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Plan of the lectures

Particle systems and BBKGY hierarchy (the paradigm of the
Kinetic Theory)

The Boltzmann equation (for hard spheres)

The hard-spheres dynamics

H-S hierarchy

Rigorous derivation of the Boltzmann equation for short times
Comments and remarks

The Landau equations: grazing collision limit

©00000O0

The Landau equations and weak-coupling limit
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Particle systems and BBKGY hierarchy

N identical particles, unitary mass, in all the space R3.
Configurations in the phase space

Zl...ZN:ZN:(XN,VN):(Xl...XN,Vl...VN)

z; = (xj, v;) denotes position and velocity of the i — th particle.
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Particle systems and BBKGY hierarchy

N identical particles, unitary mass, in all the space R3.
Configurations in the phase space

Zl...ZN:ZN:(XN,VN):(Xl...XN,Vl...VN)

z; = (xj, v;) denotes position and velocity of the i — th particle.
Two-body interaction ¢ : R3 — R, ¢ is spherically symmetric .

Xj = Vi,

vi=— Y Velh—x)
J=L..N
J#i
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Particle systems and BBKGY hierarchy

N identical particles, unitary mass, in all the space R3.
Configurations in the phase space

Zl...ZN:ZN:(XN,VN):(Xl...XN,Vl...VN)

z; = (xj, v;) denotes position and velocity of the i — th particle.
Two-body interaction ¢ : R3 — R, ¢ is spherically symmetric .

).<i = Vi,
vi=— ) Velxi—x)
J=L..N
J#i

N is very large. Statistical description.
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Particle systems and BBKGY hierarchy

Probability measure WN(Zy)dZy on R3V x R3V
Symmetry:

WN(zy.oozioozjooozy) = Wz oz oz zy)
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Particle systems and BBKGY hierarchy

Probability measure WN(Zy)dZy on R3V x R3V
Symmetry:

WN(zy.oozioozjooozy) = Wz oz oz zy)
The time evolved measure is defined by
WN(zy; t) = WN(o~t(2y))

®t(Zy) the flow with initial datum Zy.
An evolution equation for WN(Zy; t).
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Particle systems and BBKGY hierarchy

oWN(t) = LyWN(t)
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Particle systems and BBKGY hierarchy

oWN(t) = LyWN(t)

N
Ly=— Z[V,’ -V +Fi- V]
i=1
N N
- Z(Vi Vi) — Z Fxi —x)- (Vv = Vy)
i=1 ij=1
1<J

Fi=—> Volxi—x)
ji#i
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Particle systems and BBKGY hierarchy

We are interested in the limit N — oco. N particle description vs
one-particle description.
Define the j-particle marginals

@N(zj;t):/dzjﬂ...dzNW’V(zj,sz...zN;t) j=1...N.

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



Particle systems and BBKGY hierarchy

We are interested in the limit N — oco. N particle description vs
one-particle description.
Define the j-particle marginals

@N(zj;t):/dzjﬂ...dzNW’V(zj,sz...zN;t) j=1...N.

Evolution equation for f;(t).

N J
/ dzji1. .. dzn(0c+ Y ViV )WN(Zj, zi41 . zn) = (Ot > vi-Vi)
i=1 i=1

free term
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Particle systems and BBKGY hierarchy

N
/dzjﬂ...dzNZF,--vv,.W’V(Zj,sz...zN) =

i=1
N N
o Z Z /dzj"rl s dzNVXiQO(Xi_Xk)'VVi WN(ZJ" Zj+1 - 'ZN)a
i=1 k=1,k#i

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



Particle systems and BBKGY hierarchy

N
/dzj+1 dzn Y Fi -V WN(Z, i z) =
i=1

N N
_Z Z /dzj+1"'dzNVXiQO(Xi_Xk)'VVi WN(ZJ"ZJ'-H"'ZN)’
i=1 k=1,k#i

N N
Zi:j+1 Zk:l,k;ﬁi ..=0.
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Particle systems and BBKGY hierarchy

