
Gradient structures and

discrete Markov chain models for

reaction-diffusion systems

Alexander Mielke

Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin
Institut für Mathematik, Humboldt-Universität zu Berlin

www.wias-berlin.de/people/mielke/

From Particle Systems to Differential Equations
WIAS Workshop. Berlin, 21. – 23. Februar 2012

Partial support via “Analysis of multiscale dystems driven by functionals”



Overview

1. Introduction

2. Markov chains as gradient systems

3. Reaction-diffusion systems as gradient systems

4. Discrete-to-continuum passage

5. Limit of chemical master equations

6. Coupling reaction and diffusion

A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21–23.2.2012 2 (27)



1. Introduction

Semiconductor model: van Roosbroeck system

− div(ε∇φ) = d−n+p electrostatics

ṅ = div
(
µn(∇n−n∇φ)

)
+ g − rnp electron balance

ṗ = div
(
µp (∇p+ p∇φ)

)
+ g − rnp hole balance

Motivation:

understand the van Roosbroeck system
as the limit of a many-particle system

learn how to model diffusion in random media
(organic semiconductors)
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1. Introduction

particle system    differential equation

random walk    diffusion equation

u̇m = µM2
(
um−1 − 2um + um+1

)
U̇ = µ∆U

chemical master equations    reaction kinetic

u̇n = γun−1 + α np

Npun+1 − (...)un U̇ = γ − αUp

Markov chain ODEs / PDEs
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1. Introduction

particle system    differential equation

random walk    diffusion equation

u̇m = µM2
(
um−1 − 2um + um+1

)
U̇ = µ∆U

chemical master equations    reaction kinetic

u̇n = γun−1 + α np

Npun+1 − (...)un U̇ = γ − αUp

Markov chain ODEs / PDEs

Main philosophy: Use gradient structure u̇ = −K(u)DE(u)

(X , E ,K) gradient system

X state space containing the states u ∈ X .

E : X → R energy functional with differential DE(u) ∈ T
∗

u
X

G(u)−1= K(u):T∗
uX→TuX inverse of metric: Onsager oper. K = K∗ ≥ 0

A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21–23.2.2012 4 (27)



1. Introduction

(X , E ,K) gradient system u̇ = −K(u)DE(u)

X state space containing the states u ∈ X .

E : X → R energy functional with differential DE(u) ∈ T∗
u
X

G(u)−1 = K(u) : T∗
u
X → T∗

u
X inverse of metric (Onsager operator)

Study discrete-to-continuum limit for gradient structures

uε solves (X , Eε,Kε) discrete model ε = 1
N , N = # particles

⇓
u solves (X , E ,K) continuum model

We want to conclude uε(t)→ u(t) from (Eε,Kε)   (E ,K) !!
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2. Markov chains as gradient systems

Otto 1999: Fokker-Planck equation U̇ = div
(
∇U + U∇V )

is a gradient system (X , E ,K):

E(U) =
∫

Ω U log(U/W ) with W (x)=ce−V (x)
   DE(U) = logU + V

K(U)ξ = − div(U∇ξ)    U̇ = −K(U)DE(U)

M’10: Reaction-diffusion systems satisfying the detailed-balance
condition (and possibly including temperature or drift due to electric
charges) have a gradient structure for the relative entropy.

Maas’11, M’11: Discrete Markov chains with detailed-balance
condition have a gradient structure for the relative entropy.
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2. Markov chains as gradient systems

Discrete Markov chain on states j ∈ J (e.g. Zd
M or Nm

0 )

X = Prob(J) = {u = (uj)j∈J ∈ `1(J) | uj ≥ 0,
∑

J uj = 1 }

u̇ = Qu linear evolution with unique steady state w = (wj)J
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2. Markov chains as gradient systems

Discrete Markov chain on states j ∈ J (e.g. Zd
M or Nm

0 )

X = Prob(J) = {u = (uj)j∈J ∈ `1(J) | uj ≥ 0,
∑

J uj = 1 }

u̇ = Qu linear evolution with unique steady state w = (wj)J

Theorem (M’11, Maas’11).
If Q satisfies the detailed balance condition (DBC)

wj > 0 and Qjkwk = Qkjwj for all j, k ∈ J ,

then we have the gradient structure u̇ = Qu = −KMv(u)DE(u)

with E(u) =
∑

J

uj log(uj/wj) and

KMv(u) =
∑

j,k∈J

1

2
Qjkwk Λ

( uj
wj

,
uk
wk

)
Ejk ∈ RJ×J

≥0 where

Ejk = E∗
jk = (ej−ek)⊗ (ej−ek) ≥ 0 and Λ(a, b) = a−b

log(a/b) ≥ 0.
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2. Markov chains as gradient systems

