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Introduction

(Partial) differential and integral equations with random coefficients and random

right-hand sides are now within reach of efficient computational methods.

The latter require a combination of discretization and sampling techniques and

a specific theoretical justification.

New sampling methods based on randomized lattice rules or (interlaced) polyno-

mial lattice rules (specific Quasi-Monte Carlo methods) are available, which led

to a breakthrough in high-dimensional numerical integration and to lifting the

curse of dimension (recent work of Sloan-Kuo-Joe and Dick-Pillichshammer).

A general framework for studying approximations of random equations is already

available since more than 20 years, but seemingly unknown. Aim of the talk is

to start with a kind of review of those developments, to show its relevance for

recent research and to add some updates.



Recent work on random partial differential equations

Simultaneous stochastic Galerkin and FE methods

Elliptic partial differential equation with random coefficients

−div (a(ξ, z(ω))∇x(ξ, ω)) = f (ξ) (ξ ∈ D), x(ξ, ω) = 0 (ξ ∈ ∂D).

where D ⊂ Rm, z = (zj)j∈N is uniformly distributed in [0, 1]N,

a(ξ, z) = ā(ξ) +

∞∑
j=1

zjψj(ξ) (ξ ∈ D) (Karhunen-Loeve expansion).

Variational formulation:

X = H1
0(D) ⊂ H = L2(D) ⊂X∗= H−1(D), ‖v‖X = ‖∇v‖H∫

D

a(ξ, z(ω))〈∇x(ξ),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ X).

s-term N -sample QMC scheme: a(ξ, zsN) = ā(ξ) +
∑s

j=1 zjψj(ξ)

FE method: Replace X by a finite element subspace Xh.

(Kuo-Schwab-Sloan: SIAM J. Num. Anal. 2012)



Random operator equations: Earlier work

Let (X, d) be a separable complete metric space, Y and Z separable metric

spaces and 0 ∈ Y fixed. All metric spaces are endowed with their Borel σ-fields.

Consider the random operator equation

T (x, z(ω)) = 0 (ω ∈ Ω), (∗)

where T : X ×Z → Y is a mapping and z is a Z-valued random variable given

on a probability space (Ω,F ,P).

Question: (Existence of a random solution (Hanš 56))

Does there exist a measurable map x : Ω→ X such that

T (x(ω), z(ω)) = 0, P-almost surely

if the equation T (x, z(ω)) = 0 is solvable for all ω ∈ Ω ? Is the solution concept

appropriate for approximations ?

Note that measurability of T (x, ·) (∀x ∈ X) together with P -a.s. solvability of T (x, z(ω)) = 0 is not sufficient!

Theorem: (Engl 78, Nowak 78)

Assume that S(ω) = {x ∈ X : T (x, z(ω)) = 0} 6= ∅ P -a.s.

If [T (·, z(·))]−1(0) ∈ F × B(X), there exists a random solution of (∗).



The condition [T (·, z(·))]−1(0) ∈ F × B(X) is implied by (a) or (b):

(a) T is Borel measurable.

(b) T is a Carathéodory mapping, i.e., T (·, z) is continuous for all z ∈ Z and

T (x, ·) is measurable for all x ∈ X .

Extensions to set-valued mappings and stochastic domains are available.

A (Borel) probability measure µX ∈ P(X) is called weak solution of

T (x, z(ω)) = 0 (ω ∈ Ω)

iff there exists µ ∈ P(X × Z) such that

µT−1 = δ0 , µX = µ p−1X , L(z) = µ p−1Z ,

where L(z) = P z−1 : B(Z) → [0, 1] is the probability distribution (or law) of

z, pX and pZ are the projections from X × Z to X and Z, respectively, and

δ0 ∈ P(Y ) denotes the Dirac measure placing unit mass at 0 ∈ Y .

Remark: If x : Ω → X is a random solution, L(x) is a weak solution (by

putting µ = L(x, z)). If [T (·, z)]−1(0) is a singleton for all z ∈ Z, the weak

solution is unique. A weak solution of a random operator equation is a random

solution on some probability space.