N
/dzj+1 dzn Y Fi -V WN(Z, i z) =
i=1

N N
_Z Z /dzj+1"'dzNVXiQO(Xi_Xk)'VVi WN(ZJ"ZJ'-H"'ZN)’
i=1 k=1,k#i

N N _ J J
Doimjr1 Dokt kati - =0 Diy Dk kxi --- T the free term
yields the j-particle Liouville operator

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



Particle systems and BBKGY hierarchy

N
/dzj+1 dzn Y Fi -V WN(Z, i z) =
i=1

N N
_Z Z /dzj+1"'dzNVXiQO(Xi_Xk)'VVi WN(ZJ"ZJ'-H"'ZN)’
i=1 k=1,k#i

N N _ J J
Doimjr1 Dokt kati - =0 Diy Dk kxi --- T the free term
yields the j-particle Liouville operator

J N
Z Z /dzj+1 N dZNle.gO(X,' - Xk) . vv,- WN(ZJ', Zj41 .- ZN) =
i=1 k=j+1

J
N=HS / dzj 1 Vs o(xi — x541) - Vo £Y1(Zh2 2141).
=1
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Particle systems and BBKGY hierarchy

Conclusion:

0N (t) = L (1) + (N =) Ga s, j=1...N
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Particle systems and BBKGY hierarchy

Conclusion:

06 (1) = Lt () + (N =) Gafly,  j=1...N

Gfi(Z) = Z/dZJHVX, —x11) - Vi f{1(Z), z141)

j < N and Cyy1=0. For j = N Liouville eq.n iy = WV
BBKGY hierarchy.
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Particle systems and BBKGY hierarchy

Conclusion:

06 (1) = Lt () + (N =) Gafly,  j=1...N

Gfi(Z) = Z/dZJHVX, —x11) - Vi f{1(Z), z141)

j < N and Cyy1=0. For j = N Liouville eq.n iy = WV

BBKGY hierarchy.

Interpretation. Apparently not useful: we have in any case to solve
Liouville.
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Particle systems and BBKGY hierarchy

However if
£V (x1, vi, X2, v2) = A (x1, vi) Y (xa, v2)

we get a single nonlinear eq.n. Not true.
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Particle systems and BBKGY hierarchy

However if
sz(Xl, Vi, Xp, Vo) = le(Xl, Vl)le(Xg, v2)

we get a single nonlinear eq.n. Not true. But, if for some reason
f2N(X1, Vi, X2, V2) RS le(xl, V]_)le(XQ, v2),

in some limiting situations...

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



Boltzmann equation

Boltzmann (1872) looked for an equation for

w(dz, t) Zé(z (t))dz.

the empirical distribution
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Boltzmann equation

Boltzmann (1872) looked for an equation for

u(dz, t) Zé(z (t))dz.

the empirical distribution or for f(x, v; t), the one-particle
distribution.
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Boltzmann equation

Boltzmann (1872) looked for an equation for

u(dz, t) Zé(z (t))dz.

the empirical distribution or for f(x, v; t), the one-particle
distribution. The dynamics is that of hard spheres.

vi=v—n[n-(v—-w)

vi =vi +n[n-(v—wv)].
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Boltzmann equation

Vi
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Boltzmann equation

The Boltzmann equation
(0: + v -V )f = Q(f,f)

Q is the collision operator

Q(f,f)(x,v):/ dvy dn (v—v1)-n  [F(x, V') F(x, v{)—F(x, v)F(x,1)]

R? s

n (the impact parameter) is a unitary vector and
S2 ={n|n-(v—w) >0}
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Boltzmann equation

Formal conservation in time of following five quantities

/ dx / dvf (x, vi t)v°®

with @ = 0,1, 2, (conservation of the probability [mass],
momentum and energy).
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Boltzmann equation

