}&0\\
a...
...}&a_{23}&0\\
a_{31}&a_{32}&a_{33}&0\\
0&0&0&\varepsilon
\end{array}}\right.$$\displaystyle \begin{array}{llll}
a_{11}&a_{12}&a_{13}&0\\
a_{21}&a_{22}&a_{23}&0\\
a_{31}&a_{32}&a_{33}&0\\
0&0&0&\varepsilon
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{llll}
a_{11}&a_{12}&a_{13}&0\\
a...
...}&a_{23}&0\\
a_{31}&a_{32}&a_{33}&0\\
0&0&0&\varepsilon
\end{array}}\right)$$\displaystyle \left(\vphantom{
\begin{array}{l}
\nabla z_1\\
\nabla z_2\\
\nabla z_3\\
\nabla z_4
\end{array}}\right.$$\displaystyle \begin{array}{l}
\nabla z_1\\
\nabla z_2\\
\nabla z_3\\
\nabla z_4
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{l}
\nabla z_1\\
\nabla z_2\\
\nabla z_3\\
\nabla z_4
\end{array}}\right)$=    $\displaystyle \left(\vphantom{
\begin{array}{l}
-R\\
-R\\
0\\
f-n+p
\end{array}}\right.$$\displaystyle \begin{array}{l}
-R\\
-R\\
0\\
f-n+p
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{l}
-R\\
-R\\
0\\
f-n+p
\end{array}}\right)$in $\displaystyle \Omega_{0}^{}$,
-  $\displaystyle \nabla$ . $\displaystyle \left(\vphantom{
\begin{array}{ll}
\tilde a_{33}&0\\
0&\varepsilon
\end{array}}\right.$$\displaystyle \begin{array}{ll}
\tilde a_{33}&0\\
0&\varepsilon
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{ll}
\tilde a_{33}&0\\
0&\varepsilon
\end{array}}\right)$   $\displaystyle \left(\vphantom{
\begin{array}{l}
\nabla z_3 \\
\nabla z_4
\end{array}}\right.$$\displaystyle \begin{array}{l}
\nabla z_3 \\
\nabla z_4
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{l}
\nabla z_3 \\
\nabla z_4
\end{array}}\right)$ =      $\displaystyle \left(\vphantom{
\begin{array}{l}
0\\
f
\end{array}}\right.$$\displaystyle \begin{array}{l}
0\\
f
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{l}
0\\
f
\end{array}}\right)$in $\displaystyle \Omega_{1}^{}$,
(3)
with coefficient functions aik(x, z) = aki(x, z), x $ \in$ $ \Omega_{0}^{}$z $ \in$ $ \IR^{2}_{}$ x (- $ \infty$, 0) x $ \IR$, i, k = 1,..., 3, $ \tilde{a}_{{33}}^{}$(x, z3), x $ \in$ $ \Omega_{1}^{}$, z3 $ \in$ (- $ \infty$, 0), $ \varepsilon$(x), x $ \in$ $ \Omega$, and Rn, and p have to be regarded as functions of x $ \in$ $ \Omega_{0}^{}$ and z $ \in$ $ \IR^{2}_{}$ x (- $ \infty$, 0) x $ \IR$.

We consider the boundary conditions

\begin{displaymath}\begin{split}
&z_i=z_i^{D0},\quad i=1,2,3,4,\text{ on }\Gamma...
...cdot(\varepsilon\nabla z_4)=0\text{ on }\Gamma_{S}.
\end{split}\end{displaymath} (4)
We use the vectors zD = (zD1,..., zD4), g = (g1N0,..., g4N0, g3N1, g4N1), and the triplet of data w = (zD, g, f ) and look for weak solutions of (3), (4) in the form z = Z + zD, where zD corresponds to a function fulfilling the Dirichlet boundary conditions and Z represents the homogeneous part of the solution.

We assume that the boundary values ziD, i = 1, 2, 3, 4, are traces of W1, p-functions, p > 2. Under weak assumptions on the coefficient functions aij, $ \tilde{a}_{{33}}^{}$, and $ \varepsilon$ (for example, $ \Omega_{0}^{}$ can be composed of different semiconducting materials), we found W1, q-formulations (q $ \in$ (2, p]) for that system of equations,

F(Z, w) = 0, Z $\displaystyle \in$ W1, q0($\displaystyle \Omega_{0}^{}$ $\displaystyle \cup$ $\displaystyle \Gamma_{{N0}}^{}$ $\displaystyle \cup$ $\displaystyle \Gamma_{{N01}}^{}$ $\displaystyle \cup$ $\displaystyle \Gamma_{{S}}^{}$)2 x W1, q0($\displaystyle \Omega$ $\displaystyle \cup$ $\displaystyle \Gamma_{{N0}}^{}$ $\displaystyle \cup$ $\displaystyle \Gamma_{{N1}}^{}$ $\displaystyle \cup$ $\displaystyle \Gamma_{{S}}^{}$)2.

If w* = (zD*, g*, f*) is arbitrarily given such that the boundary values ziD*, i = 1, 2, 3, are constants, zD*1 + zD*1 = 0 and zD*3 < 0 and g* = (0, 0, 0, g4N0*, 0, g4N1*), then there exists a unique solution Z* of F(Z*, w*) = 0. Then z* = Z* + zD* is a thermodynamic equilibrium of (3), (4). Using techniques from [5], the operator F turned out to be continuously differentiable. For suitable q > 2, we proved that its linearization $ {\frac{{\partial F}}{{\partial Z}}}$(Z*, w*) is an injective Fredholm operator of index zero. For this purpose we derived new results concerning W1, q-regularity and surjectivity for strongly coupled systems of linear elliptic equations which are defined on different domains. Here we adapted ideas of [4]. We applied the Implicit Function Theorem and obtained that for w = (zD, g, f ) near w*, the equation F(Z, w) = 0 has a unique solution Z near Z*. Thus, near z* there is a locally unique Hölder continuous solution z = Z + zD of (3), (4). For details and the precise assumptions of our investigations see [3].

In [2] we investigated an energy model with multiple species, but there the continuity equations, the energy balance equation, and the Poisson equation were defined on the same domain.

References:

  1. G. ALBINUS, H. GAJEWSKI, R. HÜNLICH, Thermodynamic design of energy models of semiconductor devices, Nonlinearity, 15 (2002), pp. 367-383.

  2. A. GLITZKY, R. HÜNLICH, Stationary solutions of two-dimensional heterogeneous energy models with multiple species, WIAS Preprint no. 896, 2003, to appear in: Banach Cent. Publ.

  3.          , Stationary solutions of a two-dimensional heterogeneous energy model for semiconductor devices near equilibrium, in preparation.

  4. K. GRÖGER, A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), pp. 679-687.

  5. L. RECKE, Applications of the implicit function theorem to quasi-linear elliptic boundary value problems with non-smooth data, Commun. Partial Differ. Equations, 20 (1995), pp. 1457-1479.



 [Next]:  Hysteresis operators  
 [Up]:  Projects  
 [Previous]:  Nonlocal phase separation problems for multicomponent  
 [Contents]   [Index] 

LaTeX typesetting by I. Bremer
2004-08-13