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Main goal
Prove that a Hamiltonian (or other reasonable deterministic)
system exhibits diffusion for long times.
→ Emergence of irreversibility from deterministic dynamics
common wisdom physically, but hard to make rigorous

Figure: Billiards with finite horizon.Tracer particle bounces elastically
off periodic objects. Diffusion proven by Sinai and Bunimovich, 81, .
A similar setup (Coulombic potentials instead of scatterers) was done
by Knauf
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Plan

Rayleigh gas: Diffusion and Markov scaling limit: Linear
Boltzmann equation
General strategy for proving diffusion assuming we can
prove Markov scaling limit
Main idea of the strategy: Random Walk in Random
Environment (a real honest theorem)
Mention of some result along these lines (also honest but
unstated)
Models based on waves: Markov scaling limits
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Rayleigh gas: Tagged particle in ideal gas

Ideal gas: N point particles with mass 1 in volume Λ ⊂ R3.
Coordinates q = (x , v) = (xi , vi)i=1,...,N ∈ ΓE.
‘Tagged’ Particle (not point-like, having radius 1) and mass
1, Coordinates Q = (X ,V ).
Billiard Dynamics: free flow

(ẋ(t), Ẋ (t)) = (v(t),V (t)) (v̇(t), V̇ (t)) = 0

up to the first collision time, when ∃i : |xi − X | = 1. Then
(vi ,V )→ (v ′i ,V

′) by the rule

(v ′i − V ′)‖ := −(vi − V )‖, (v ′i − V ′)⊥ := (vi − V )⊥

where a = a‖ + a⊥ such that a‖ ‖ (qi −Q) and
a⊥ ⊥ (qi −Q).

→ defines a dynamical system: (q,Q)(0)→ (q,Q)(t) for a.a.
initial conditions.
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Rayleigh gas: particle in ideal gas

Initial measure ρ0 = ρS,0(dQ)× ρE(q)dq, with

ρE(q) = ρE,β,N,Λ(q) =
∏

i

1
|Λ|

e−
β
2 v2

i

and ρS,0 localized around (0,0). Hence, gas is in ’thermal
state’ (homogeneous Maxwellian).
Dynamics defines flow on measures ρ0 → ρt , in particular
the marginal ρS,0 → ρS,t .
As Λ grows large, influence of the boundaries only after
long time. → define distribution of Q(t) = (X (t),V (t)) in
the limit

Λ→ R3,N →∞, with ε = N/|Λ| fixed

(or, start in infinite volume, then law of original positions is
Poisson Point process with intensity ε)
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Rayleigh gas: Diffusion?

Does the particle diffuse?〈
|X (t)|2

6t

〉
−→
t↗∞

D, D > 0

.... CLT? invariance principle?

If you assume each gas particle collides only once (not entirely
accurate, also negative recollisions), then Q(t) is a Markov
jump process (Linear Boltzmann Equation, see later). Diffusion
follows trivially.

However, what about recollisions?
⇒ Markov property breaks down
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Rayleigh gas: Scaling limit

Make recollisions infinitely unlikely⇒ easier problem. This
is the idea of scaling limits. For example, let density of the
gas particles be small and observe the system for long
times

density ∼ ε, time ∼ 1/ε, ε↘ 0.

In the limit, ε↘ 0, the probability of one collision,
respectively a recollision is

(1/ε)× ε, (1/ε)× ε2

One expects that (εX ε(τ/ε),V ε(τ/ε)) converges to a
Markov process (Linear Boltzmann equation) in τ as ε↘ 0.
This was done (rather, something similar) by
Durr-Goldstein-Lebowitz in 1981. However, without scaling
limit (i.e. ε fixed), no results available!
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Linear Boltzmann equation

Recall distribution ρS,t (X ,V ) and collision map for the tracer
particle (V , v)→ V ′n(V , v). Assume 1-particle density of the
gas always given by the equilibrium µ(v) ∼ e−βv2/2. Then

∂tρS,t (X ,V ) = V · ∇XρS,t (X ,V )