Formal conservation in time of following five quantities

/ dx / dvf (x, vi t)v°®

with @ = 0,1, 2, (conservation of the probability [mass],
momentum and energy).
The entropy defined by

H(t) :/dx/dvflog f(x,v,t) (1)

is decreasing along the solutions. (The famous H-theorem)
Equilibrium.
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Boltzmann equation

© = ¢(v) a test function, consider the scalar product in L?(v):
(¢, Q(f, f)):/dv/dvl dn B(v—vyi;n) o[f'fl —fR].
52

Here we use the standard notation
f="~),f =f\V)h="Ff(n),f=7Ff(vy).
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Boltzmann equation

© = ¢(v) a test function, consider the scalar product in L?(v):
(¢, Q(f, f)):/dv/dvl dn B(v—vyi;n) o[f'fl —fR].
52

Here we use the standard notation
f="~(v),f =f\),h="F(n),f =Ff(vy). Using the symmetry
v — v1 and the fact that the Jacobian of

/ /
V,v1 — Vv,V

is unitary,
1
(o, Q(f,F)) = 2/dv/dv1 /52 dn B(v—vi;n) ¢ +oi—p—p1]
s

The conservation of mass, momentum and energy follows
(¢, Q(f,f)) =0

for o =1, v, v2.
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Boltzmann equation

H-theorem is consequence of the identity
H(t) = (log f, Q(f, ))

p=logf,
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Boltzmann equation

H-theorem is consequence of the identity
H(t) = (log f, Q(f, ))

= log f, we arrive to

(log f, Q(f,f)) /dx/dv/dvl/ dn B(v—wvi;n)
52

ff]
h

[fh — f'f{]log

Entropy production.
Boundary conditions.
Paradoxes.
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The hard-sphere dynamics

N identical hard spheres of diameter £ of unitary mass.

ZN:(Zl,...,ZN):(XN, VN):(Xl,...,XN;Vl,...,VN)

zi = (x;,v;) € RO.
The phase space
(RO =

{Znllxi — x| = e for i #j}
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The hard-sphere dynamics

N identical hard spheres of diameter £ of unitary mass.

ZN :(Zl,...,ZN): (XN, VN):(Xl,...,XN;Vl,...,VN)
zi = (x;,v;) € RO.
The phase space
5 C (RN =

{Znllxi — x| = e for i #j}

Dynamics is the free flow

Zn(t) = (x1 + vit, ..., xy + vt vi, ..., vy) up to the first impact
time when |x; — x;| = €. Then an instantaneous collision takes
place, according to the collision law and the flow goes on up to the
next collision instant.
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The hard-sphere dynamics

N identical hard spheres of diameter £ of unitary mass.

ZN :(Zl,...,ZN): (XN, VN):(Xl,...,XN;Vl,...,VN)
zi = (x;,v;) € RO.
The phase space
5 C (RN =

{Znllxi — x| = e for i #j}

Dynamics is the free flow

Zn(t) = (x1 + vit, ..., xy + vt vi, ..., vy) up to the first impact
time when |x; — x;| = €. Then an instantaneous collision takes
place, according to the collision law and the flow goes on up to the
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constructed in this way.

Mario Pulvirenti From Hamiltonian particle systems to Kinetic equations



The hard-sphere dynamics

N identical hard spheres of diameter £ of unitary mass.

ZN :(Zl,...,ZN): (XN, VN):(Xl,...,XN;Vl,...,VN)
zi = (x;,v;) € RO.
The phase space
5 C (RN =

{Znllxi — x| = e for i #j}

Dynamics is the free flow

Zn(t) = (x1 + vit, ..., xy + vt vi, ..., vy) up to the first impact
time when |x; — x;| = €. Then an instantaneous collision takes
place, according to the collision law and the flow goes on up to the
next collision instant. Zy — ®*(Zy) the dynamical flow
constructed in this way. Only a.e. defined
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The hard-sphere dynamics

Symmetric probability measure with density WON on 'y
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The hard-sphere dynamics

