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The lognormal Darcy problem

Darcy problem with log-normal permeability

We study the groundwater flow in a saturated heterogeneous medium where the
permeability is described as a log-normal stochastic r.f. (model widely used in
geophysical applications)

—div(e¥ @ Vu(w,x)) = f(x), ae inDCRY d=1,2,3
u(w, x) = g(x), a.e. on p,
e (@9, u(w, x) = h(x), a.e. on [y.
Y(w,x) : Gaussian r.f.,  E[Y](x) = u(x), Cov[Y](x,y)= p(x,y),
o= (ﬁ /o p(X,X)dX) <1

[N
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The lognormal Darcy problem

Darcy problem with log-normal permeability

We study the groundwater flow in a saturated heterogeneous medium where the
permeability is described as a log-normal stochastic r.f. (model widely used in
geophysical applications)

—div(e¥ @ Vu(w,x)) = f(x), ae inDCRY d=1,2,3
u(w, x) = g(x), a.e. on p,

eY(er)anu(w’X) = h(X), a.e. on rN-

Y (w, x) : Gaussian r.f., E[Y](x) = p(x), ) Cov [Y](x,y) = p(x,y),
o= (ﬁ I p(x,x)dx) <L

-

Assumption: Cov[Y] € C%*(D x D) for some 0 < t < 1.
= Y as. continuous and [| Y]], (p) € LP(Q), Vp =1

F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs November 13, 2013



The lognormal Darcy problem

Darcy problem with log-normal permeability

We study the groundwater flow in a saturated heterogeneous medium where the
permeability is described as a log-normal stochastic r.f. (model widely used in
geophysical applications)

—div(e¥ @ Vu(w,x)) = f(x), ae inDCRY d=1,2,3
u(w, x) = g(x), a.e. on p,

eY(er)anu(w’X) = h(X), a.e. on rN.

Y (w, x) : Gaussian r.f., E[Y](x) = p(x), ) Cov [Y](x,y) = p(x,y),
o= (ﬁ I p(x,x)dx) <L

-

Assumption: Cov[Y] € C%*(D x D) for some 0 < t < 1.
= Y as. continuous and [| Y]], (p) € LP(Q), Vp =1

Under the above assump. the prb. admits a unique solution
u € LP(Q; HY(D)), Vp > 1. [Galvis — Sarkis, 2009, Gittelson, 2010, Charrier — Debussche, 2013]
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The lognormal Darcy problem

Goal:

Compute statistical quantities for u, i.e. assess how the uncertainty on the
permeability reflects on u.

o Expected value E [u] (x) := [, u(w, x)dP(w)
e Variance Var [u] (x) := E [1?] (x) — E[u]? (x)

e m-points correlation E [u®™] (x1,...,xm) = E[u(w,x1) ® ... ® u(w, xm)]

Method adopted:

Moment equations

Derive, theoretically analyze and numerically solve the deterministic equations
solved by the statistical moments of the stochastic solution
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Perturbation approach and moment equations

9 Perturbation approach and moment equations

F. Bonizzoni (EPFL)

Low-rank techniques applied to SPDEs



Perturbation approach and moment equations

Perturbation approach and moment equations

(see e.g. Hydrology literature: [Tartakovsky — Neuman, 2008], [Riva — Guadagnini — De Simoni, 2006], Math.
literature: [von Petersdorff — Schwab, 2006], [Todor PhD, 2005], [Harbrecht — Schneider — Schwab, 2008])

The proposed approach to compute moments of the solution relies on the
following 3 steps:
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Perturbation approach and moment equations

Perturbation approach and moment equations

(see e.g. Hydrology literature: [Tartakovsky — Neuman, 2008], [Riva — Guadagnini — De Simoni, 2006], Math.
literature: [von Petersdorff — Schwab, 2006], [Todor PhD, 2005], [Harbrecht — Schneider — Schwab, 2008])

The proposed approach to compute moments of the solution relies on the
following 3 steps:

Step 1.
Formally write the Taylor polynomial of u(Y,x) w.r.t. Y, centered in E[Y].
Kk K k
~ TK _ v (Yx) uk = DKE[YII(Y, ..., Y)
ue TRuY,x) = L ’ k-th Gateaux derivative of u
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Perturbation approach and moment equations

Perturbation approach and moment equations

(see e.g. Hydrology literature: [Tartakovsky — Neuman, 2008], [Riva — Guadagnini — De Simoni, 2006], Math.
literature: [von Petersdorff — Schwab, 2006], [Todor PhD, 2005], [Harbrecht — Schneider — Schwab, 2008])

The proposed approach to compute moments of the solution relies on the
following 3 steps:

Step 1.
Formally write the Taylor polynomial of u(Y,x) w.r.t. Y, centered in E[Y].
Kk K K
1K _ uk(Y, x) uk = DFETYII(Y,...,Y)
u= THu(Y,x) = L ’ k-th Gateaux derivative of u

@ The k-th Gateaux derivative satisfies a recursive problem (for simplicity here
E[Y]=0)

/DVuk(x) -Vv(x) dx = — zk: < l/( ) /D Y/(x)Vu ! (x) - Vv(x) dx

=1
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Perturbation approach and moment equations