+

∫
dn
∫

dv0dV0δ(V ′n(V0, v0)− V )|(V0 − v0)‖|µ(v0)ρS,t (X ,V0)

−
∫

dn
∫

dvdV ′δ(V ′n(V , v)− V ′)|(V − v)‖|µ(v)ρS,t (X ,V )

Originates from nonlinear B.E. by replacing once ρS,t (ft in
Pulvirenti’s talk) by µ(v). ⇒ condensed form

∂tρS,t (X ,V ) =

∫
dV ′(r(V ′,V )ρS,t (X ,V ′)− r(V ,V ′)ρS,t (X ,V ))

+ V · ∇XρS,t (X ,V )

with r(V ,V ′) rate of jump V → V ′.
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Nice, but Scaling limits are not my aim

The dynamical system gets adjusted as time grows.
⇒ Does not give information on the long-time limit of the

fixed ε dynamical system. For example, D is different

Example
2D Anderson model is well-described by LBE for short times,
but localized for large times: With probability exp−λ

−2
, the

particle is sent back to its starting place. 1D FPU-β chain:
Phonon boltzmann equation predicts wrong power law. In both
examples, the scaling limit is lying!

Results (NOT exhaustive) on scaling limits
Yau, Erdös, ’99, Yau, Erdös, Salmhofer, ’05, Lukkarinen,
Spohn, ’08, quantum or wave models
Toth, Holley, Dürr-Goldstein-Lebowitz, ’81, Rayleigh gas
Komorowski, Ryzhik, ’04, particle in random force field
Dolgopyat, Liverani, ’10, coupled Anosov systems.
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Long-range nonmarkovian corrections

Correlation decay
Probability of a second collision with given gas particle decays
polynomially in time: Assume that the test particle diffuses,
X 2 ∼ t . Then, a receding gas particle that wants to recollide
after time t , should have a velocity smaller than

√
t/t = 1/

√
t ,

but ∫
dv χ[|v | ≤ t−1/2]e−βv2/2 ∼ t−d/2

(this is not a correct estimate of the correlation decay, though)

Slow decorrelation is a generic feature of momentum
converving Hamiltonian system, for interacting hard spheres
like t−d/2 (Adler, Wainwright, ’70).
⇒ lies at the heart of anomalous diffusion in 1D and 2D
systems. (Velocity-velocity autocorrelation not integrable)
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Strategy

We know that on time scales t ≈ ε−1, the particle looks like
a Markov jump process (∼ random walk).
The corrections to this behaviour are manifestly
non-Markovian and long-range in time.
This looks like the problem of proving an annealed central
limit theorem for a random walk in a time-dependent
random environment, with long-range memory.
More generally, this looks like doing perturbation theory
around a stochastic system, rather than around the
unperturbed Hamiltonian system. Improvement, because
perturbation preserves character
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RWRE I (random walk in random environment)

Let Uτ∈N be random transition kernels on Zd

Transition kernels

Uτ (x , x ′) ≥ 0,
∑
x ′

Uτ (x , x ′) = 1

Law of Uτ invariant under space and time-translations.
E(Uτ ) = T is transition kernel of simple random walk
Hence, Uτ = T + Bτ with Bτ ’dynamical disorder’.
”Disorder correlations”, for τ1 < τ2 < . . . < τm, and γ > 0,

G(τ1,...,m) := sup
x1

∑
x ′1

. . . sup
xm

∑
x ′m

eγ
∑

j |x ′j −xj |

∣∣〈Bτ1(x1, x ′1); . . . ; Bτm (xm, x ′m)〉c
∣∣
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RWRE II

Theorem (Ajanki, D.R., Kupiainen, in preparation)
Assume (for some γ, α and all m)

∑
1=τ1<...<τm

m∏
j=2

(|τj − τj−1|α)G(τ1,...,m) < δm,

Then, if δ < δ0 and α > 0, there is annealed CLT∑
x

e−ik x√
N [E(UN . . .U1)] (0, x) −→

N↗∞
e−D2k

Similar framework for RWRE was pioneered in ′91 by
Bricmont-Kupiainen. Here: much easier because
integrable correlations. Quenched CLT requires also some
spatial decay.
Proof: renormalization group + cluster expansion.
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Renormalization group for RWRE