E(u) =
∑

J uj log(uj/wj) and KMv(u) =
∑

j,k∈J
1
2Qjkwk Λ

( uj

wj
, uk

wk

)
Ejk

Ejk = E∗
jk = (ej−ek)⊗ (ej−ek) ≥ 0 and Λ(a, b) = a−b

log(a/b) ≥ 0.

To be proved: u̇ = Qu = −KMv(u)DE(u)

• DE(u) = (log(uj/wj) + 1)J =⇒
EjkDE(u) =

(
log(uj/wj)− log(uk/wk)

) (
ej−ek

)
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2. Markov chains as gradient systems

E(u) =
∑

J uj log(uj/wj) and KMv(u) =
∑

j,k∈J
1
2Qjkwk Λ

( uj

wj
, uk

wk

)
Ejk

Ejk = E∗
jk = (ej−ek)⊗ (ej−ek) ≥ 0 and Λ(a, b) = a−b

log(a/b) ≥ 0.

To be proved: u̇ = Qu = −KMv(u)DE(u)

• DE(u) = (log(uj/wj) + 1)J =⇒
EjkDE(u) =

(
log(uj/wj)− log(uk/wk)

) (
ej−ek

)

• Using the cancellation Λ(a, b)
(
log a− log b) = (a−b) gives

KMv(u)DE(u) =
∑

j,k∈J
Qjkwk

2

( uj

wj
− uk

wk

) (
ej−ek

)
(already linear)

• Using detailed balance gives KMv(u)DE(u) = −Qu.

QED
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3. Reaction-diffusion systems as gradient systems

u = (u1(t, x), ..., uI (t, x)) densities of chemical species

Reaction-diffusion systems u̇ = div
(
M(u)∇u

)
+R(u)

Example: Ammonia synthesis

N2 + 3H2 � 2NH3 u = (uN2
, uH2

, uNH3
) = (u1, u2, u3)






u̇1
u̇2
u̇3




 =






m1∆u1
m2∆u2
m3∆u3




+






−(kfu1u
3
2−kbu

2
3)

−3(kfu1u
3
2−kbu

2
3)

+2(kfu1u
3
2−kbu

2
3)






︸ ︷︷ ︸

=R(u)

The usual guess of Allen-Cahn or Cahn-Hillard type

E(u) =
∫

Ω
m1|∇u1|

2 +m2|∇u2|
2 +m3|∇u3|

2 + F (u) dx does NOT work,

since curlR 6≡ 0 !
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) u̇ = div
(
M(u)∇u

)
+R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)

u̇ = R(u) = −

R∑

r=1

kr

( uαr

wαr

︸ ︷︷ ︸

educts

−
uβr

wβr

︸︷︷︸

products

)(

αr − βr

︸ ︷︷ ︸

stoich. vect.

)

uγ =

I∏

i=1

uγii

(DBC = for u = w each reaction r = 1, ..., R is balanced)
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) u̇ = div
(
M(u)∇u

)
+R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)

u̇ = R(u) = −

R∑

r=1

kr

( uαr

wαr

︸ ︷︷ ︸

educts

−
uβr

wβr

︸︷︷︸

products

)(

αr − βr

︸ ︷︷ ︸

stoich. vect.

)

uγ =

I∏

i=1

uγii

(DBC = for u = w each reaction r = 1, ..., R is balanced)

Gradient structure for reaction kinetics: u̇ = R(u) = −K(u)DE(u)
E(u) =

∑I
i ui log(ui/wi) and

K(u) =

R∑

r=1

krΛ
(uαr

wαr ,
uβr

wβr

) (
αr−βr

)
⊗
(
αr−βr

)
∈ RI×I

≥0

with Λ(a, b) = a−b
log a−log b > 0 [ use again γ · (log vi) = log(vγ) ]
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) u̇ = div
(
M(u)∇u

)
+R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)

u̇ = R(u) = −

R∑

r=1

kr

( uαr

wαr

︸ ︷︷ ︸

educts

−
uβr

wβr

︸︷︷︸

products

)(

αr − βr

︸ ︷︷ ︸

stoich. vect.