Perturbation approach and moment equations

(see e.g. Hydrology literature: [Tartakovsky — Neuman, 2008], [Riva — Guadagnini — De Simoni, 2006], Math.
literature: [von Petersdorff — Schwab, 2006], [Todor PhD, 2005], [Harbrecht — Schneider — Schwab, 2008])

The proposed approach to compute moments of the solution relies on the
following 3 steps:

Step 1.
Formally write the Taylor polynomial of u(Y,x) w.r.t. Y, centered in E[Y].
Kk K K
1K _ uk(Y, x) uk = DFETYII(Y,...,Y)
u= THu(Y,x) = L ’ k-th Gateaux derivative of u

@ The k-th Gateaux derivative satisfies a recursive problem (for simplicity here
E[Y]=0)

/DVuk(x)-Vv(x) dx = —i:( ’/‘ )/DY'(X)Vuk_’(X)-Vv(X) dx

I=1

@ The derivatives u* are not directly computable (they are still

oo-dimensional random fields)
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Perturbation approach and moment equations

Perturbation approach and moment equations
Step 2.

Approximate the moments of u using the Taylor expansion; e.g. for the first
moment: X
E k
Elu](x) ~E [TKu(Y,x)] = Z E[v169)

k!
k=0
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Perturbation approach and moment equations

Perturbation approach and moment equations
Step 2.

Approximate the moments of u using the Taylor expansion; e.g. for the first
moment: X
E k
Elu](x) 2 E [TXu(Y,x)] = Z E["1C)

k!
k=0

e Each correction term E[u¥] to the mean satisfies the recursion

/D VE[uH](x) - Vv(x) dx = -i( ) ) /D E[Y'(x)Vu ' (x)] - Vv dx

=1
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Perturbation approach and moment equations

Perturbation approach and moment equations
Step 2.

Approximate the moments of u using the Taylor expansion; e.g. for the first
moment: X
E k
Elu](x) 2 E [TXu(Y,x)] = Z E["1C)

k!
k=0

e Each correction term E[u¥] to the mean satisfies the recursion

/D VE[uH](x) - Vv(x) dx = -i( ) ) /D E[Y'(x)Vu ' (x)] - Vv dx

=1

o Define the (/+ 1)-points correlation E [~/ @ Y@/ : D*(HD) 5 R

B[ Y] (o 01) = B 05 00) @ V() @@ V()]
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Perturbation approach and moment equations

Perturbation approach and moment equations
Step 2.

Approximate the moments of u using the Taylor expansion; e.g. for the first
moment: X
E k
E[u)(x) ~E [THu(Y,x)] =) E[w)(x)

k!
k=0

e Each correction term E[u¥] to the mean satisfies the recursion

/D VE[uH](x) - Vv(x) dx = -i( ) ) /D E[Y'(x)Vu ' (x)] - Vv dx

=1

o Define the (/+ 1)-points correlation E [~/ @ Y@/ : D*(HD) 5 R
E [uk_’ ® Y®/] (x1,...,x41) =E [uk_/(xl) RYx)® ® Y(X/+1):|

and evaluate it on the diagonal (x,...,x) € D*U+1);

E [Vuk(x) Y/ (x)] = (v ® |d®’) E [ @ Y®'] (x,...,x)
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k
We start from the problem solved by the k-th derivative:

J

/DVUj(X)'VV(X) dx = —Z ( é )/L)YS(X)VUjS(X)'VV(X) dx

s=1
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DVUJ(X).VV(X) dx = — zi; ( / >/D Y (x)Vi—*(x) - Vv(x) dx

Lhs. = / Vil (x1) - Vv(xi) dx
D

rhs. = /D Ye(x)ViE ™5 (x1) - Vv(x1) dxg
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DW(X) Vu(x) dx = — zi; ( / > /D Y (x)Vi—*(x) - Vv(x) dx

Lhs. = /D Y (x2) (/D Vil (x) - Vv(xi) dx1> v(x2) dx;

rhs. :/DY(XQ) (/D Ye(x1) Vil ™(x1) - Vv(x) dx1> v(x2) dxo
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DW(X) Vu(x) dx = — zi; ( / > /D Y (x)Vi—*(x) - Vv(x) dx

l.h.s. —/ Y (x141) - (/ Vu’ (x1) - Vv(x1) dx1> v(xi41) dxit1

r.h.s. :/DY(X,+1).--(/D Ye(x) Vil ™(x1) - Vv(x1) dx1)~-v(x/+1) dxi41
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DW(X) Vu(x) dx = — zi; ( / > /D Y (x)Vi—*(x) - Vv(x) dx

lhs. = E UD Y (i) - - </Dw'(x1)-w(x1) dxl) e (s1) dx,ﬂ}

rhs. =E [/D Y (xi41) - </D Ye(x) Vil (x1) - Vv(x) dx1> —v(xig1) dx,+1}
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.

Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DW(X) Vu(x) dx = — XJ: ( / > /D Y (x)Vi—*(x) - Vv(x) dx

s=1

l.h.s. = / . E [VUI(Xl)Y(XQ) s Y(X/+1)] . VV(Xl) s V(X/+1) dX1 ce dX/+1
DX I4+1

r.h.s. :/ E[(VEY*) @ Y- Vv(x1) - v(x41) dxq - dxipa
D

X (I1+1)
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Perturbation approach and moment equations

Perturbation approach and moment equations

Step 3.
Write the recursion for the (/ + 1)-points correlations E [uf ® Y®’}, Jj+ 1<k

We start from the problem solved by the k-th derivative:

/DVUJ(X).VV(X) dx = — XJ: ( / >/D Y (x)Vi—*(x) - Vv(x) dx

s=1

lhs. = / V@ Id®'E [/ @ YO - Vv(x) - v(xig1) dxa - dxig
DX (I+1)

r.h.s. Tlrhs+1 Vuf ® Y®(5+')} -Vv(xy) - v(xip1) dxq - - dxpgr

D><(I+1
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Perturbation approach and moment equations

Step 3.