Recall kernels (random except T )

Uτ (x , x ′), T (x , x ′), Bτ (x , x ′)

Renormalization step is

RUτ (x , x ′) := Ld
(

UL2τUL2τ−1 . . .UL2(τ−1)+1

)
(Lx ,Lx ′)

for some L >> 1, but δL << 1.
We denote

U ′τ = RUτ , T ′ = E(RTτ ), B′τ = U ′τ − T ′

Running coupling constant δn∑
1=τ1<...<τm

(
∏

j

(τj+1 − τj))αE(Bτm ⊗ . . .⊗ Bτ2 ⊗ Bτ1) ∼ δm
n
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Flow T → T ′

T ′ = LdE(T L2
) + Ld

L2∑
m=1

E(T mBL2−mT L2−m−1)

+ Ld
∑

m1+m2=L2−2

E(T m1BL2−m1
T m2BL2−m1−m2−1T L2−m1−m2−2)

By E(Bτ1 ⊗Bτ2) ∼ δ2
n , second-order term is Ld+4δ2

n . ⇒ OK since
δn contracts:

δn ∼ L−κ(n−1)δ1, κ > 0.

Morally, T (x , x ′) ∼ e−
(x′−x)2

2D . Dropping irrelevant terms gives

T ′(x , x ′) ∼ Ld (T L2
)(Lx ,Lx ′) ∼ Ld 1

√
L2d e−

(Lx′−Lx)2

2DL2 = T (x , x ′)

Hence Fix point
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Flow B → B′

E(B′τ ′2
⊗ B′τ ′1

)

=
∑

m1,m2

E(T m2BL2τ ′2−m2
T L2−m2−1 ⊗ T m1BL2τ ′1−m1

T L2−m1−1)

Naive estimate:

E(B′τ ′2
⊗ B′τ ′1

) ∼
∑

m1,m2

E(BL2τ ′2 −m2︸ ︷︷ ︸
=:τ2

⊗ BL2τ ′1 −m1︸ ︷︷ ︸
=:τ1

)

Since E(Bτ2 ⊗ Bτ1) ∼ δ2(τ2 − τ1)−(1+α), we get

E(B′τ ′2 ⊗ B′τ ′1) ∼ δ2
{

L4(L2(τ ′2 − τ ′1))−(1+α) τ ′2 − τ ′1 > 1
1 τ ′2 − τ ′1 = 1

Hence, δn ∼ δn−1, even for large α > 1⇒ Hopeless.
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Ward Identity

Conservation of probability
∑

x ′ Uτ (x , x ′) = 1 implies∑
x ′

Bτ (x , x ′) =
∑
x ′

Uτ (x , x ′)−
∑
x ′

E(Uτ (x , x ′)) = 1− 1 = 0

Let us Fourier transform

T → T̂ = T̂ (p), Bτ → B̂τ = B̂τ (p,p′)

s.t. B̂τ (p,0) = 0, and consider

(T̂ mB̂τ )(p,p′) = T̂ m(p′)(B̂τ (p,p′)− B̂τ (p,0))

Since T̂ m(p) ∼ e−mDp2
(and using B̂(·, ·) analytic):

(T̂ mB̂τ )(p,p′) ∼ 1√
m

sup
p′′
|Bτ (p,p′′)|
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Flow B → B′ with Ward identity

Using T mBτ ∼ 1√
m Bτ , we get

E(B′τ ′2 ⊗ B′τ ′1) ∼
∑

m1,m2

1√
m1

1√
m2

E(BL2τ2−m2
⊗ BL2τ1−m1

)

∼
∑

m1,m2

((L2τ ′2 −m2)− (L2τ ′1 −m1))−(1+α)

√
m1
√

m2

hence, since 1 ≤ m1,m2 ≤ L2, by power counting

δ2
n ∼ L× L× L−2(1+α)δ2

n−1 ∼ L−2αδ2
n−1

Contracting if α > 0!
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RG conclusion