)

uγ =

I∏

i=1

uγii

(DBC = for u = w each reaction r = 1, ..., R is balanced)

Gradient structure for RDS with DBC: u̇ = −KRDS(u)DE(u)

E(u) =
∫

ΩE(u(x)) dx =
∫

Ω ui(x) log(ui(x)/wi(x)) dx

KRDS(u)ξ = − div
(
M(u)∇ξ

)

︸ ︷︷ ︸

diffusion

+K(u)ξ
︸ ︷︷ ︸

react

Onsager’31: K = K∗ ≥ 0 and M = M∗ ≥ 0 mobilities
M(u) = M(u)D2E(u) = M(u)diag( 1

u1
, ..., 1

uI
) not necess. symm.

A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21–23.2.2012 12 (27)



3. Reaction-diffusion systems as gradient systems

Example: Ammonia synthesis N2 + 3H2 � 2NH2





u̇1
u̇2
u̇3




 =






m1∆u1
m2∆u2
m3∆u3




+






−(kfu1u
3
2−kbu

2
3)

−3(kfu1u
3
2−kbu

2
3)

+2(kfu1u
3
2−kbu

2
3)






reference density w = (kb, kf , k
2
f
)

relative entropy

E(u) =
∫

Ω u1 log(u1/w1) + u2 log(u2/w2) + u3 log(u3/w3) dx

Onsager operator

KRDS(u)ξ = −






m1 div(u1∇ξ1)

m2 div(u2∇ξ2)

m3 div(u3∇ξ3)




+Λ

(
u1u

3
2

w1w3
2

,
u2
3

w3
2

)






1 3 −2

3 9 −6

−2 −6 4











ξ1
ξ2
ξ3
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3. Reaction-diffusion systems as gradient systems

Semiconductor model: van Roosbroeck system

− div(ε∇φ) = d−n+p electrostatics

ṅ = div
(
µn(∇n−n∇φ)

)
+ g − rnp electron balance

ṗ = div
(
µp (∇p+ p∇φ)

)
+ g − rnp hole balance

Gradient structure1 (ṅ, ṗ) = −KvR(n, p)DE(n, p)

1M.: Grad. structures for RDS and energy-drift-diffusion systems, Nonlin. 2011
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Semiconductor model: van Roosbroeck system

− div(ε∇φ) = d−n+p electrostatics

ṅ = div
(
µn(∇n−n∇φ)

)
+ g − rnp electron balance

ṗ = div
(
µp (∇p+ p∇φ)

)
+ g − rnp hole balance

Gradient structure1 (ṅ, ṗ) = −KvR(n, p)DE(n, p)

Reference density w = (w,w) with w = (g/r)1/2

Free energy EvR(n, p) =
∫

Ω n log(n/w) + p log(p/w) + ε
2 |∇φn,p|

2 dx

Onsager oper. KvR(n, p)
(ξn
ξp

)
= −

(
div(nµn∇ξn)
div(pµp∇ξp)

)
+ gΛ

(
1, np

w2

)(1 1
1 1

)(ξn
ξp

)

Crucial observation (AlbGajHün’01) DEvR =
(log(n/w)+1
log(p/w)+1

)
+ φn,p

(
−1
+1

)

1M.: Grad. structures for RDS and energy-drift-diffusion systems, Nonlin. 2011
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4. Discrete-to-continuum passage

From random walk to diffusion

• already very well understood with many approaches

• here: add another approach that will be compatible with reactions
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4. Discrete-to-continuum passage

From random walk to diffusion

• already very well understood with many approaches

• here: add another approach that will be compatible with reactions

State space J = ZM = Z/MZ

u̇m = µM2(um−1 − 2um + um+1) u̇ = Qu = −KM (u)DEM (u)

• EM (u) =
∑M

1 ui log(Mui) where w = 1
M (1, ..., 1) and

• KM (u) =
∑M

1 µM2Λ(um, um+1)Em,m+1 ≥ 0 (tridiagonal)

A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21–23.2.2012 16 (27)



4. Discrete-to-continuum passage

From random walk to diffusion

• already very well understood with many approaches

• here: add another approach that will be compatible with reactions

State space J = ZM = Z/MZ

u̇m = µM2(um−1 − 2um + um+1) u̇ = Qu = −KM (u)DEM (u)

• EM (u) =
∑M

1 ui log(Mui) where w = 1
M (1, ..., 1) and

• KM (u) =
∑M

1 µM2Λ(um, um+1)Em,m+1 ≥ 0 (tridiagonal)

Riemannian transport distance on XM = Prob(ZM )

dKM : XM × XM → [0,∞[ defined via

dKM (u0,u1)
2 = inf

{ ∫ 1
0 u′(s) · KM (u(s))−1

︸ ︷︷ ︸

Riemannian tensor

u′(s) ds
∣
∣ u0

u
 u1

}
.