/ Vo UWE [ @ Y] - V@Id®v dx ... dx
DX (I+1)

J 5
== ( i ) / Ty, E [Vu"‘s ® Y®(S+’)} V@ Ild®y dxg ... dxq
s—1 DX (I+1)
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Perturbation approach and moment equations

Step 3.

/ VRIYE [ @ Y] - V@ Id®v dx; ... dxs
DX (I+1)

J 5
== ( i ) / Ty, E [Vu"‘s ® Y®(S+’)} V@ Ild®y dxg ... dxq
s—1 DX (I+1)

@ This is a sequence of deterministic high dimensional problems.
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Perturbation approach and moment equations

Step 3.

/ VRIYE [ @ Y] - V@ Id®v dx; ... dxs
DX (I+1)

J 5
== ( i ) / Ty, E [Vuf‘s ® Y®(S+’)} V@ Ild®y dxg ... dxq
s—1 DX (I+1)

@ This is a sequence of deterministic high dimensional problems.

@ A similar recursion can be written for higher order moments. For instance,
the k-th order correction to the second moment will involve the computation
of all the correlations

E[uj1®uj2®Y®l], htp+1<k
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Perturbation approach and moment equations

The structure of the recursion for the first moment

Dim. k=0 k=1 k=2
d u® E [ul] E [u2]
2d E[UO®Y] E[u1®Y] a
3d E [uo ® Y®2]

Recursive,
triangular
structure
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Perturbation approach and moment equations

The structure of the recursion for the first moment

Dim. k=0 k=1 k=2
d u° E [ul] E [u2]
2d | E[leY] |E[ieY] -
3d | B[00 v

for k=0,....K
Compute E [u® @ Y®K]
forj=1,...k

The Algorithm

Recursive,
triangular
structure

Solve the boundary value problem for E [/ @ Y®k—]
end

The result for j = k is the k-th order correction E [u*]

end

F. Bonizzoni (EPFL)
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The structure of the recursion for the first moment

Dim. k=0 k=1 k=2
d © | Bl |E[#

0 ) - Recursive,
2d | ELleY] |E[u®Y] - triangular

34 E [uo ® Y®2] structure

for k=0,....K
Compute E [u® @ Y®K]
forj=1,...k

The Algorithm Solve the boundary value problem for E [/ @ Y®k—]

end
The result for j = k is the k-th order correction E [u*]

end

IfE[Y] =0 E[Y®CD] =0V k
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A few relevant questions

@ The perturbation method relies on Taylor expansion.
o What is the accuracy of the Taylor approximation?
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A few relevant questions

@ The perturbation method relies on Taylor expansion.
o What is the accuracy of the Taylor approximation?

@ The k-th order correction to the mean (or higher order moments) can be
obtained by solving the recursion for the correlations E[v/ ® Y], j, 1 < k.

o Are these problems well posed? _
o What is the smoothness of the correlations functions E[«/ @ Y']?
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A few relevant questions

@ The perturbation method relies on Taylor expansion.
o What is the accuracy of the Taylor approximation?

@ The k-th order correction to the mean (or higher order moments) can be
obtained by solving the recursion for the correlations E[v/ ® Y], j, 1 < k.

o Are these problems well posed? _
o What is the smoothness of the correlations functions E[«/ @ Y']?

© From the numerical point of view

o How can we effectively approximate and solve the equations for the
correlations B[t/ @ Y']? (given that they are high dimensional objects)
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Approximation properties of the Taylor polynomial

e Approximation properties of the Taylor polynomial
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Local convergence of the Taylor series

Let Y be a centered Gaussian random field (E[Y] = 0). Consider the following
map defined on the Banach space L°°(D) with values in H*(D):

u: L=(D) — HYD)
Y — u(Y)

and its Taylor polynomial TKu = ZkKZO Z—T where uk = DX[0](Y,...,Y).

Problem: s the Taylor series TKu convergent in H-norm for K — +00?

K k
7] < 32 1 e
k=0
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Approximation properties of the Taylor polynomial

Local convergence of the Taylor series

Let Y be a centered Gaussian random field (E[Y] = 0). Consider the following
map defined on the Banach space L°°(D) with values in H*(D):

u: L=(D) — HYD)
Y — u(Y)

and its Taylor polynomial TKu = ZkKZO Z—T where uk = DX[0](Y,...,Y).

Problem: s the Taylor series TXu convergent in H'-norm for K — +00?

K ||k K K
Y,
HTK“Hf-ll < Zk_o ||”k’!|H1 < C;O (H N )

log2

k
By a recursive argument we prove that ||u"||H1(D) <C (HEQL;) k! with

C = C(Cp,||t®]| 1), Cp being the Poincaré constant.
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Approximation properties of the Taylor polynomial

Local convergence of the Taylor series

Let Y be a centered Gaussian random field (E[Y] = 0). Consider the following
map defined on the Banach space L°°(D) with values in H*(D):

u: L=(D) — HYD)
Y — u(Y)

and its Taylor polynomial TKu = ZkK:O Z—T where uk = DX[0](Y,...,Y).