Symmetric probability measure with density WON on 'y
WN(Zy; t) = WM (o~ Zy).
The j-particle distributions 7§-N of a measure WN (or marginals) are
f;-N(zl, . zjt) = /dzj+1 codzy WN(z,. . zyit)

Looking for an evolution equation for f(t).
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The hard-sphere dynamics

Symmetric probability measure with density WON on 'y
WN(Zy; t) = WM (o~ Zy).
The j-particle distributions 7§-N of a measure WN (or marginals) are
f;-N(zl, . zjt) = /dzj+1 codzy WN(z,. . zyit)

Looking for an evolution equation for f;(t). H-S hierarchy.
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H-S hierarchy

For Zy €T,
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H-S hierarchy

For Zy €T,

Integrating on the last N — 1 variables:

N
0
Eﬂ(x, vit)=— Z/ vi-Vy, WN(x1,v1 ... xn, viv)dxa, dva . . . dx, dvp,
=1 M(x1)
where

M) ={x,va...xn, vn||x1 — xs| >€,s=2... N}
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H-S hierarchy

We deal first with the term j =1

vi - Vi fi(xi,v1) =vi - Vi WN(xl7 Vi .. XN, V) dXe, dva .. dXyy, dvy
I(x1)

:/ vi - Vo WNdxa, dvy . .. dxy, dvy—+
M(x1)

N
Z/ Vi - nsWNdxz,va...das,dvs...de,va
=D Als(x1)

Ols(x1) = {xa,va...xn, Wn||Xx1=x| > e, r=2...N, r#s, |x1—xs| = ¢}.
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H-S hierarchy

By the div lemma:

N
Z/ Vj'VXJ.WN(Xl,V1...XN,VN)dX2,dV2...dXN,dVN
j=2 M(x1)

N
Z/ Vj.anNdXQ,dVQ...dO'jde--.dXNvdVN:
=2 7 Oj(x)

(N — 1)/dV2/d02V2 “naf(x1, vi, X, Vo) =

(N — 1)62 / dvy / dnvs - nfg(Xl, Vi,X1 +é&n, V2).
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H-S hierarchy

Using the symmetry of WV,
9 2
(a—i—vl Vi )a(x, vi; t) =(N —1)e” [ dva(va —v1) - n

/dn f2(X1, Vi, X1 + ne, V2)
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H-S hierarchy

Using the symmetry of WV,

0
(a +v1 -V )f(xi,vi; t) =(N — 1)52/dv2(v2 —vi)-n

/dn f2(X1, Vi, X1 + ne, V2)

again not very useful.
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H-S hierarchy

Using the symmetry of WV,

0
(a +v1 -V )f(xi,vi; t) =(N — 1)52/dv2(v2 —vi)-n
/dn fa(x1, vi, X1 + ne, v2)

again not very useful. The size of the r.h.s. Ne3 ~ 107%cm?

Ne? = O(1)
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H-S hierarchy

Using the symmetry of WV,
9 2
(a—i—vl Vi )a(x, vi; t) =(N —1)e” [ dva(va —v1) - n
/dn f2(x1, v1, x1 + ne, v2)
again not very useful. The size of the r.h.s. Ne3 ~ 107%cm?

Ne? = O(1) the probability that two tagged particles collide is

O(e?) . The probability that a given particle performs a collision is
O(Ne?) = O(1).

f(x, v, x2, v0) = fi(x, v)fi(x2, v2)

statistical independence may be ok only before the collision.

