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The Landau equations: grazing collision limit

Landau in 1936 introduced a new kinetic equation for a dense,
weakly interacting gas. Actually he did it for a Coulomb plasma
(with various cutoff).

Consider the collision operator in the form

QU = [ da [ dp (PP + (v~ P — )
where

f=fvitp). f="Fu—p)

being p the transferred momentum. w is spherically symmetric and
smooth. § assures the energy conservation. £ > 0 is a small
parameter.
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The Landau equations: grazing collision limit

Landau in 1936 introduced a new kinetic equation for a dense,
weakly interacting gas. Actually he did it for a Coulomb plasma
(with various cutoff).

Consider the collision operator in the form

QU = [ da [ dp (PP + (v~ P — )

where
f=fvtp), f=rf(v-p)

being p the transferred momentum. w is spherically symmetric and
smooth. § assures the energy conservation. £ > 0 is a small
parameter. The transferred momentum is small, we rescale w as
8%W(g). Concentrates on the grazing collisions. We also rescale
the mean-free path inverse by a factor % to take into account the

high density situation. The result is
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The Landau equations: grazing collision limit

Q1) == [ [ do w(E)o(p?+ (v — ) PP — 1] =

w .
2/dv1/dp W(P)/ dse/s(P2s+(v—v1).p)

[f(v+5p) vi —ep) — f(nn)] =

+o0o
dn [ do w( / n / e (PP (V) )

d
af(v +eAp)f(vi —elp) =

+oo
/dvl/dp w(p / d)\/ dse:sps+(v v1)-p)

p-(Vy =V, )f(v+eip)f(vi —eAp).
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The Landau equations: grazing collision limit

Let ¢ be a test function, then

+oo
(p, Q=(f, 1)) /dv/dvl/dpw /d)\/
2me

ISp(E 2eX)+(v— Vl)p)ap(v—e)\p v_vvl)ffl
+00
dv/dvl/dp w( / d)\/ dse’(v=1)p
27T€
[<p Y—ep-Vye(v)] p-(V,—-V,)h+

— /dvl/dp w(p / dseis("_"l)"’gp(v)

isp / d\(1-2)\) p-(V,—Vy,)h+ O0(e)
0
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The Landau equations: grazing collision limit

The term O(¢1) vanishes because of the symmetry of w. Also
[dx---=0.
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The Landau equations: grazing collision limit

The term O(¢1) vanishes because of the symmetry of w. Also
[ dX---=0. The result is

(¢, Q=(f,f)) = —/dv/dvl/dp w / ds es(v—v)-p

p-Vypp- (vv - Vv1)ﬁr1 + O( )
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The term O(¢1) vanishes because of the symmetry of w. Also
[ dX---=0. The result is

(¢, Q=(f,f)) = —/dv/dvl/dp w / ds es(v—v)-p

p-Vypp- (vv - Vv1)ﬁr1 + O( )

Therefore:
(Ot + v - V)f = QL(f, )
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The Landau equations: grazing collision limit

The term O(¢1) vanishes because of the symmetry of w. Also
[ dX---=0. The result is

(¢, Q=(f,f)) = —/dv/dvl/dp w / ds es(v—v)-p

p-Vypp- (vv - Vv1)ﬁr1 + O( )

Therefore:
(Ot + v - V)f = QL(f, )

Qu(f. f) = / AV, a(Vy — Vo ),

a=a(v — v1) is the matrix

a1(V) = [ do wlp) 5(V - p) pip
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The Landau equations: grazing collision limit

Also

V and P are the versors of V and p.
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The Landau equations: grazing collision limit

Also

V and P are the versors of V and p.

+o0
B:/ drr3w(r).
0
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The Landau equations: grazing collision limit

Also
aj dp |plw(p) 5(V - p) piby
v/ f
=— [dp &(V-p) piby,
v/ J
V and P are the versors of V and p.

+o0
B = / drr3w(r).
0

Note that B is the only parameter related to the interaction.
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The Landau equations: grazing collision limit

Also
aj dp |plw(p) 5(V - p) piby
v/ f
= dp (V-p) bibj,
“wi/ J
V and P are the versors of V and p.

+o0
B = / drr3w(r).
0

Note that B is the only parameter related to the interaction.

2 (V) = m(%’ Vi), a(V) =Py
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The Landau equations: grazing collision limit

From the mathematical side very little is known about the Landau
equation even for the homogeneous case.
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The Landau equations: grazing collision limit

From the mathematical side very little is known about the Landau
equation even for the homogeneous case. The main difficulty is
due to the presence of the diverging factor ﬁ
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The Landau equations: grazing collision limit

From the mathematical side very little is known about the Landau
equation even for the homogeneous case. The main difficulty is
due to the presence of the diverging factor IV\

Same properties as for the Boltzmann equation.