Problem: s the Taylor series TKu convergent in H-norm for K — +00?

K o kHHI 1Yl \
[T ulln <D EZ S
H =
k=0 k=0

log2

k
By a recursive argument we prove that ||u* HHI(D) <C (H?;!Lzoc) k! with

C = C(Cp,||t®]| 1), Cp being the Poincaré constant.

The Taylor series is convergent V o > 0 in the
disk B:={Y € L>°(D) : [|[Y]|, < log2} J
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Approximation properties of the Taylor polynomial

Global conv. of the Taylor series? A counter example

Let Y(w,x) = &(w)x, with & ~ N(0,0?) Gaussian random variable
(one-dimensional probability space). Consider the following one-dimensional PDE

_(eg(w)xu/(w’x))/ = O, a.e. in [0, 1]
u(w,0) =0, v(lw,1)=1

The exact solution is u(¢, x) = 12—
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Global conv. of the Taylor series? A counter example

Let Y(w,x) = &(w)x, with & ~ N(0,0?) Gaussian random variable
(one-dimensional probability space). Consider the following one-dimensional PDE

_(eg(w)xu/(wvx))/ = O, a.e. in [O, 1]
u(w,0) =0, v(lw,1)=1

1—e X
1—e—€ "

The exact solution is u(, x) =
Observe that:

@ On the real axis (£ € R), u(¢, x) is analytic as a function of &.

@ In the complex plane (£ € C), u(&, x) is not entire. Indeed, it admits
countable many poles in £ = 27ik, k € Z \ {0}.
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Global conv. of the Taylor series? A counter example

Let Y(w,x) = &(w)x, with & ~ N(0,0?) Gaussian random variable
(one-dimensional probability space). Consider the following one-dimensional PDE

_(eg(w)xu/(wvx))/ = O, a.e. in [O, 1]
u(w,0) =0, v(lw,1)=1

1—e X
1—e—€ "

The exact solution is u(, x) =
Observe that:

@ On the real axis (£ € R), u(¢, x) is analytic as a function of &.

@ In the complex plane (£ € C), u(&, x) is not entire. Indeed, it admits
countable many poles in £ = 27ik, k € Z \ {0}.

The Taylor series centered in & = 0 converges only in the disk of
radius r < 27 and Y.~ E [T¥u] is not convergent to I [u]
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Approximation properties of the Taylor polynomial

A priori error upper bound

Given the counter example, in general we do not expect E [TXu] to be
convergent to E [u].

Nevertheless, for o and K sufficiently small, E [TXu] is a good approximation of

E [u]. The method we propose can be used even if the Taylor series is not globally
convergent.
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A priori error upper bound

Given the counter example, in general we do not expect E [TXu] to be
convergent to E [u].

Nevertheless, for o and K sufficiently small, E [TXu] is a good approximation of
E [u]. The method we propose can be used even if the Taylor series is not globally
convergent.

Problem: Let 0 < o < 1 be fixed. Which is the optimal degree Kg,, (which
depends in o) of the Taylor polynomial to consider?
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A priori error upper bound

Given the counter example, in general we do not expect E [TXu] to be
convergent to E [u].

Nevertheless, for o and K sufficiently small, E [TXu] is a good approximation of
E [u]. The method we propose can be used even if the Taylor series is not globally
convergent.

Problem: Let 0 < o < 1 be fixed. Which is the optimal degree Kg,, (which
depends in o) of the Taylor polynomial to consider?

(K+1)! & o o\
EHU_TKUHHI(D)SCW Z <€ log 2 Kl

i
j:K+1J"

Remark: K!l = K(K —2)(K —4)...1

F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs November 13, 2013 16



Approximation properties of the Taylor polynomial

The error upper bound as a function

10% : :

of K

—0=0.10

bound L1-norm of R¥u

@ Divergence of error upper bound V o > 0
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Approximation properties of the Taylor polynomial

The error upper bound as a function of K

10%

—0=0.10

1
8

S

bound L1-norm of R¥u
=
s

@ Divergence of error upper bound V o > 0

log2)
o Estimated “optimal” K, K7, = L(og) J — 4. (bullets in the picture)

g

F. Bonizzoni (EPFL)
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
[|lu— TKuHHl(D) < H/O (1)~ ||“K+1(tyvx)||H1(D) dt
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that

k
(e )|y < CeM e (52 )kt 0 < £ <1

@ E|Y|fx(p) < C o*(k—1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
[|lu— TKuHHl(D) < H/O (1)~ ||“K+1(tyvx)||H1(D) dt

K+l 1
< C(K+1) (%) /0 (1 — t)KetlVlle gt [use (1)]
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
Ju =T ul ) < H/O (1= ) " @Y )| ) Ot

||Y|| . K+1 1
< C(K—|— 1) (W) /0 (1 o t)KetHYHLoc dt
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
Ju =T ul ) < H/O (1= ) " @Y )| ) Ot

K+1 | 00 J
SC(KH)(nanm) K Yl

K+l :
log 2 1Yl ;55 J!
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
Ju =T ul ) < H/O (1= ) " @Y )| ) Ot