Mario Pulvirenti
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H-S hierarchy

Applying factorization (propagation of chaos) only for the
incoming velocities

fo(x1, vi,x1 + ne, va) = fi(x1, vi)fi(x1 + ne, vo)

if (v —v2)-n>0
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H-S hierarchy

Applying factorization (propagation of chaos) only for the
incoming velocities

fo(x1, vi,x1 + ne, va) = fi(x1, vi)fi(x1 + ne, vo)
if (vy —vw2)-n>0and
f(x1, vi, x1 + ne, vo) = fo(x, V{,X1 + ne, Vﬁ)

if (vi —w2)-n <0 (here vi, v} are incoming). Changing n — —n,
v, V4 are outgoing.
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H-S hierarchy

Applying factorization (propagation of chaos) only for the
incoming velocities

fo(x1, vi,x1 + ne, va) = fi(x1, vi)fi(x1 + ne, vo)
if (vy —vw2)-n>0and
f(x1, vi, x1 + ne, vo) = fo(x, V{,X1 + ne, Vﬁ)

if (vi —w2)-n <0 (here vi, v} are incoming). Changing n — —n,
vi, v4 are outgoing. We have the Boltzmann equation.
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H-S hierarchy

Applying factorization (propagation of chaos) only for the
incoming velocities

fa(x1, vi, x1 + ne, va) = fi(x1, vi)fi(x1 + ne, va)
if (vy —vw2)-n>0and
fa(x1, vi, x1 + ne, vo) = f(x1, vi, x1 + ne, v4)
if (vi —w2)-n <0 (here vi, v} are incoming). Changing n — —n,

v, v4 are outgoing. We have the Boltzmann equation. However
this can be true only in the limit

e—0, N—oco, ne?— const.

called Boltzmann-Grad limit.
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H-S hierarchy

In general we have

@O+ LY = (N= ) Ciafly, j=1...N

where L7 is the generator of the dynamics of j hard-spheres of
diameter ¢.

N
Cifipa(a,vi, .5, v)) Z/d”/d‘/J-H” (Vi = vjs1)

N
fiien (X1, Vi, oo Xy Vi -+ o5 Xk €0, Vj41)

where n is the unit vector.
)S-N =0 if j > N and hence, for j = N, we have nothing else than
the Liouville equation.
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H-S hierarchy

By the previous manipulations:

j
€ N
G, v, X, v) = E / Vj+1 /+ dnn - (vik — vj41)

k=1
N / /
fiien (X1, VI, oo Xy Vs + -5 Xk — €1, Vi)

N
—6+ (Xla Vi, .o Xk, Viey ooy Xk €N, Vj+1)_

Mario Pulvirenti
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H-S hierarchy

J
€ S £
= Z Crjt1
k=1

Ca—I— e—

Ctiq,= —
kj+1 = Crjr1 kj+1

and

e+ . — . .
Cejr18i+1(X15 - Xjive, .., ) = /d‘/j+1 /2 dww - (vk — vjt1)
S+
/

. /
[gjr1(xt, -\ Xj, XK — ew; v1,...,vk...,vj+1)7

E— . —
CkJ+1&+1(Xla--->vaVla--w‘/j) _/dvj-‘rl/z dww - (vk = vj+1)
S+

git1(X1, - Xjy Xk FEW VL, Vi -, Vi)
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H-S hierarchy

Therefore, by the Dyson (Duhamel) expansion:

fE(t) = z SN (=)l /Otdtl /Otl dtg.../otn_1 dt,

n=0 01,On ky. Kk
P

a5 ()Ue(t — tl)CkE{Z-lH o US(ther — t,,)C,fn"L’jgnUE(t,,)fOﬁ,,Jrj.

as(j) =e*"(N—j)(N—j—1)...(N—j—n+1).
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H-S hierarchy

Therefore, by the Dyson (Duhamel) expansion:

fE(t) = z SN (=)l /Otdtl /Otl dtg.../otn_1 dt,

n=0 01,On ky. Kk
P

an(NU(t — 1) Gy - U(tn-1 — tn) G US (tn) f -
ag(j) =N =j)(N=j—1)...(N=j—n+1).

Here
o,=(01,...,0p0), oi== |gn|:Zaj1
J

and
j Jj+1 j+n—1

SRED ISP D

Kby skn ki=1 ko=1 kn=1
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