Higher order contributions are controlled by simple cluster
expansions
If the disorder is symmetric U(x , x ′) = U(x ′, x), then there
is another ‘Ward identity: B̂(p = 0,p′) = 0.
There are (probably) better approaches for RWRE, e.g.
Kipnis-Varadhan martingale technique, but we need (for
the sake of the Hamiltonian model) a robust scheme, not
relying on positivity. Nevertheless, the stated result is not
contained in the literature (Redig, Voellering 2011: CLT
under stronger decay condition but disorder need not be
small)
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Analogy RWRE-Hamiltonian model

In Hamiltonian model, we have dynamics Vt acting on full
phase space ΓSE ⇒ lift to densities

Vt : L1(S×E)→ L1(S×E), (L1(S×E) short for L1(ΓSE,dQdq))

Similarly, VE,t on L1(E).
U := Vε−1 (the time on which stochasticity is visible)
Map E : B(L1(S× E))→ B(L1(S)), defined by

E(Z )ρS :=

∫
ΓE

Z (ρS × ρE)

(Recall ρE density of Gibbs measure).
T := E(U) is then the reduced particle evolution and
T ⊗ VE,ε−1 a natural approximation for the full evolution.
B := U − T × VE,ε−1 .
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Analogy RWRE-Hamiltonian model

What did we really use in RWRE-analysis?

E(U) = T is manifestly diffusive⇒ Still OK∫
ΓS

BρSE = 0 for any ρSE,⇒ Not true but still∫
ΓSE

BρSE = 0 for any ρSE. Therefore, we can use the Ward
Identity only once in each correlation function. ⇒Will need
stronger condition on α.
E(Bτ2 ⊗ Bτ1) ∼ δ2(τ2 − τ1)−(1+α). ⇒ True, but
needs definition.
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Analogy with RWRE

1 timestep time-interval ε−1[τ − 1, τ ] (stochasticity visible)

Uτ unitary dynamics in time ε−1[τ − 1, τ ]

T Markov approx. (emerges on timescales ε−1)

Bτ Uτ − T ⊗ VE,ε−1 effect of recollisions

E integrate over the environment wrt. Gibbs state

δ function of ε, measures smallness of Bτ

α > 0 Need α > 1/2 because Ward on just one B

Controlling all cumulants (as required in our approach) seems
out of reach for models like Rayleigh gas. But we can do it for a
certain quantum model
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A fortunate quantum model

Waves instead of particles: smoother and ‘more
Gaussianity’.
Quantum mechanics allows to put everything on lattice⇒
no high-velocity problems.
Consider a tagged particle with internal structure (’spin’ or
’molecule’) but still Hamiltonian.
Coupling small and particle mass large.
Gas consists of optical phonons (dispersion relation
matters)

Under these conditions we prove diffusion in 3D (D.R.,
Kupiainen) building on (D.R. Frohlich, 2010) in 4D. The
diffusion constant is close to, but not equal to that of the
relevant Markovian approximation.

Message of hope: In the quantum case: there is only
analyis: no probability, no trajectories, no coupling
arguments: Should be much better for classical wave
models
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Remark

Realistic Hamiltonian models for diffusion. 3D case
included, but CHALLENGE to get rid of large mass and
spin (seems even harder than Rayleigh)
Only soft mathematics required: Markov scaling limit and
perturbation of stochastic systems. Thanks to the
introduction of a new time-scale (energies of internal
degree of freedom ’molecule’).
Phenomenology that can be derived: Diffusion,
decoherence, thermalization, transport,
fluctuation-dissipation
Much simpler Kipnis-Varadhan approach for symmetric
disorder U(x , x ′) = U(x ′, x). The above theorem barely
exploits this. However, our Hamiltonian model is reversible,
shortcut possible?
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Another model: Particle coupled to wave equation

Wave equation for ϕ(z, t), π(z, t)

ϕ̇ = π, π̇ = ∆ϕ

derived from the Hamiltonian

HE = HE(ϕ, π) = 1/2
∫

dz
(
|∇φ(z)|2 + |π(z)|2

)
Particle (x ,p) (set again m = 1)