Markov chain is metric gradient flow (XM , EM , dKM ) in De Giorgi’s sense!
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4. Discrete-to-continuum passage

u̇m = µM2(um−1 − 2um + um+1), m ∈ ZM u̇ = −KM (u)DEM (u)

Limit passage: embed XM = Prob(ZM ) into X = Prob(S1)

U = IMu with U(x) =
∑M

m=1 Mumχ](m−1)/M,m/M ](x)

u̇m = µM2(um−1 − 2um + um+1)
to be shown
−−−−−−−→ U̇ = µUxx
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u̇m = µM2(um−1 − 2um + um+1), m ∈ ZM u̇ = −KM (u)DEM (u)

Limit passage: embed XM = Prob(ZM ) into X = Prob(S1)

U = IMu with U(x) =
∑M

m=1 Mumχ](m−1)/M,m/M ](x)

u̇m = µM2(um−1 − 2um + um+1)
to be shown
−−−−−−−→ U̇ = µUxx

EM (u) =
∑M

1 ui log(Mui)
trivial via IM−−−−−−−−→ E(U) =

∫ 1
0 U logU dx

ξ·KM (u)ξ = 〈Ξ,K(U)Ξ〉 =
∑M

1 µΛ(um, um+1)M
2(ξm−ξm+1)

2 in what sense?
−−−−−−−−→

∫ 1
0 µU |Ξ′|2 dx

• formally KM (u)    K(U) as quadratic forms

• but in what sense do we need convergence
to guarantee convergence of solutions?
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4. Discrete-to-continuum passage

Limit passage: u̇m = µM2(um−1 − 2um + um+1)
to be shown
−−−−−−−→ U̇ = µUxx

Use metric approach instead:

Evolutionary variational inequality (EVI) (cf. Ambrosio,Gigli,Savaré’05)

If E is geodesically convex with respect to dK, then

u̇ = −K(u)DE(u) ⇐⇒ (EVI) d+

dt d(u(t),v)
2 + E(u(t)) ≤ E(v)

for all t ≥ 0 and v ∈ X
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4. Discrete-to-continuum passage

Limit passage: u̇m = µM2(um−1 − 2um + um+1)
to be shown
−−−−−−−→ U̇ = µUxx

Use metric approach instead:

Evolutionary variational inequality (EVI) (cf. Ambrosio,Gigli,Savaré’05)

If E is geodesically convex with respect to dK, then

u̇ = −K(u)DE(u) ⇐⇒ (EVI) d+

dt d(u(t),v)
2 + E(u(t)) ≤ E(v)

for all t ≥ 0 and v ∈ X

Theorem M’12.
If (XM , EM , dKM ) and (X , E , dW) are given as above, then

IMuM (0)
dW→ U(0) =⇒ IMuM (t)

dW→ U(t) for all t ≥ 0.

M.11: (XM , EM , dKM ) is geodesically 0-convex (indep. of M)

Gigli-Maas’11/12: dW = Γ- limM→∞ dKM

Use EVI and E = Γ- limM→∞ E
M .
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5. Limit of chemical master equations

Simple reaction equation ȧ = 1− ap (1=generation, −ap annihilation)

Gradient system ([0,∞[ , a log a−a,K) with K(a) = Λ(1, ap)p

Chemical master equation: keep track of number of particles!

a = 1
N # number of particles, where N = typical number of particles

un = probability of having exactly n particles

Markov chain: u̇n = 1un−1
︸ ︷︷ ︸

generation

−
(
1 + ( n

N )p
)
un

︸ ︷︷ ︸

losses

+ (n+1
N )pun+1

︸ ︷︷ ︸

annihilation
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5. Limit of chemical master equations

Simple reaction equation ȧ = 1− ap (1=generation, −ap annihilation)

Gradient system ([0,∞[ , a log a−a,K) with K(a) = Λ(1, ap)p

Chemical master equation: keep track of number of particles!

a = 1
N # number of particles, where N = typical number of particles

un = probability of having exactly n particles

Markov chain: u̇n = 1un−1
︸ ︷︷ ︸

generation

−
(
1 + ( n

N )p
)
un

︸ ︷︷ ︸

losses

+ (n+1
N )pun+1

︸ ︷︷ ︸

annihilation

DBC holds for wN = (wN
n ) with wN

n =
(
Nn

n!