1 K+1 oo % joo
< C(K+1)! <—2> > ¥l

1l
log j=K+1 J:
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Error upper bound: sketch of the proof

Key ingredients:
@ We prove by a recursive argument that
k
(Y 3) iy < CeflY e (F52) 0 < e <1

@ E|Y|fx(p) < C o*(k— 1)!! (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
Ju =T ul ) < H/O (1= ) " @Y )| ) Ot

1 K+1 oo ono
< C(K+1)! <—2> > (h4/ES

1l
log j=K+1 J:

| >K+l © E[|Y]-]

E[flu= Tullppy] < €K+ 1) (Iog2 i

j=K+1
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Approximation properties of the Taylor polynomial

Error upper bound: sketch of the proof
Key ingredients:
@ We prove by a recursive argument that
k
Huk(tY’X)HHl(D) < CetllYlliee (”Yﬂf%) kKo<t<l1

@ E|Y|fxip < Co¥(k—1)!l (application of a result in
[Adler — Taylor, 2007, Charrier — Debussche, 2013]).

1 1
Ju =T ul ) < H/O (1= ) " @Y )| ) Ot

< C(K +1)! (L)K“ > 1Yl

log 2 Pt J!
1\ & B[]
E [Hu- TKU”HI(D)] < C(K +1)! (Iog2> . —
j=K+1

K+1 oo j
< C(K +1)! <é) ;1% [use (2)]
J=K+
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A numerical check: Single Gaussian random variable

—div(e«s(™E@) T u(w, x)) = x a.e. in D =[0,1] | The Taylor polynomial is
£(w) ~ N(0,02), 0 < o < 1 computable!

Computed error vs K Computed error vs o

—o—order 2
S
—o-order 4
S

—e—order 6
)

order 8

&
—e-order 10
gl

1

error (p

0 20 40 60 80 100 [T TV T (O (R

@ We numerically show the divergence of the Taylor series for any value of the
standard deviation o > 0

@ The exponential behavior as function of ¢ is confirmed
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Approximation properties of the Taylor polynomial

How good is the a priori error estimate?

Comp. err. and err. estimate

—0=0.1 (FEM)

@ The a priori error bound is very pessimistic

F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs



How good is the a priori error estimate?

Comp. err. and err. estimate Comp. err. and fitted err. estimate
10° 10"
—o0=0.1 (FEM) —0=0.1 (FEM)
—0=0.15 (FEM) —0=0.15 (FEM)
—0=0.2 (FEM) 10" — =02 (FEM)
——0=0.3 (FEM)
— 6=0.4 (FEM)

_A—0=08 (FEM)
---0=0.1 (fit)
- - -0=0.15 (fit)

10

norm of the K~th Taylor residual

-

10 - --5=0.8 (fit)

0 20 40 60 80 100

@ The a priori error bound is very pessimistic
o It is possible to fit the parameter  in the a priori error bound

K+1
Elu— Tl ppy < € <£> Kl
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Approximation properties of the Taylor polynomial

Single bounded random variable

0 < o < a(w,x) =E[a](x) + b(x)Y(w) < az < +0
Y(w)C[-7,7], 0<y<+4o0

The Taylor series is convergent provided that the variability of a is small enough
[Babugka — Chatzipantelidis, 2002, Todor PhD, 2005]

—=1(FEM)
—y=2(FEM)
—=3(FEM)
—=6(FEM)
—y=8(FEM)
Y=9(FEM)
>~ |- - y=I(bound)
S I Computed error
-~ y=3(bound)
stbound) and bound vs K
- - y=8(bound)
7=9(bound)
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Moment equations: well posedness and discretization

@ Moment equations: well posedness and discretization

F. Bonizzoni (EPFL)
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S ornentTequationslwelll posedness Tand diacret 2ot on
Moment equations: well-posedness and regularity results

Consider again the recursion for the correlations E[u* @ Y®/]:

Dim. k=0 k=1 k=2
d u° 0 E [uz]
2d 0 E[u'® Y]

Let Y be a Gaussian random field with Gaussian covariance function Covy €
C%t(D x D), 0 < t < 1. Then, all the problems in the recursion are well-posed.
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Moment equations: well-posedness and regularity results

Consider again the recursion for the correlations E[u* @ Y®/]:

Dim. k=0 k=1 k=2
d u° 0 E [uz]
2d 0 E[u'® Y]
3d | E[v®® Y®?

Let Y be a Gaussian random field with Gaussian covariance function Covy €
C%t(D x D), 0 < t < 1. Then, all the problems in the recursion are well-posed.

Let Y be a Gaussian random field with Gaussian covariance function Covy €
Co¥*(Dx D), 0 < t < 1. Moreover, if the domain is convex and CcLt/2 and
uo c Cl’t/z(D), then E [uk ® Y®I] c CO,t/2,mix (DXI,Cl’t/2(D))
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Moment equations: well posedness and discretization

Problem for E [ul 0% Y} — Full TP discretization
Given E [u® ® Y®?] € HY(D)® (L2(D))®2, find E [u' ® Y] € HY(D)® [*(D) s.t.