ẋ = v := p, v̇ = 0

Hence Hamiltonian

HS(x ,p) = p2/2

.
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Free wave equation

Solution (
ϕ̇(t)
π̇(t)

)
= etL

(
ϕ(0)
π(0)

)
, L =

(
0 1
∆ 0

)
Fourier trf: ϕ(z), π(z)→ ϕ̂(k), π̂(k) and introduce

a(k) = i|k |ϕ̂(k) + π̂(k), a∗(k) = −i|k |ϕ̂(k) + π̂(k)

Then

a(k , t) = a(k ,0)e−i|k |t , a∗(k , t) = a∗(k ,0)ei|k |t

Initial measure is the Gibbs measure, which is Gaussian:

ρE ∼
1

Z (β)
e−βHE(ϕ,π)

So the initial condition will a.s. not be finite-energy.
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Particle-wave coupling

Coupling by the interaction Hamiltonian

HI =

∫
dzϕ(z)ρ(z − x)

with ρ the form factor; it describes indeed the form of the
particle (e.g. the charge distribution it carries)

π̇(z) = ∆ϕ(z)− ρ(z − x), ϕ̇ = π

ṗ =

∫
dzϕ(z)∇ρ(z − x) =

∫
dk ϕ̂(k)k ρ̂(k)eikx , ẋ = v
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Particle coupled to wave equation

Let f (t) be the force acting on the particle at time t

f (t) =

∫
dk

k ρ̂(k)

i|k |
(a(k , t)− a∗(k , t))eikx(t)

=

∫
dk

k ρ̂(k)

i|k |
(a(k ,0)e−i|k |t − a∗(k ,0)ei|k |t )eik(x(0)+tv) +O(ρ2)

Integrate this approximation of the force over a time T � 1;

FT =

∫ T

0
dt f (t)

Then 〈FT 〉 = 0 and

〈FT FT 〉 =
T
β

∫
dkδ(|k | − |v · k |)k · k |ρ̂(k)|2

|k |2
+ o(T )

using smoothness of ρ̂, hence decay of the correlation function
〈f (s′)f (s)〉 in s′ − s.
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Particle coupled to wave equation: Scaling

Let ρ→ λρ with λ a small coupling strength. We saw then that,
for some σ = O(1)

〈FT FT 〉 ∼ λ2Tσ2,

Hence particle needs time T ∼ λ−2 to feel influence of the field.
Natural to define new coordinates (τ, χ) such that
t = λ−2τ, x = λ−2χ. Then

dv(τ) = σdBτ +O(1) +O(λ), dχ(τ) = v(τ)dτ +O(λ)

The O(1) term is of course what is missing to make the
resulting equation detailed balance
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‘Vague’ Conjecture on Markov scaling limit

In the scaling limit t = λ−2τ, x = λ−2χ, λ→ 0, the process of
the particle converges (weakly) to the solution of the
Fokker-Planck equation

dv = σ(v)dBτ − γ(v)dτ, dχ(τ) = v(τ)dτ

with

σ2 =
1
β

∫
dkδ(|k | − |v · k |)k · k |ρ̂(k)|2

|k |2

and
γ = −∇σ2 + βσ2v
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Remarks

At β =∞, σ vanishes but not γ. There can still be friction.
Note that for |v | ≤ 1, σ = 0. Indeed, electrons moving
faster than the speed of light are slowed down (Cerenkov
radiation), but
Below the speed of light, no friction force. Instead, a
quasi-particle forms: Electron dressed with photon cloud
(lots of work on Q mdoel). Classicaly, this corresponds to a
soliton (Komech, Spohn, 98)
Instead of |k |: choose dispersion ω(k) so that
ω(k)− kv = 0 always solution. Then, expect diffusion at
β <∞ and friction at β =∞.
Fokker-Planck derived in different regime by Eckmann,
PIllet, Rey-Bellet 99. No weak coupling but fine-tuning of
form factor to make the system essentially explicitly
solvable.
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