(v, Qu(f,f))=0

for « = 0,1,2 and the Entropy production is given by the following
expression

log f, f,f)) d d v )fh|*.
~(log . QU ) = 5 [ dv [ gl PE (Ve V )P
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The weak coupling limit

N identical particles of unitary mass. Positions and velocities:
qi..-4dnNn, V1...VN.
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The weak coupling limit

N identical particles of unitary mass. Positions and velocities:
qi..-4dnNn, V1...VN.

d d
Fe=vin i > Flai— q).
j=1...N:
J#i

Here F = —V ¢, ¢ the smooth, two-body, spherically symmetric
interaction potential and 7 the time.
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The weak coupling limit

N identical particles of unitary mass. Positions and velocities:
qi..-4dnNn, V1...VN.

d d
Fe=vin i > Flai— q).
j=1...N:
J#i

Here F = —V ¢, ¢ the smooth, two-body, spherically symmetric
interaction potential and 7 the time. In this regime N is very large
and the interaction strength quite moderate. € > 0 a small
parameter = the ratio between the macro and microscales.
N = O(¢73), the density is O(1).
Rescale x = g, t=eT, ¢— \/Egb.

d J—

=i Ev-
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The weak coupling limit

Why a diffusion in velocity? Heuristics

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O(%) but acts on the time interval O(¢).

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O(%) but acts on the time interval O(¢).

The momentum variation due to a single scattering =0(/<).
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The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O(%) but acts on the time interval O(¢).

The momentum variation due to a single scattering =0(/<).
The number of particles met by a test particles is O(L).
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The weak coupling limit

Why a diffusion in velocity? Heuristics
The force is O(%) but acts on the time interval O(¢).
The momentum variation due to a single scattering =0(/<).

The number of particles met by a test particles is O(L).
The total momentum variation for unit time is O(%)
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The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O(%) but acts on the time interval O(¢).

The momentum variation due to a single scattering =0(/<).
The number of particles met by a test particles is O(L).

The total momentum variation for unit time is O(%)

But zero in the average.
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The weak coupling limit

Why a diffusion in velocity? Heuristics

The force is O(%) but acts on the time interval O(¢).

The momentum variation due to a single scattering =0(/<).
The number of particles met by a test particles is O(L).

The total momentum variation for unit time is O(%)

But zero in the average.

The variance = 10(/2)? = O(1).
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The weak coupling limit

XN:X1...XN VN:V1...VN.

Liouville equation

(O + Vv - V)WN(Xn, Vi) = —= (TR WN) (Xn, Vi)

Sl

£
where VN . VN = E[,V:l V- VX,

(TAWM) X, Vi) = > (T W) (X, Vi),
0<k<t<N
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The weak coupling limit

XN:X1...XN VN:V1...VN.

Liouville equation

(O + Vv - V)WN(Xn, Vi) = —= (TR WN) (Xn, Vi)

Sl

9

where VN . VN = E[,V:l V- VX,

(TAWM) X, Vi) = > (T W) (X, Vi),
0<k<t<N

Xk — Xe

Te Wl = Vqﬁ(T) (V= Vi)WV,
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The weak coupling limit

BBKGY hierarchy of equations for the marginals 6-” (for 1 <j < N):

Jj .
1 N —j
O+ 2 v VIR = 2T+ =2 Gl
k=1
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The weak coupling limit

BBKGY hierarchy of equations for the marginals 6-” (for 1 <j < N):

Jj .
1 N —j
O+ 2 v VIR = 2T+ =2 Gl
k=1

The operator Cf+1 is defined as:

J
e _ €
j4+1 — Z Ck,j+1 ’
k=1
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The weak coupling limit

BBKGY hierarchy of equations for the marginals 6-” (for 1 <j < N):

Jj .
1 N —j
O+ 2 v VIR = 2T+ =2 Gl
k=1

g 1 1 .
The operator Cj+1 is defined as:
J
€ _ £
F1= Cijers
k=1

ij+1j+1( <o Xy Vi V):

/dxj+1/dvj+1F

) Vo firi(X1, X2, oo X1 Vi, ooy Vi)
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The weak coupling limit

BBKGY hierarchy of equations for the marginals 6-” (for 1 <j < N):

Jj .
1 N —j
O+ 2 v VIR = 2T+ =2 Gl
k=1

g 1 1 .
The operator Cj+1 is defined as:
J
€ _ £
F1= Cijers
k=1

ij+1j+1( <o Xy Vi V):

/dxj+1/dvj+1F

- .- 0 N .
The initial value {f”}L, factorizes

) Vo firi(X1, X2, oo X1 Vi, ooy Vi)

f0 = £y, for some  f.
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The weak coupling limit

Duhamel formula:
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The weak coupling limit

Duhamel formula:

N—j [t
£ (8) =S(6)F0 + /O S(t — 1) Coa Yy (1) dty +

1 t
\f/o S(t— )T RN (t)dn.