/D/D(V® Id)E [ul ® Y] (x1,%) - (V@ 1d) v(x1, ) dx dxa

= —/ / Tr),E [VUO ® Y®2] (x1, %) - (V @ Id) v(x1, %) dx1 dxo
D JD
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Moment equations: well posedness and discretization

Problem for E [ul ® Y} — Full TP discretization
Given E [u® ® Y®?] € HY(D)® (L2(D))®2, find E [u' ® Y] € HY(D)® [*(D) s.t.

/D/D(V® Id)E [ul ® Y] (x1,%) - (V@ Id) v(x1, x2) dx1 dxo

= —/ / Tr),E [VUO ® Y®2] (x1, %) - (V @ Id) v(x1, %) dx1 dxo
D JD

Let us introduce:
{¢:}; linear FEM elements to discretize H*(D)
{4;}; piecewise constants to discretize L?(D)
A(n,m) = |, Von(x)Vom(x)dx .
M((,',j)): fwaj(X)S/J,%x)dx( ) Gia(n, ’) rllodal repr. of E [u’ ®OY] )
B(n, i m)D: I V()i (x)V hm(x) dx Co.a(n, i1, i2) nodal repr. of E [u” & V=]
y 11, D n i m

AM Ci1=-B'oM G, J
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Moment equations: well posedness and discretization

Problem for E [ul ® Y} — Full TP discretization
Given E [u® ® Y®?] € HY(D)® (L2(D))®2, find E [u' ® Y] € HY(D)® [*(D) s.t.

/D/D(V® Id)E [ul ® Y] (x1,%) - (V@ Id) v(x1, x2) dx1 dxo

= 7/ / Tr),E [Vu" ® Y®2] (x1, %) - (V @ Id) v(x1, %) dx1 dxo
D JD

Let us introduce:
{¢:}; linear FEM elements to discretize H*(D)
{4;}; piecewise constants to discretize L(D)
A(n,m) = |, Von(x)Vom(x)dx i
I\/I((i,j)): fsz/)j(x)E/J;)(X)dX( ) G i(n, ’) rllodal repr. of E [u1 ®OY] )
B (i, m) = [ Vo (x)ton (x)Vem(x)a o2t 2) modal repr. of I [u & V7]
5 11y D n i m

AM Ci1=-B'oM G, J

Simplifying the mass matrix:
Ax11Cr1 = —B x12Cop J

where X1.s denotes the saturation of the first s indices of both the right and left

hand side tensors.
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Moment equations: well posedness and discretization

Problem for E [uk 0% Y®’] — Full TP discretization

Generalizing the previous equation:

K
k \ 126
AX11Cry=— Z ( . ) B X1:541 Ck—s,s+1

s=1

Problem: Curse of the dimensionality. How to store all the tensors?

Dim. k=0 k=1| k=2
O(Nh) Co70 0 Cz,o

O(N;) 0 Ci1

O(N3) | Coz
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© Tensor Train approximation
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Tensor Train (TT) Format [Oseledets, 2011]

Generalization of the SVD decomposition of a matrix in more than 2 dimensions.
SVD of a matrix: let X € RM*M be a matrix

X(i1,i2) = Z Gi(i1, 1) Go(ax, )

051:1
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Tensor Train approximation

Tensor Train (TT) Format [Oseledets, 2011]

Generalization of the SVD decomposition of a matrix in more than 2 dimensions
Tensor Train (TT) Format: let X € RM>*--*No he 3 tensor of order n

Myeeosfn—1

X, o) = > Gi(ir,01) G, i2,2) . .. Go(etn-1, i)

ai,...,ap—1=1

The (n+ 1)-tupla (ro,...,r,) is called TT — rank

Idea: Storage of order 3 tensors in a (linear) linked format

al a2 a3
G1 (G2——(G3—(G4
i1 i2\|/ i;l/ i4
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Tensor Train approximation

Tensor Train (TT) Format [Oseledets, 2011]

Generalization of the SVD decomposition of a matrix in more than 2 dimensions
Tensor Train (TT) Format: let X € RM>*--*No he 3 tensor of order n

Myeeosfn—1

X(il,...,in)z Z Gl(il,Oél)Gz(al,l'g,OQ)...Gn(Oén_l,I'n)

ai,...,ap—1=1

The (n+ 1)-tupla (ro,...,r,) is called TT — rank

Idea: Storage of order 3 tensors in a (linear) linked format

ail mﬂz mﬂs
NPT

Pro e Storage complexity: O(nNr?) vs O((N)")
ro:
@ It allows fast computations.

Results obtained: Using the Matlab TT-toolbox 2.2 [Oseledets, 2012], we

developed a code which solves the recursive problem for E [u] in T T-format.
F. Bonizzoni (EPFL)

), r=maxr;, N=maxN,.
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The T T-algorithm

What does it mean to solve a tensorial equation in TT-format?