Random operator equations: Approximations

Let X , Y and Z be complete separable metric (Polish) spaces, T : X ×Z → Y

be Borel measurable, z be a Z-valued random variable (on (Ω,F ,P)) and 0 ∈ Y
be fixed. We consider

T (x, z(ω)) = 0 (ω ∈ Ω).

In addition, we consider the approximate random operator equations

Tn(x, zn(ω)) = 0 (ω ∈ Ωn;n ∈ N),

where for each n ∈ N, Xn ⊂ X , Zn ⊂ Z, Tn : Xn × Zn → Y be Borel

measurable and zn be a Zn-valued random variable (on (Ωn,Fn,Pn)).

Let (xn) be a sequence of random solutions to the approximate random operator

equations.

Motivation: Approximation procedures for solving random equations require a

’discretization’ of T and an approximation (’sampling’, ’estimation’) of z.

A. T. Bharucha-Reid (Ed.): Approximate Solution of Random Equations, North-Holland, New York 1979.



Weak convergence in P(X): (µn) converges weakly to µ iff

lim
n→∞

∫
X

f (x)µn(dx) =

∫
X

f (x)µ(dx) ∀f ∈ Cb(X,R).

The topology of weak convergence is metrizable if X is separable.

Weak compactness is characterized by uniform tightness due to Prokhorov’s the-

orem.

Problem: Find conditions on (Tn) and T that imply weak convergence of

(L(xn)) if (L(zn)) converges weakly to L(z).

A sequence (Tn) converges discretely to T iff

(i) d(x,Xn) = infy∈Xn dX(x, y)→ 0 (∀x ∈ X),

d(z, Zn) = infv∈Zn dZ(z, v)→ 0 (∀z ∈ Z).

(ii) For all (x, z) ∈ X × Z and sequences (xn, zn) ∈ Xn × Zn such that

xn → x in X and zn → z in Z it holds

Tn(xn, zn)→ T (x, z) (in Y ).

(Stummel, Reinhardt, Vainikko)



Theorem: (Engl-Rö 87, Fiedler-Rö 92)

Let the following conditions be satisfied:

(a)
⋃
n∈N T

−1
n ({0})∩ (K×B) is relatively compact in X×Z for each bounded

B ⊂ X and compact K ⊂ Y .

(b) (Tn) converges discretely to T .

(c) (L(zn)) converges weakly to L(z).

(d) The set of laws of random solutions {L(xn) : n ∈ N} is stochastically

bounded, i.e., for each ε > 0 there exists a bounded Borel set Bε ⊂ X such

that

inf
n∈N
L(xn)(Bε) ≥ 1− ε .

Then the set {L(xn) : n ∈ N} is relatively compact with respect to the weak

topology and each weak limit of a subsequence is a weak solution of the random

operator equation T (x, z(ω)) = 0 (ω ∈ Ω).

If the weak solution of T (x, z(ω)) = 0 (ω ∈ Ω) is unique, the sequence (L(xn))

converges weakly to this weak solution.



Corollary:
Let the following conditions be satisfied:

(a) Assume that for each compact K ⊂ Z there exist C = C(K) > 0 and

n0 = n0(K) ∈ N such that

dX(x, x̃) ≤ C dY (Tn(x, z̃), Tn(x̃, z̃))

holds for all n ≥ n0, z̃ ∈ K, x, x̃ ∈ Xn (with dX and dY denoting the

distances in X and Y , respectively).

(b) (Tn) converges discretely to T .

(c) (L(zn)) converges weakly to L(z).

If a weak solution of T (x, z(ω)) = 0 (ω ∈ Ω) exists, it is unique and the se-

quence (L(xn)) converges weakly to this weak solution.

There exist several other sets of more specific conditions implying the assumptions

of the approximation theorem.