)p
wN
0

We have the gradient structure (XCME, E
N ,KN ) with

• XCME = {u ∈ `1(N0) | un ≥ 1, ‖u‖1 = 1 }

• EN (u) =
∑∞

n=0 un log(un/w
N
n )

• KN (u) =
∑∞

n=1w
N
n−1Λ

( un−1

wN
n−1

, un

wN
n

)
En−1,n ≥ 0
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5. Limit of chemical master equations

Limit passage N →∞

We embed XCME into Prob([0,∞[) via

U = INu with U(a) =
∑M

n=1 N un χ](n−1)/N,n/N ](a) “a ≈ n/N ”

We use the expansion (large deviation argument)

− 1
N logwN

n ≈ E(n/N) where E(a) = p(a log a− a+ 1) (rate fcn.)

   EN (u) ≈
∑∞

0

(
un log un +NunE(n/N)

)

We find Γ-convergence 1
N E

N Γ
→ E where E(U) =

∫∞

0 U(a)E(a) da
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n=1 N un χ](n−1)/N,n/N ](a) “a ≈ n/N ”

We use the expansion (large deviation argument)

− 1
N logwN

n ≈ E(n/N) where E(a) = p(a log a− a+ 1) (rate fcn.)

   EN (u) ≈
∑∞

0

(
un log un +NunE(n/N)

)

We find Γ-convergence 1
N E

N Γ
→ E where E(U) =

∫∞

0 U(a)E(a) da

Moreover,

ξ ·NKN (uN )ξ =
∑∞

1 wN
n−1Λ

( un−1

wN
n−1

, un

wN
n

)

︸ ︷︷ ︸

≈U(n/N)Λ(1,(n/N)p)

N2(ξn−ξn−1)
2 1
N

formally
−−−−→

∫∞

0 U(a)Λ(1, ap)(Ξ′(a))2 da
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5. Limit of chemical master equations

Markov chain: u̇n = un−1 −
(
1 + ( n

N )p
)
un + (n+1

N )pun+1

Gradient structure (X , EN ,KN ) with

X = {u ∈ `1(N0) | un ≥ 1, ‖u‖1 = 1 }

EN (u) =
∑∞

n=0 un log(un/w
N
n ),

KN (u) =
∑∞

n=1 w
N
n−1Λ

( un−1

wN
n−1

, un

wN
n

)
En−1,n

The embedding (Prob([0,∞[), EN◦IN ,KN◦IN ) converges formally

to the limiting gradient system (Prob([0,∞[),E,K) with

E(U) =
∫∞

0 U(a)E(a) da where E(a) = p(a log a− a+ 1)

K(U)Ξ = −
(
U(a)K(a)Ξ′(a)

)′
where K(a) = Λ(1, ap) = ap

−1
log(ap)
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n−1
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wN
n

)
En−1,n

The embedding (Prob([0,∞[), EN◦IN ,KN◦IN ) converges formally

to the limiting gradient system (Prob([0,∞[),E,K) with

E(U) =
∫∞

0 U(a)E(a) da where E(a) = p(a log a− a+ 1)

K(U)Ξ = −
(
U(a)K(a)Ξ′(a)

)′
where K(a) = Λ(1, ap) = ap

−1
log(ap)

Result: Liouville equation = transport equation (cf. T.R.Kurtz’67-70)

U̇(t, a) = −
(
(1−ap)U(t, a)

)′
since DE = E and K(a)E′(a) = ap−1
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5. Limit of chemical master equations

Inspired by Eindhoven group (Mark Peletier, Michiel Renger, ....)