Ax11C11=—B' x12Cop
(8
Cri=—A"x11 (Bl X1:2 Co,z)

STEP1 ?—H H—?
saturation
(3

1
B* x1.20Co

*e
STEP2 ?—? U ?—?

saturation

H -1
with A
F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs

November 13, 2013
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Tensor Train approximation

Ax11Cpp=— ; ( ls( > B® X1:541 Ck—s 541 (1)
Inputs needed:

o TT-format of the correlation Cg s, C&TS, (nodal representation of

E [0 ® V&)

@ TT-format of the tensors B, B'"*

@ Stiffness matrix A
Operations needed:

@ Saturation x1.¢ between two TT-tensors

@ Lin. alg. operations and approximation (tt_round) of tt-tensors [T T-toolbox]

for k=0,....K
Compute Cg } with a tolerance tolrr
for I=k—-1,...,0
Solve the tensorial equation (1)
end
The result for / = 0 is the k-th order correction Ck,o
end

v
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Tensor Train approximation

TT-representation of E [Y®k} [Kumar — Kressner — Nobile — Tobler, 2013]

The starting point is the KL-expansion of the Gaussian random field Y
Y(w,x) =E[Y](x) + > VAi&i(w)pi(x), x € D, weQ
where & i.i.d ~ N(0,1) and > 7%, i = [, Var[Y(x)]dx.
@ k-th correlation:
E[YO] (1 .ey) = 300, - 00 { “ /_g] o) =
ZieN" Cf1 -k ®Z=1 (bl}, (XTI)'
=117 )\;"‘(/)/2E {flmi(l)}, m;(l)=multiplicity of index [ in i.

is supersymmetric.

where C;,
o G

n.. Ik
@ An exact TT symmetric representation can be constructed:

C@,k/2) — Uk/zMUIZ-/2
with Uy /> basis of Range(C(k/2)).

@ Then the basis C(1+~k/2) can be further truncated with a given tolerance
tolrr:

c-C

< tolrr
F

F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs November 13, 2013
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© 1D Numerical experiments
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1D Numerical experiments

Test 1 — Analysis of the Taylor approximation

Let Y(w, x) be a centered Gaussian r. f. with Gaussian cov. function

2
X1 —X;
> [Ix1 =xo ||

Covy(xi,x) =0ce 02 | (xi,%)€[0,1] x [0,1] J

To compute the reference solution and the TT-solution we use:
@ same spatial discretization Ny = 100 of the physical domain D = [0, 1]

@ same KL-expansion: N =11 r.v. (99% of variance captured)
@ exact TT-computations: tolrr = 10710

We observe only the truncation
error in the Taylor series

Reference solution (collocation) Computed error vs k

——-0=0.05
007ll—o=025 , ~-0=0.15
—0=0.45 10 —-0=025
0.06[|—0=0. —o-0=0.35
—0=085

107!
0 02 04 06 08 1

0 1 2
F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs November 13, 2013

R

32



Test 1 — Analysis of the Taylor approx.

@ Nyps= number of observations of the permeability field

@ N = number of random variables considered

Nops =3, N =
—
0.035] Va \\ 006} |—o=0.25|
o
o
mean
Z 00 B
0.01] 0.005] oo
error
vs K
Il 2 3 4 5 G [ 2 3 4 5 [l 2 3 4

As N,ps increases, the variability of the field
decreases: good for perturbation methods!
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1D Numerical experiments

Test 2 — Analysis of the dependence on the T T-precision
Let Y(w, x) be a centered Gaussian r. f. with Gaussian cov. function
@ same spatial discretization Ny = 100 of the physical domain D = [0, 1]
@ same Kl-exp: N =26 r.v. (100% of variance captured up to machine precision)
@ different tolerances in the TT-computations

N K=2 K=4 K=6

107

It is not always useful to
consider small tolrt.

There is an optimal tolop:
depending on o and K

error

_[eor=107!
107 -=101=107"

= tol=107

- t0l=10""]

1 2 3 4 s 6
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1D Numerical experiments

Test 2 — The complexity of the TT-algorithm

Complexity= number of linear systems to be solved

We numerically studied how the error depends on the complexity of the
TT-algorithm

o = 0.05 o =0.25 o =0.85

6005 6025 0085
10 10 1

o— -

107 \\f._< o

=10 _ 107 feto=107! - to1=10""
107 e pge107 AN —tol=107 - tol=107 R
o N o 5 o >
> tol=10 o |[to=10 N 107}~ tol=10° \
[ E—— 107 f o g1z107® > tol=10" N
tol=107 tol=107" wl=1071
l—mc T ol—=mc |—mc
0 s 0 > 5 1075 g > 5 075 g > 9
10 10 10° 10 10 10 10° 10 10 10 10° 10
complexity complexity complexity

error vs complexity for different tolrr

If the optimal tolyp: is chosen, the TT-algorithm is far
superior to a standard Monte Carlo method (black line) J
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Test 3 — Storage requirements of the T T-algorithm

Let Y(w, x) be a centered Gaussian r. f. with Gaussian cov. function
@ spatial discretization N, = 200 of the physical domain D = [0, 1]
@ exact KL-exp: N =27 r.v. (100% of variance captured up to machine precision)
@ different tolerances in the TT-computations

TT-ranks of the TT-
correlations CyGi for . P

. (black line)
different tolrr ‘ / N
7, N [Kumar — Kressner — Nobile — Tobler]

rPS(Nerfl)

TT-ranks of the correla- the upper bound

tions in the recursion for . . .
(black line) is valid

tolrr = 10710

3 3 ¥ H 3
»

The storage requirement is a limiting aspect of our algorithm.

Improvements could be obtained thanks to the implementation of'sparse T T=tensors
F. Bonizzoni (EPFL) Low-rank techniques applied to SPDEs November 13, 2013 36



1D Numerical experiments

Conclusions

@ We have applied the perturbation technique to the Darcy problem with
lognormal permeability.