Nonlinear elliptic PDEs with random coefficients

We consider the random nonlinear elliptic PDE

−
m∑
i=1

∂

∂ξi
ai

(
ξ, z(ξ, ω),

∂x

∂ξ1
, . . . ,

∂x

∂ξm

)
= f (ξ) (ξ ∈ D), x(ξ) = 0 (ξ ∈ ∂D).

or

−div a(ξ, z(ξ, ω),∇x(ξ)) = f (ξ) (ξ ∈ D), x(ξ) = 0 (ξ ∈ ∂D).

where D ⊂ Rm is open such that D̄ is a bounded polyhedron, a ∈ Cm(D×R×
Rm) such that a(ξ, r, ·) ∈ C1

m(Rm), a(ξ, r, 0, . . . , 0) = 0 and∣∣∣∂ai
∂r

(ξ, r, t1, . . . , tm)
∣∣∣ ≤M ,

∣∣∣∂ai
∂tj

(ξ, r, t1, . . . , tm)
∣∣∣ ≤M (i, j = 1, . . . ,m),

m∑
i,j=1

∂ai
∂tj

(ξ, r, t1, . . . , tm)yiyj ≥ γ‖y‖2 (y ∈ Rm)

holds uniformly for all ξ ∈ D̄, t ∈ Rm, r ∈ R and some γ > 0 and K > 0;

f ∈ C(D̄), z a Z-valued random variable, where Z = L∞(D).



Variational formulation:

X = H1
0(D) ⊂ H = L2(D) ⊂X∗= H−1(D), ‖x‖X = ‖∇x‖

〈A(x, z(ω)), v〉 =

∫
D

〈a(ξ, z(ξ, ω),∇x(ξ)),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ X)

or

〈A(x, z(ω)), v〉 = 〈f, v〉 (∀v ∈ X)

or

T (x, z(ω)) = A(x, z(ω))− f = 0, (∗)
where T : X × Z → Y = X∗ and 〈·, ·〉 denotes the dual pairing of X and X∗.

The assumptions imply that T (·, z) is strongly monotone (with γ) and Lipschitz

continuous with modulus M (uniformly with respect to z).

Let Xn be a finite element subspace of X such that d(x,Xn)→ 0 ∀x ∈ X and

In : Xn → X denotes the embedding mapping.

We consider the Galerkin equations Tn(xn, zn(ω)) = 0 (xn ∈ Xn) defined by

〈I∗nT (xn, zn(ω)), v〉 = 〈T (xn, zn), v〉 = 0 (v ∈ Xn).



Corollary:
Assume that (L(zn)) converges weakly to L(z).

Then each Galerkin equation has a unique random solution and the sequence

(L(xn)) converges weakly to the law L(x) of the unique random solution x(·).

Furthermore, it holds P-a.s.

‖xn(ω)− x(ω)‖X ≤
M

γ

(
d(x(ω), Xn) + ‖zn(ω)− z(ω)‖Z

)
.

If we impose the regularity condition d(x(ω), Xn) ≤ C rn for each n ∈ N, some

uniform constant C > 0 and a sequence (rn) converging to zero, one obtains

ρX(L(xn),L(x)) ≤ M

γ

(
C rn + ρZ(L(zn),L(z))

)
,

where ρX and ρZ are the Prokhorov distances on the set of probability measures

on X and Z, respectively, metrizing the topologies of weak convergence.

Hence, the rate of weak convergence of the approximate solutions to the original

one is equal to the sum of the rates of convergence of the finite element method

and of the approximate stochastic coefficients.



Assume that z admits a Karhunen-Loéve (KL) type expansion of the form

z(ξ, ω) =

∞∑
i=1

zi(ω)ψi(ξ) (ξ ∈ D̄, ω ∈ Ω),

where the real random variables zi, i ∈ N are independent and uniformly dis-

tributed in [0, 1] (or [−0, 5, 0, 5]).