Assuming that the time evolved j-particle distributions )j-N(t) are smooth
J+16 ( o J’ tl)

o €3Z/dr/dvj+1”:(r) ’ kaG-H(Xj’Xk —en Vj’ Vi+1, tl) = 0(54)

because [ drF(r) = 0. Also the third term is vanishing.
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The weak coupling limit

Hence GN(t) cannot be smooth !
We conjecture
N_ N N
" =g +1
where ng is the main part of f;-N and is smooth, while VJN is small,
but strongly oscillating.

J
N—j N—j
(0 + Z Vi - ka)ng s C+1gj+1 +— NG C+1%+1
k=1
J 1 1

N _ N N

(O 2 V) = T TS

Initial data

&' (X Vi) = £(X. V), 2 (X, V) =0.

Note that vV = 0 since T = 0.
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The weak coupling limit

The remarkable fact of this decomposition is that v can be
eliminated. Let (X(t), V;(t)) = ({xu(t)...x;(t),va(t)...vj(t)})
be the solution of the j-particle flow (in macro variables)

d d 1 Xj — Xk
IXI_VI dtV’__\/gkzl:..V(b( € )

=1..j:
keti

Initial datum (Xj, Vj) = ({x1...xj,v1...vj}). Uj(t) is the operator
solving the Liouville equation

1

(0 + Vj - V)h(X;, Vi t) = —=(T7h) (Xn, Vivi )

B

€

namely

h(X;, Vj, t) = Ujh(X;, Vi) = h(Xj(=t), Vi(=t)).
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The weak coupling limit

'yjlv(t):—%/o dsU(s) TegM(t — s).

%N()g,\/j,t):—%/o ds Z v¢(w).

1<i<k<j
(Vi = Viu)g (Xi(=s), Vi(=s)i t —s).

Finally we arrive to a closed hierarchy for g":
j N

5

(at—’_zvk 'vxk)ng()gv Vj;t) = \[
k=1

N;jZ_Z/O ds/d‘/j+1/dxj+1divka(X" _€’9+1)F(Xi(—5);xr(—s))

Cjilgjlykl()g'a Vi t)+
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The weak coupling limit

We now present a formal derivation of the Landau eq.n (assuming

ga'smooth).
N-—1
(0t + vi - Vi)el' (1) Z?CE&N(U
N—-1

t
- c;/ dsUs(s) Togl(t — 5).
0

Let v € D be a test function.

V=L csal(e)) = o(ve).
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The weak coupling limit

Last term:

/dX]_/dX2/dV1/dV2/ ds V., u(xi,vi)

X1 — X2

P20y (g, v e 0l -s), Vi) t-5) ~

/Xm/dr/dvl/dVQ/ ds Vvlu(xl,vl)

F(r)F( ( 85);)(2( 65))‘ (vvl _vvz)g2 (X17X27V17V2 t)

F(
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The weak coupling limit

w = v; — v, the relative velocity:

x1(—¢s) ; elzes) r—l—ws"_% /OES dr(vi(7)—v1) = (va(7) = v2).

But
vi(T) —v1 = / dSF (s )) = 0(V2).

The time spent when the two partlcles are at distance less that ¢ is
O(¢), (if the relative velocity w not too small). Thus:

/Xm/dr/dV]_/dVQ/ ds V. u(xi,vi)F(r)F(r+ ws)

(VVI - VVz)gz (X]-?Xla Vi, V2, t)
%(Uv QL(gleglN))'

Invoking propagation of chaos.
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The weak coupling limit

Actually it can be proven that

/dr/ dsF(r)F(r—ws) /dr/ dsF(r)F(r—ws) = a(w)

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



The weak coupling limit

Actually it can be proven that

and
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The weak coupling limit

Actually it can be proven that

and
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The weak coupling limit

Consider the first order (in time) approximation gNof g"V:

N—j .
af+2vk V806 Vi) = =2 G SO 06, Vi)
k=1

J+ t ) Xk — Xj+1 xi(—=s) — x.(—s)
ds [ dvjy1 [ dxjpadivy, F( )F( )

S 3

Ju

N—j <
=2
k=1i,r=1 0

(Vo = V)t~ )21 (Xs1(~5). Visa(—9)).
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The weak coupling limit

Bobylev, P. and Saffirio 2012: derivation...... at time zero

Theorem

Suppose fy € C3(R3 x R3) be the initial probability density
satisfying:

ID fy(x,v)| < Ce PP for  r=0,1,2 (1)

where D' is any derivative of order r and b > 0. ¢ € C3(R3),
¢ >0 and ¢(x) = 0 if |x| > 1. Assume factorization at time zero,
then

lim gV(t) = S(t)fo + /Ot drS(t — 7)QL(S(7)fy, S(7)f)

e—0

where Ne3 = 1 and the above limit is considered in D’.
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The weak coupling limit

Propagation of chaos

Under the same hypotheses

E—>

+ZH5 )fo(Xk, vk) / d7rS(t — 7)Qu(S(7)fy, S(T)f) (X, vi)

i=1 k=1
k£i

inD'.

I|ng (t,x1, v, ...

= [ S(t)fo(xi, vi)

i=1

s Xj5 V)
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