A similar result holds for N -particle Markov chains

u̇ = Qu single-particle process

u = (uj)j∈J ∈ Prob(J), EMv(u) =
∑

j∈J uj log(uj/wj)

N independent particles: U̇ = 1
NQNU (time rescaling)

U = (Un)n∈JN ∈ Prob(JN ) where JN = {n ∈ NJ
0 |

∑

j∈J nj = N }
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A similar result holds for N -particle Markov chains

u̇ = Qu single-particle process

u = (uj)j∈J ∈ Prob(J), EMv(u) =
∑

j∈J uj log(uj/wj)

N independent particles: U̇ = 1
NQNU (time rescaling)

U = (Un)n∈JN ∈ Prob(JN ) where JN = {n ∈ NJ
0 |

∑

j∈J nj = N }

Lemma If u̇ = Qu satisfies DBC for w, then U̇ = 1
NQNU satisfies

DBC for W with
W = (Wn)n∈JN with Wn = N !

∏

j∈J

w
nj

j /(nj !)

Gradient structure (Prob(JN),EN ,KN) with EN (U) =
∑

n∈JN

Un log(Un/Wn)
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5. Limit of chemical master equations

Independence of particles gives a large-deviation result
1
N logWn ≈ −EMv(

1
Nn) ← single-part. energy!

We again embed Prob(JN ) into Prob( Prob(J)
︸ ︷︷ ︸

Gibbs simplex

) via

U = INU where U(u) =
∑

n∈JN

Unc
Nχ0(u−

1
Nn)

As above 1
NEN◦IN

Γ
→ E with E(U) =

∫

Prob(J) U(u)EMv(u) du

KN
formally
−−−−→ K with K(U) = − divu

(
UKMv(u)∇uξ

)
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1
N logWn ≈ −EMv(

1
Nn) ← single-part. energy!

We again embed Prob(JN ) into Prob( Prob(J)
︸ ︷︷ ︸

Gibbs simplex

) via

U = INU where U(u) =
∑

n∈JN

Unc
Nχ0(u−

1
Nn)

As above 1
NEN◦IN

Γ
→ E with E(U) =

∫

Prob(J) U(u)EMv(u) du

KN
formally
−−−−→ K with K(U) = − divu

(
UKMv(u)∇uξ

)

Limiting system: Liouville equation = transport equation

U̇(t,u) = − divu
(
U(t,u)Qu)

since DUE = EMv and −K(U)DE = divu(UKMvDuEMv
︸ ︷︷ ︸

=−Qu

)
= − divu

(
UQu)
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6. Coupling reaction and diffusion

Open problem: Can we find similar PDE limits for a
Markov chain coupling reaction and diffusion?

Attempt: Model U̇ = µUxx + 1− U2 n1 n2 ... ...nm ... ...nM

• • • • • • • •

using JK,N = {n = (n1, .., nM ) ∈ NM
0 |

∑M
1 nm = KN } and

un = u(n1,...,nM) = prob. that site m has nm part. (m = 1, ...,M)
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6. Coupling reaction and diffusion

Open problem: Can we find similar PDE limits for a
Markov chain coupling reaction and diffusion?

Attempt: Model U̇ = µUxx + 1− U2 n1 n2 ... ...nm ... ...nM

• • • • • • • •

using JK,N = {n = (n1, .., nM ) ∈ NM
0 |

∑M
1 nm = KN } and

un = u(n1,...,nM) = prob. that site m has nm part. (m = 1, ...,M)

Idea: model directly the gradient structure (instead of Markov chain)

EM,N (U) =
∑

n∈JM,N

Un log
(
Un/Wn

)
and K = Kdiff +Kreact

ξ ·Kreact(U)ξ =
∑

n∈JM,N

M∑

m=1

ρM,N
m,n WnΛ

(
Un

Wn

,
Un+em

Wn+em

)
(ξn − ξn+em)2

where em = (0, .., 0, 1, 0..)

ξ ·Kdiff(U)ξ =
∑

n∈JM,N

M∑

m=1

µM,N
m,n WnΛ

(
Un

Wn

,
Un+δm

Wn+δm

)
(ξn − ξn+δm)2

where δm = em−em−1
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Conclusion

Markov chains and RDS with DBC have gradient structures

The Onsager form u̇ = −K(u)DE(u) allows for easy modeling
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Conclusion

Markov chains and RDS with DBC have gradient structures

The Onsager form u̇ = −K(u)DE(u) allows for easy modeling

For discrete systems the concave logarithmic mean
Λ(uj, uk) =

uj−uk

log(uj/uk)
replaces the density “u” in Wasserstein metric.

Limit passages in many-particle systems often lead to Liouville-type
equations which need further reduction.

Metric gradient structures allow for easy limit passages with uniform
geodesic λ-convexity holds   (EVI)λ evolutionary variational inequality
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Thank you for your attention
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