Hence, an approximation zn may be obtained by considering s terms of the KL

expansion and replacing the s-dimensional random vector (z1, . . . , zs) by N uni-

form samples zj ∈ [0, 1]s, j = 1, . . . , N . This means that zn(ξ) = zs,N(ξ) has

the N realizations

znj(ξ) =

s∑
i=1

zjiψi(ξ) (ξ ∈ D̄, j = 1, . . . , N).

Examples:
(a) Monte Carlo methods: Select N independent samples from the uniform

distribution on [0, 1]s. The best possible convergence rate for approximating

L(z) is then O(n−
1
2).



(b) Quasi-Monte Carlo methods: Select N QMC points zj ∈ [0, 1]s such that

eN,s(z
1, . . . , zN) = sup

g∈Bs

∣∣∣ ∫
[0,1]s

g(t)dt−N−1
N∑
j=1

g(zj)
∣∣∣,

where Bs is the unit ball of a linear normed space Fs, has a good convergence

rate with a constant not depending on s.

Suitable spaces are kernel reproducing Hilbert spaces (or related Banach spaces),

e.g., the anchored weighted tensor product Sobolev space

Fs =W (1,...,1)
2,γ,mix([0, 1]s) =

s⊗
j=1

W 1
2,γj

([0, 1])

with the weighted inner product (c ∈ [0, 1]s denotes the ”anchor”)

〈f, g〉γ =
∑

u⊆{1,...,d}

γ−1u

∫
[0,1]|u|

∂|u|f

∂xu
(xu, c−u)

∂|u|g

∂xu
(xu, c−u)dxu

or weighted Walsh spaces containing smooth functions.



Examples of QMC methods:
(i) randomly shifted lattice rules (Sloan-Kuo-Joe 02):

zj =
{j − 1

N
g +4

}
, j = 1, . . . , N,

where g ∈ Zs is the generator of the lattice, 4 is uniformly distributed in [0, 1]s

and {·} means taking the fractional part componentwise, allow the mean square

convergence estimate

êN,s(z
1, . . . , zN) ≤ C(δ)N−1+δ (δ ∈ (0, 0, 5])

if the weights (γj) converge sufficiently fast to 0 and γu is of product form.

(ii) interlaced polynomial lattice rules (Dick-Goda 13):

eN,s(z
1, . . . , zN) ≤ C N−

1
p (p ∈ (0, 1)).

The good convergence rates require smooth integrands and smooth dependence

of the solution on the random parameter.

Hence, we consider the case a(ξ, r, t) =
∑m

j=1Aj(ξ, r)tj and KL expansion of

A(ξ, z(ω)).



We consider a lattice rule with uniform random shift 4 in [0, 1]s and N points

in s dimensions, and for each shifted lattice point solve the approximate elliptic

problem∫
D

a(ξ, z(ω))〈∇xh(ξ),∇v(ξ)〉dξ =

∫
D

f (ξ)v(ξ)dξ (∀v ∈ Xh).

in a finite element subspace Xh (on D ⊂ Rm).

Theorem: (Kuo-Schwab-Sloan 12)

The convergence rate of the scheme is(
E
[
|I(G(z))−Qs,N(4;G(xh))|2

])1
2 ≤ C

(
s−1 + N−1+δ + hτ

)
,

where 0 ≤ τ = t + t′ ≤ 2, N is prime, δ ∈ (0, 12], f ∈ H−1+t(D), G ∈
H−1+t

′
(D), p = 2

3 and
∑

j∈N ‖ψj‖
p
L∞(D) <∞.



Conclusions

• Recently the numerical analysis of random differential equations became

a very active field of research. In particular, combinations of generalized

Wiener or Karhunen-Loéve expansions with multi-level Monte Carlo and

Quasi-Monte Carlo methods became powerful tools.

• For linear elliptic PDE’s with random coefficients new and promising error

estimates are obtained for specific QMC finite element methods. They may

be extended to certain regular analytic parametric operator equations (Schwab

13).

• A challenging question is: To which nonlinear random PDEs or even ran-

dom variational problems may the QMC convergence rates be extended ?

I am particularly interested in stochastic optimization models that may be

rewritten as set-valued equations.
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