@ We have studied the approximation properties of the Taylor polynomial

@ We have derived the moment equations, and proved their well-posedness and
Holder-type regularity results.

@ We have developed an algorithm in TT-format able to solve the first
statistical moment problem. Our TT-algorithm provide a valid solution both
in the case where Y is parametrized by a small number of r.v. and if the
entire random field is considered.

o If the optimal tolr7 is considered, our TT-algorithm is far superior to a
standard Monte Carlo method

@ The main limitation is the storage requirement.
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1D Numerical experiments
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umerical experiments

Thank you for the attention!
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Well-posedness of the stochastic Darcy problem

find u € LP (Q; H(D)) s.t. ulr, = g a.s., and
/ a(w, x)Vyu(w, x) - Vyv(x) dx :/ f(x)v(x) dx VYve H}D(D), a.s. in Q.
D D

Al : The permeability field a € LP (Q; C°(D)) for every p € (0,00).
Then, the quantities

amin(w) = m'[‘ a(w,X) (2)
xeD
Amax(w) == Tean a(w, x) 3)

are well defined, and apax € LP(Q2) for every p € (0, +00). Moreover, we assume

A2 : a,,(w) >0 as, € LP(Q) for every p € (0, 0).

min

If the permeability field a(w, x) satisfies A1, A2, then the stochastic Darcy
problem is well-posed for every p € (0,00), that is it admits a unique solution that
depends continuously on the data.
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1D Numerical experiments

Upper bounds for the statistical moments of || Y'[|

+oo
KL expansion: Y(w,x) =E[Y](x) + o2 Z \/XT bj(x) &i(w)

j=1
@ ¢; is Holder continuous with exponent 0 < v <1 for every j > 1.
+o0o
5y 2
@ R, = NlIgjllgon ) < +o0:
j=1

E [||Y’||fm(D)} < C R0k (k—1)1, Vk>0

The domain is a d-dimensional rectangle D = [0, T]?. The centered Gaussian
field Y'(w, x) is stationary and regular (C?)

E [||Y'||fw(D)] < Cok 2k (k—1)11, Vk
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1D Numerical experiments

k—1

s=1

/ / Ve IWE "~ ® Y] - V@ Id®v dx ... dx 1 =
D D

(ks_l )/-../E[(Vuk—’—wsm\’@’] Tl
D D

F. Bonizzoni (EPFL)
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1D Numerical experiments

Holder spaces with mixed regularity

COrmix(D*k) 0 < 4 <1, is the space of all cont. funct. v: D*k — R s.t.

,mix

\v|co,w,m,vx(5xk) = sup DY ™ v(x,y ., xi)| < 400,
x,x+hED><‘<
h>0
where _
~,mix — Y v
D)™ v(x, . xi) = Dl,h1'“Dk7hkv(X1""’Xk)’
with

V(X1, ooy Xi iy xk) — v(Xe, ., Xk)

Dl pv(xis. o xk) = A
1

CO7:mix(D*k) is a Banach space with the norm
||V||CO,'y,mix(D><k) = ||V||CO(D><I<) + |V|c0,'y,m/‘x(D><k) .
° CO,'y,mix(ka) C CO,’y(DXk)

° CO,y(ka) C CO,»y/k,mix(ka)
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1D Numerical experiments

Gaussian cov. function — Truncated KL — error vs o

Let Y(w, x) be a centered Gaussian r. f. with Gaussian cov. function

llxa =212

e 02 | (x1,x) € [0,1] x [0,1] J

Covy(x1, %) = o>

@ tol =107* N, =100, N = 11 r.v. (99% of variance captured)
@ tolrr = 10716

Reference solution (collocation) Computed error vs o
—0=0.05
0.07]—o=025 o
——0=045
0.06| »
—0=085 10°
0.05]
z 0
=004
003 0
0.02] 10
0.01 il
0 02 04 0.6 08 1 °

Order of ||E [u(Y,x)] = E [TXu(Y,x)] HLZ(D) as function of o
K=0 ] K=1][ K=2 [K=3 | K=4 [ K=5 [ K=
[E[u— ]|, 2 2 4 4 6 6 8
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Exponential cov. function — Complete KL

Let Y(w, x) be a centered Guassian r. f. with exponential cov. function

2 [ =l

Covy(xi,x2) =0 e 02 , (x1,x)€[0,1] x[0,1] J

@ tolk, = 107*: Ny =100, N = 100 r.v. (100% of variance captured)
@ tolrr = 10_16
The collocation method is unusable.
We compare the TT-solution with the Monte Carlo solution
(M=10000 samples)
o =0.05 o =0.65

=005 =005

—MC| —MC|
—TT —TT

001 001

02 04 06 08 02 04 06 08
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1D Numerical experiments

Dependence of the TT-ranks on the dimension

Gauss. Cov. funct.

k=2
—o-k=4

Esp. Cov. funct.

F. Bonizzoni (EPFL)

Low-rank techniques applied to SPDEs




Comparison with the comp. of a truncated Taylor series

+M'2, tol=10

s —102
_o M, tol=10

s -3
M, tol=10
M, tol=10"*
—— 2
|
s 16
100 M, tol=10

-o—M‘l

78 9 10
Truncated Taylor expansion: M; = ( N ;/i;/Z )

TT-algorithm: My =" .4 Zg;é rp+1

2 3 4 5 6
K
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